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The article discusses interpretations of ‘Qualitative Comparative Analysis’ (QCA) proposed

by Charles Ragin. The first section argues that QCA can be understood alternatively as a

method of data description or as a method for the construction of deterministic functional

models. It is shown that thinking in terms of models is required for generalizations. The

second section discusses causal interpretations of such models. It is argued that one can use

deterministic models without supposing a deterministic metaphysics. The third section

briefly introduces stochastic functional models and shows how they can be used for QCA

applications. In addition to showing that QCA can be well understood as a specific method

of model construction, the article argues that deterministic and stochastic functional

models are quite similar and, depending on the application context and the available data,

both kinds of models could be useful.

Introduction

Qualitative comparative analysis (QCA) was first

proposed by Charles Ragin in 1987 as a method for

analyzing data sets consisting of binary variables

(Ragin, 1987). The basic idea was to represent such

data by Boolean functions. In the meantime, Ragin

(2000, 2008) has extended the method to allow

constructions of fuzzy set relations; further extensions

allow dealing with variables having more than two

values.1

The methods of QCA have been used in many

applications, in particular when researchers deal with a

small or medium number of identifiable cases.2 In

discussions of these methods, it has been proposed to

distinguish between understanding QCA as a ‘research

approach’ and as a ‘data analysis technique’

(Wagemann and Schneider, 2010). As a research

approach, QCA tries to combine qualitative and

quantitative research methods (see also Ragin, 2008).

The present article focuses on QCA as a data analysis

technique. It is argued that the methods proposed

under the heading of QCA can be interpreted in

different ways, and that the differences are important

for the question whether, and how, QCA can be used

for theoretical, in particular for causal, inferences.
The first section shows that the basic form of QCA

can be understood alternatively as a method of data

description or as a method for the construction of

deterministic functional models. It is shown that

thinking in terms of models is required for general-

izations. The second section discusses causal interpret-

ations of such models. It is argued that one can

use deterministic models without supposing a

deterministic metaphysics. The third section briefly

introduces stochastic functional models and shows

how they can be used for QCA applications. In

addition to showing that QCA can well be understood

as a specific method of model construction, the article

argues that deterministic and stochastic functional

models are quite similar and, depending on the

application context and the available data, both kinds

of models could be useful. The article ends with brief

conclusions.
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Understanding the QCA
Approach

In this section, I discuss the basic form of QCA that

consists in the construction of Boolean functions based

on binary variables. I show that the technique can be

used both for descriptive and analytical purposes. In

order to understand analytical applications, aiming at

causal inferences, I consider QCA as a method of

model construction. This also allows to compare QCA

with stochastic forms of model construction that are

prevalent in statistical social research.

An Introductory Example

I begin with an artificial example that was used by

Ragin (1987, pp. 95–101) to explain his approach. The

data are presented as a ‘hypothetical truth table

showing three causes of successful strikes’. There are

four binary variables:

S¼ 1 if the strike is successful, S¼ 0 otherwise

A¼ 1 if booming product market, A¼ 0 otherwise

B¼ 1 if threat of sympathy strikes, B¼ 0 otherwise

C¼ 1 if large strike fund, C¼ 0 otherwise

The data are assumed to be given as shown in

Table 1; the last column provides the number of

cases.
S is considered as dependent, A, B, and C are taken

as independent variables. As the table shows, there are

observations for each of the eight possible configur-

ations of (¼ assignments of values to) the independent

variables and, furthermore, in all cases belonging to the

same configuration of the independent variables, the

dependent variable has the same value, either 0 or 1.

(How these features of the data can be relaxed will be

discussed below.)
The method proposed by Ragin aims at the

construction of a function that shows how values of

S depend on configurations (values) of the independ-

ent variables. It is basically a ‘technique of data

reduction that uses Boolean algebra to simplify com-

plex data structures in a logical and holistic manner’

(Ragin, 1987, viii). In the present example the method

produces the function

S ¼ A:C þ B:C0 ð1Þ

to read: S¼1 iff A¼1 and C¼1 or B¼1 and C¼0.3 The

function obviously shows how, in this example,

S depends on A, B, and C. Ragin also claims that

functions constructed in this way can be given a causal

interpretation:

The final, reduced equation [S¼A.CþB.C0] shows the

two (logically minimal) combinations of conditions

that cause successful strikes and thus provides an

explicit statement of multiple conjunctural causation

(Ragin, 1987, p.98).

The implied understanding of causality will be dis-

cussed in the ‘Causal Interpretations’ section. A

preliminary question concerns in which sense QCA is
not just a technique of data reduction but also a

method of constructing models which, in some sense,

transcend the actual data. This will be discussed in the

remainder of the present section.

Statistical Data and Variables

In order to approach the question one first needs a

distinction between variables that represent data and

variables to be used in the formulation of models.

Variables that serve to represent data, that is, infor-

mation about realized facts, will be called statistical

variables. Such variables can formally be defined as

functions having the form X : �! X : �, the vari-

able’s domain (also called its reference set), comprises a

set of cases to which the data relate, and X denotes a

property space.4 Then, for each element !2V, the

value of the statistical variable, X(!)2X , characterizes

the case represented by !. It will be assumed that the

property space has a numerical representation and can

therefore be considered as some subset X �R.5

The example of the subsection ‘An Introductory

Example’ can serve to illustrate the notion. In this

example, the reference set V has 38 elements corres-

ponding to the 38 cases for which data are available.

Table 1.

A B C S Cases

1 0 1 1 6
0 1 0 1 5
1 1 0 1 2
1 1 1 1 3
1 0 0 0 9
0 0 1 0 6
0 1 1 0 3
0 0 0 0 4
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The statistical variable consists of four components

and may be written as

ðA, B, C, SÞ : �! f0, 1g4

The important point is that statistical variables repre-

sent data which refer to realized facts. In this example,
the variable (A, B, C, S) refers to a set of 38 strikes
which are assumed to have actually taken place

(somewhere at some time) and have actually exhibited
the features indicated by the variable’s values. Using
statistical variables as a conceptual framework, there-

fore, only allows descriptive statements about observed
or hypothetically assumed facts.

Descriptive and Modal Generalizations

So the question arises how to understand statements
which, by transcending the given data, are in some

sense more general. There are at least two quite
different ideas. One idea takes the cases for which data
are actually available to be a subset of a larger

population of cases and intends a generalization to
that population. The conceptual framework of statis-
tical variables allows an explicit formulation. Suppose a

statistical variable, say X : �! X , represents the
available data.6 This allows statistical statements
about the reference set V, basically provided by the

distribution of X which will be denoted by P[X].7 V is
then considered as a subset of a larger population V*
for which an analogously defined variable, say

X� : �� ! X , can be assumed. The goal of the
generalization is a statement about P½X��, the distri-

bution of X* in the population V*, or some quantity
derived from that distribution. For example, under
certain circumstances it might be reasonable to believe

that P½X�� � P½X�: In any case, the result is a
descriptive statement about the distribution of X* in
the population for which the generalization is desired;

the approach will therefore be called descriptive
generalization.

While often reasonable, a descriptive approach to
generalization has, in fact, severe limitations. The most

important limitation results from the notion of a
population. In order to be used as a reference set for a
statistical variable, the elements of a population can

only represent cases which actually do exist or have
existed in the past. Moreover, in order to think of � as
a random sample from �*, all elements of the

population must exist at the time of generating the
sample. For example, it might well be possible to think

of 38 observed strikes as being a subset of a larger
population of strikes, say �*; but elements of �* may
only refer to strikes that have actually taken place, not

to strikes that might take place somewhere in the

future. For otherwise the variables have no operational

meaning.
However, interest in future possibilities often pro-

vides the main reason for an interest in generalizations.

One might be interested, for example, in how the

possible success of a strike depends on conditions. This

question no longer refers to a definite set of realized

facts but is a modal question that concerns the

dependency of possibilities on conditions.8 Such ques-

tions cannot be answered in the conceptual framework

of descriptive generalizations, but require a different

kind of generalization that will be called modal

generalization.

Modal Generalizations with

Functional Models

The main linguistic tool for the formulation of modal

generalizations are rules. Corresponding to different

kinds of modal generalizations, there are different

kinds of rules. A rule might say, for example, what, in

a situation of a certain kind, might happen, or will

probably happen, or should be done, or can be

achieved by performing some specified action.

Scientific research is often concerned with causal

rules that are intended to show how facts, or events,

of some kind depend on other facts and/or events.9

Modal generalizations may then be called causal

generalizations.
A widespread approach to causal generalizations

consists in the construction of functional models, that

is, models which show how one or more endogenous

variables depend on one or more exogenous vari-

ables.10 The important point is that these variables,

contrary to statistical variables, do not represent

realized facts, but are intended to serve modal thinking

about dependencies between possible facts and/or

events. These variables will therefore be called modal

variables and a specific notation will be used. They will

be marked by a single point if stochastic or by double

points if deterministic.
For the moment I only consider deterministic models

consisting of deterministic variables connected by

deterministic functions.11 In the simplest case there is

just one exogenous variable, say €X, and one endogen-

ous variable, say €Y , having ranges X and Y, respect-

ively,12 and it is assumed that they are connected by a

function, say f :X ! Y, such that for each value x2X

there is a unique value f (x)2Y for the variable €Y . The

model may then be depicted as €X! €Y : The model is

called deterministic because the variables are connected
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by a deterministic function, that is, a function which

assigns to each configuration of its arguments a unique

value of the dependent variable.
Of course, it does not suffice just to assume the

existence of a function. Knowing a function one

should be able to calculate its value for any possible

arguments. Therefore, given this knowledge, the func-

tion can be taken as a rule which can effectively be

used. Correspondingly, the functional model can be

viewed as describing one or several (in some way

connected) rules.
Following this understanding, to use, or apply, a

functional model simply means to use the rule (or

rules) formulated by the model for some calculation.

This, of course, presupposes a context which provides

values for the model’s exogenous variables. However,

the model is silent about where these values come

from. They might result from observation or from

hypothetical assumption. The model only describes

how its endogenous variables get their values if values

of its exogenous variables are given. Correspondingly,

the model has no relationship to any concrete

situations, and in particular does not describe any

facts or events which were realized in those situations.

Instead, the model relates in an unspecified sense to a

generic situation with the only requirement that the

situation can generate values of the model’s exogenous

and endogenous variables.

QCA as a Method of Model Construction

The example of the subsection ‘An Introductory

Example’ can serve to illustrate the construction of a

deterministic functional model and the contribution of

QCA. There are four steps.

(a) In a first step one defines the model’s

endogenous and exogenous variables. In this

example, there is a single endogenous variable,
€S, and there are three exogenous variables, €A,
€B, and €C. All variables have ranges f0, 1} with

meanings analogously defined to the meanings

of the statistical variables introduced in

the subsection ‘An Introductory Example’.

However, €A, €B, €C, and €S are now modal

variables; they refer to a generic situation in

which a strike is assumed to take place and may

happen to be successful or not, depending on the

circumstances.

(b) In a second step one specifies the functional

connections between the exogenous and en-

dogenous variables. In this example, the model

may be depicted as ð €A, €B, €CÞ ! €S. There is a

single deterministic function

f : f0, 1g3 ! f0, 1g;

which provides for each configuration

(a,b,c)2 f0,1}3 a unique value s¼ f (a,b,c) of

the variable €S.

(c) In a third step one uses available data in order

to find a numerical specification of the

function(s) defined in the second step.

In this example, the data as tabulated in

Table 1 already provide a numerical specifica-

tion of the function f. Knowing this table, one

can effectively calculate a value of f (a,b,c) for

each configuration of the arguments, and in

this sense one then knows the function as a

rule.

(d) Finally, one can use Boolean algebra to find a

simplified representation of the function(s). In

this example, one finds

€S ¼ €A: €C þ €B: €C0; ð2Þ

which is formally analogous to (1).

Notice, however, that (2) and (1) have different

explications. Equation (1) employs statistical variables

defined by the data in Table 1 and expresses a

descriptive statement about these data. In contrast,

Equation (2) characterizes the function of a functional

model and is formulated in terms of modal variables

which do not refer to any data. While it is true that the

equation has been found by using the data in Table 1,

it nevertheless does not make a descriptive statement

about these data. In fact, Equation (2) does not make a

descriptive statement at all; it formulates a rule.

Descriptive Statements and Rules

The distinction between descriptive statements and

rules is of fundamental importance. Descriptive state-

ments serve to state facts and can be true or false.

Rules, on the other hand, do not state facts and cannot

(therefore) be true or false. Instead, rules are best

understood as aids to support people in their thinking

and doing. This understanding also applies to the

functions defined by a functional model. These func-

tions formulate rules which can be used for predic-

tions: given values of the model’s exogenous variables,

they can be used to predict values of its endogenous

variables.
Of course, predictions can be wrong. But given that

a prediction turns out to be wrong, this will not falsify
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the rule that was used for the prediction. Think, for

example, of the rule: if the bell-push is pressed, the bell

will ring. The rule will not be falsified when the bell

does not ring after the bell-push was pressed. Rather,

that the bell did not ring might be explained by some

circumstances not explicitly taken into account in the

formulation of the rule.
This is of general importance: the formulation of a

predictive rule cannot explicitly take into account all

conditions required for correct predictions. This is

true, in particular, of functional models. Since these

models refer to generic situations they can take into

account at best a few conditions on which their

endogenous variables depend. A functional model

might, therefore, lead to a wrong prediction when

applied in a concrete situation. But again, this will not

falsify the model. Functional models, like rules, are not

true or false but more or less useful.
When data contradict a functional relationship

assumed in a model, this will not falsify the model.

Such observations might suggest changes in the

formulation of the model. They do not, however,

force a reformulation because the model has not the

task to describe data. Of course, a model cannot be

used to explain the occurrence of data that contradict

the model. But even then the model might be useful to

define the question of interest, namely, why a contra-

dicting outcome occurred in the given situation. In

many cases, an answer will not require a modified

model but a thorough investigation of the circum-

stances which prevailed in the concrete situation.

Why Minimal Function Descriptions?

Viewed as a technique of Boolean function minimiza-

tion, QCA is just the final step in the construction of a

deterministic functional model (based on a Boolean

function). This step only changes the presentation, not

the essential content of the functional relationship

established by the model. So what can be achieved by

the minimization procedure? Ragin’s main argument is

that this procedure can find constellations of causally

relevant conditions. Griffin and Ragin (1994, p. 9) gave

the following formulation:

The procedure’s explanatory power derives from how

it uses Boolean algebra as a data-reduction tool. By

comparing combinations of causal factors, QCA trims

them of components logically unnecessary for the

presence of the outcome in one or more cases. What

remains after data reduction – logically irreducible and

nonredundant combinations of attributes – is viewed

as a set of causal conjunctures that are sufficient for

the occurrence of the outcome (Ragin, 1987).

In order to understand the idea, I first briefly consider

the minimization procedure. Let Y¼ f (X1, . . . , Xm)

denote a Boolean function (all variables are binary).

A complete truth-table has 2m rows; each row will be

called a configuration (or constellation) of the inde-

pendent variables. These variables can be used to

construct multiplicative expressions having the form

Z1.Z2. . .Zk, where each Zi is one of the independent

variables or its negation, e.g. X1.X2 or X2.X3.X05.

An expression Z1.Z2. . .Zk will be called an implicant

if Z1.Z2. . .Zk ¼ 1 implies that Y¼ 1; and it will be

called a minimal or prime implicant if no proper part

of it is already an implicant. These definitions finally

allow one to formulate the following

Minimization problem: Find a minimal set of prime

implicants, say p1, . . . ,pk, such that ðp1 þ � � � þ pkÞ ¼ 1

iff Y¼ 1.

However, being interested in all ‘logically irreducible

and nonredundant combinations of attributes’, as

referred to in the above quotation, this minimization

problem is of no specific importance. Indeed, one

would need a complete list of all prime implicants. In

the example of the subsection ‘An Introductory

Example’, the solution of the minimization problem

is A.CþB.C0, but there is a further prime implicant,

A.B, not visible in the solution of the minimization

problem but likewise interpretable as a non-reducible

constellation of conditions.13

Moreover, in many applications the minimization

problem has no unique solution but one can find

several, or even a large number of, minimal sets of

prime implicants whose addition is logically equivalent

with Y¼ 1. (An example will be given in the next

subsection.)

Data with Limited Diversity

So far it has been assumed that data are complete and

do not exhibit contradictions so that they immediately

determine a Boolean function with unrestricted

domain. In many applications this will not be the

case. In this subsection, I briefly discuss incomplete

data still assuming that they do not exhibit

contradictions.
To illustrate I use an example of Ragin (1987,

p. 129) which is based on Stein Rokkan’s data on

divided working-class movements in Western

Europe (Rokkan, 1970). The dependent variable is
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S (‘major split in working-class movement provoked

by Russian revolution’). Independent variables are: C

(‘national church vs. state allied to Roman Catholic

church’), R (‘significant Roman Catholic population

and Roman Catholic participation in mass education’),

L (‘state protection of landed interests’), and E (‘early

state’). Table 2 shows the data.
For 6 of 16 constellations of the independent

variables data are missing.14 How then construct a

Boolean function? There are different possibilities.

(a) A straightforward option is to restrict the

domain of the function to the observed

constellations of the independent variables. In

the literature, this option is often called the

‘don’t care’ approach. In the example one gets

the prime implicants:

C:R:L, C0:R0, C0:E, R0:E0, C:E0

and a unique solution of the minimization

problem described in the subsection ‘Why

Minimal Function Descriptions?’:

S ¼ C0:R0 þ C:E0

(b) Another possibility is to assume S¼ 0 for the

missing constellations. One then gets four

prime implicants:

C:R:L:E0, C0:R0:L0, C0:R0:E, R0:L0:E0

and again a unique solution of the minimiza-

tion problem:

S ¼ C:R:L:E0 þ C0:R0:E þ R0:L0:E0

(c) Conversely, one can assume S¼ 1 for the

missing constellations. One then finds R.L.E.

in addition to the prime implicants found in

(a), and there are now four solutions of the

minimization problem:

S ¼ C0:E þ C:E0 þ R:L:E þ C0:R0

S ¼ C0:E þ C:E0 þ R:L:E þ R0:E0

S ¼ C0:E þ C:E0 þ C:R:Lþ C0:R0

S ¼ C0:E þ C:E0 þ C:R:Lþ R0:E0

It has been argued that, being interested in conditions

of positive outcomes (S¼ 1), a conservative strategy

would be (b).15 This is true in the following sense: each

of the prime implicants found with strategy (a) is

logically implied by at least one of the prime implicants

found with strategy (b). However, correctly understood

the most prudent strategy is (a) because this strategy

restricts the domain of the function to be constructed.

The function resulting from this approach is to be

applied only to constellations of the independent

variables which have been observed at least once.

Is QCA a Case-oriented Method?

I have tried to show that QCA can be understood in

two different ways, either as a method of data

description or as a method of model construction.

Causal interpretations presuppose the construction of a

model. Before this will be discussed in the next section,

I briefly criticize Ragin’s claim that QCA is a

case-oriented method.16 The remarkable point is that

the method in its technical sense (as a method of

model construction) in no way depends on separate

investigations and explanations of the cases that finally

become part of a QCA data set.17 In fact, the method

begins with the definition of statistical (or modal)

variables to provide a conceptual framework for

subsequent investigations. In this respect, as explicitly

said by Griffin and Ragin (1994, p. 10), there is

no essential difference between QCA and other

variable-oriented approaches:

Despite the greater interpretive thrust of QCA, the

epistemological foundations of the analytic determin-

ation of causal relationships are similar in QCA and

statistical analysis. Both are general and comparative in

logical operation (Griffin, 1992). That is, both QCA

and statistical analyses look for patterns across cases.

Cases are considered as discrete, multiple instances of

more general phenomena, thus permitting their aggre-

gation into a set for the purpose of analysis. Attributes

of the cases are then logically or statistically compared

across all cases to form inductive causal (logical or

statistical) generalizations that are then used

Table 2.

C R L E S

0 0 0 0 1 (Italy)
0 0 0 1 1 (France)
0 0 1 1 1 (Spain)
0 1 0 0 0 (Belgium, Luxembourg)
0 1 1 0 0 (Austria, Ireland)
1 0 0 0 1 (Finland, Iceland, Norway)
1 0 0 1 0 (Denmark, Sweden)
1 0 1 1 0 (Great Britain)
1 1 0 1 0 (Netherlands, Switzerland)
1 1 1 0 1 (Germany)
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deductively to explain or subsume the outcome of each
individual case.

Instead of cases (as considered in case studies) the
method considers configurations of variables. While
cases may serve to illustrate these configurations and
provide inspiration for the selection and definition of
variables, the goal is to find functional relationships
between variables. However, exactly this is often
considered a hallmark of ‘quantitative methods’:

Quantitative methods focus directly on relationships
among variables, especially the effects of causal or
independent variables on outcome or dependent vari-
ables (Ragin, 1994, p. 145) [emphasis in original].

Remaining differences only concern the kind of
functions used to connect independent and dependent
variables. While conventional statistical approaches
employ stochastic functions, QCA employs determin-
istic functions. This will be further discussed in the
‘Deterministic and Stochastic Models’ section.

Causal Interpretations

Causes as Sufficient Conditions

QCA is widely considered as a method of causal
analysis.18 Since the expression ‘causal’ is used in many
different meanings,19 it is important to understand its
specific meaning in the context of the QCA approach.
The basic idea is to think of the cause of some
phenomenon as the (complex of) conditions on which

the occurrence of the phenomenon (in some sense)
depends. This approach to understand ‘causality’ was
made popular by John St Mill in the 19th century.20

For Mill, the cause of a phenomenon is ‘the sum total
of the conditions, positive or negative taken together;
the whole of the contingencies of every description,
which being realized, the consequent invariably fol-
lows’ (Mill, 1879, Vol. I, p. 383). The causal inter-
pretation of the QCA approach follows Mill in mainly
three points:21

(a) Causes are conceptualized in terms of suffi-

cient conditions.

(b) Causes are understood as combinations of

conditions which together are sufficient for

the occurrence of some phenomenon. This has

been called ‘conjunctural causation’ by Ragin.

(c) It is recognized that different combinations of

conditions might be sufficient for the

occurrence of some phenomenon (‘multiple

conjunctural causation’).22

These three ideas directly relate to a causal inter-

pretation of the Boolean functions produced by the

QCA approach. Assume a Boolean function

Y¼ f (X1, . . . , Xm). Then, (i) every prime implicant is

a cause (in the sense of a sufficient condition) for

Y¼ 1; (ii) prime implicants often relate to two or more

of the independent variables; (iii) one often finds two

or more different prime implicants. For example, there

are three prime implicants, each consisting of two

variables, in the example introduced at the beginning

of the ‘Understanding the QCA Approach’ section:

A.C, B.C0, and A.B. Using the notion of ‘coverage’

proposed by Ragin (2008, pp. 54–68), A.C has

coverage 9/16,23 B.C0 has coverage 7/16, and A.B has

coverage 5/16.

Modal Interpretations Require Models

It is important to understand that talk of sufficient

conditions can only be explicated by referring to

functional models.24 As an example, consider the

following setup:

A battery and a bulb are connected by a circuit that

can be closed or opened by a switch. Depending on the

position of the switch the bulb gives light or not. One

can easily construct a functional model using three

variables:25 €Y records whether the bulb gives light

( €Y ¼ 1) or not ( €Y ¼ 0), €X records whether the switch

is closed ( €X ¼ 1) or not ( €X ¼ 0), and €Z records

whether the battery provides power ( €Z ¼ 1) or not

( €Z ¼ 0). Taking €Y as endogenous and €X and €Z as

exogenous variables, there is a simple Boolean rela-

tionship: €Y ¼ €X: €Z. The bulb gives light if the battery

provides power and the switch is closed; in all other

cases the bulb is off.
One might therefore say: that the battery provides

power and the switch is closed, taken together, is a

sufficient condition for the bulb to give light. However,

it is obvious that this is only a sufficient condition

with respect to the model. In any concrete situation

where the model is applicable it is quite possible that

the bulb is off although the battery provides power and

the switch is closed. This is simply due to the fact that

a model can only consider a limited (actually very
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small) number of conditions by explicitly defined

variables.

A Deterministic Understanding of

Causation?

Mill certainly had a deterministic understanding of

causation: ‘We may define [. . .] the cause of a phenom-

enon, to be the antecedent, or the concurrence of

antecedents, on which it is invariably and unconditionally

consequent.’ (Mill, 1879, Vol. I, p. 392; emphasis in

original). Such a deterministic understanding seems to

be implied by the notion of causes as sufficient

conditions,26 and therefore is often also associated with

the QCA approach, in particular by many of its critics.27

However, one needs to distinguish:

(a) using deterministic functional models for the

formulation of causal rules; and

(b) to believe that there are deterministic connec-

tions between empirically identifiable ‘ante-

cedents’ and ‘consequents’.

QCA implies (a), but is independent of (b). For

example, using the deterministic model introduced in

the previous subsection does not require to believe in

deterministic connections between any states (of

affairs) definable by referring to batteries, switches,

and bulbs. It is well possible to criticize (b) as being an

obscure metaphysical idea,28 but this does not imme-

diately imply a critique of the QCA approach. The

relevant question is not, as put by King, Keohane and

Verba (1994, p. 89), whether ‘the world, at least as we

know it, is probabilistic rather than deterministic’, but

rather, what kind of models ought to be used. In

general, depending on the application, both determin-

istic and stochastic models can be useful. (This

question will be further discussed in the

‘Deterministic and Stochastic Models’ section.)

Ambiguous Talk of Necessary Conditions

Complementary to sufficient conditions one can think

of necessary conditions. Ragin (1987, p. 99) gave the

following explanation: ‘A cause is defined as necessary

if it must be present for a certain outcome to occur.

A cause is defined as sufficient if by itself it can

produce a certain outcome.’ Of course, both notions

can be given a clear meaning only in the context of a

functional model. Even then it might be unclear what

is meant by the word ‘cause’. If there are two or more

exogenous variables, the word may refer either to

values of single variables or to combined values of

several variables.
In the context of Boolean functional models, causes

in the sense of sufficient conditions are conceptually

equivalent with prime implicants and most often

simultaneously refer to two or more variables. This

immediately implies: if there is only a single prime

implicant it is also a necessary cause; otherwise

necessary causes do not exist.
Alternatively, one can refer to single variables. I then

speak of causal factors to avoid confusion with ‘cause’

in the sense of prime implicants.29 It then follows that

a causal factor is a cause just in the case that it is also a

prime implicant. This might or might not be the case.

For example, the model introduced in the subsection

‘Modal Interpretations Require Models’ contains two
causal factors, €X and €Z, but neither is a cause; the only

cause of €Y ¼ 1 is the prime implicant €X: €Z ¼ 1.
Referring to causal factors provides further possibi-

lities to think of necessary conditions. Obviously, in
the just mentioned example, both €X ¼ 1 and €Z ¼ 1 are

necessary conditions for the bulb to give light. But

consider the example discussed in the subsection ‘An

Introductory Example’ of the ‘Understanding the QCA

approach’ section: neither €A ¼ 1 nor €B ¼ 1 nor €C ¼ 1

is necessary for €S ¼ 1. So there are no necessary causal

factors in this example. One might well say, however,

that both €A ¼ 1 and €C ¼ 1 are necessary parts of the

cause €A: €C ¼ 1. This motivates the following notion
proposed by Mackie (1965, 1980): a causal factor is an

INUS condition if it is a nonredundant part of a cause

(in the sense of a sufficient condition); the cause might

or might not be necessary for the specified outcome.30

Static and Dynamic Notions of Cause

Mackie’s idea was to offer ‘INUS condition’ as an

explication of ‘cause’. The proposal is interesting for

several reasons. First, it respects the ordinary talk in

which causes do not mean sufficient conditions but

quite specific circumstances having some identifiable

consequences. Second, it contributes to an explication

of this ordinary understanding by pointing to the fact

that the ways in which causal factors have conse-

quences most often depend on circumstances.
A further interesting point becomes apparent when

recognizing that ‘cause’ in the sense of ‘sufficient

condition’ is basically a static notion. In contrast,

ordinary talk of causation is most often dynamic, in
the sense that causal connections are taken to exist

between changes (events); for example: the bell-push

was pressed, and as a causal consequence the bell began

to ring. A dynamic version of INUS conditions can
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capture this intuition. I propose the following defin-
ition which refers to a function Y¼ f (X1, . . . , Xm) of
some functional model:

Given a covariate context of €Xi,
31 say €Z ¼ z, a change

�(x0, x00) in the variable €Xi is a functional cause of a
change �(y 0,y 00) in the variable €Y iff €Y ¼ y0 can be
derived from €Xi ¼ x0 and €Z ¼ z, and €Y ¼ y00 can be
derived from €Xi ¼ x00 and €Z ¼ z.

To illustrate with the example of the subsection ‘Modal
Interpretations Require Models’: in the covariate
context €Z ¼ 1 (but not in the covariate context
€Z ¼ 0), a change �(0,1) in €X functionally causes a

change �(0,1) in €Y .
The definition obviously does not require

Y¼ f (X1, . . . , Xm) to be a Boolean function; it can be
used with any kind of deterministic function (defined
in some functional model) and can also be extended to
stochastic functions.32

A New Approach to Incomplete Data

The notion of functional cause also suggests a new
approach to the problem of incomplete truth-tables
(see ‘Data with Limited Diversity’ in the
‘Understanding the QCA Approach’ section). The
idea is to find, for each of the independent variables
in turn, all covariate contexts in which a change �(0,1)
in the independent variable has a positive effect [implies
�(0,1) in the dependent variable], or a negative effect
[implies �(1,0) in the dependent variable], or no effect,
or possible effects are unknown (due to missing data).

To illustrate, I use the example of ‘Data with
Limited Diversity’ in the ‘Understanding the QCA
Approach’ section. Table 3 shows what can be said
about effects in this example.

The table not only shows what is not known due to
missing data, but it also shows what can faithfully be
said with the given data. For example, the only variable
that has a positive effect (in a specific context) is C
(‘national church vs. state allied to Roman Catholic
church’). Adding further data may change some of the

entries in the table, but will not lead to contradictory
results.

Deterministic and Stochastic
Models

Data with Contradicting Outcomes

So far it has been assumed that the given data are
immediately compatible with the assumption of a
deterministic function. Real data, however, often
exhibit so-called contradictions, meaning cases that
share the same constellation of the independent
variables but have different values in the dependent
variable.

Given such data, some way of coping with the
contradictions is required. There are different
possibilities.

(a) One possibility is to search for additional

independent variables that might be used to

get rid of the contradictions.33

(b) Another possibility would be to use a subset of

the cases that do not exhibit contradictions,

and consider the remaining cases as ‘excep-

tions’ resulting from conditions not explicitly

represented in the model. A version of this

strategy would be to omit all conflicting cases.

(c) Finally, one can try to construct a stochastic

instead of a deterministic functional model.

Ragin has mainly proposed strategies (a) and (b).34

Here I want to discuss strategy (c); how one can
understand stochastic functional models, and in which
sense can they provide an alternative to deterministic
models.

Deterministic and Stochastic Functions

Assume two deterministic variables, say €X and €Y ,
having ranges X and Y, respectively. A deterministic
function f :X ! Y assigns to each value x2X a
unique value f (x)2Y. In contrast, a stochastic function
assigns to each value x2X a probability distribution
over Y. Thus, instead of €Y , one has to consider a
stochastic variable, _Y , that can be used for probabilistic
statements. A stochastic function may then be
written as

x! Pr½ _Y j €X ¼ x� ð3Þ

To each value x2X the function assigns a conditional
probability distribution of _Y , given that €X ¼ x.35 In
order to distinguish stochastic from deterministic

Table 3.

Pos.
effect

Neg.
effect

No
effect

Unknown

C R.L.E0 R0.E R0.L0.E0 R0.L.E0, R.L0, R.E
R – C0.L0.E0 C0.L0.E0 C0.E, C.E0, L
L – – C0.R.E0, R0.E R0.E0, C.E0, R.E, C.R
E – C.R0.L0 C.R0.L0 L, R
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connections between variables, stochastic functions will

be graphically depicted as €X� _Y . Note also that

Pr½ _Y j €X ¼ x� is a probability distribution and not just

a number. However, if _Y is a binary variable with range

f0,1}, it obviously suffices to consider the stochastic

function x! Prð _Y ¼ 1j €X ¼ xÞ instead of (3).

Stochastic Models for QCA Applications

A stochastic functional model is a functional model

that contains at least one endogenous stochastic

variable and consequently at least one stochastic

function. Interpretations depend on the application

context. Here, we are interested in using such models

for QCA applications. To illustrate, I use the example

of ‘Data with Limited Diversity’ in the ‘Understanding

the QCA Approach’ section. Assume that variable C

has not been observed. The available data are then

given as shown in Table 4.
A stochastic model would be ð €R, €L, €EÞ� _S, using a

stochastic function

ðr, l, eÞ ! Prð _S ¼ 1j €R ¼ r, €L ¼ l, €E ¼ eÞ ð4Þ

The observed frequencies in the last column of Table 4

might be used to estimate the conditional probabilities.

However, since the model has not the task to describe

the observed data, the question remains how to

interpret the stochastic function.

Interpretation of Stochastic Functions

How to interpret the stochastic functions of a func-

tional model depends primarily on the kind of

generalization that the model is intended to provide

(see ‘Descriptive and Model Generalizations’ in the

‘Understanding the QCA Approach’ section). If a

descriptive generalization is intended, the model the-

oretically relates to a (specified) finite population, and

the probabilities postulated by the model can be

interpreted as frequencies with respect to the popula-

tion. The probabilities are then conceptually analogous

to the frequencies observed in the given sample, and

the estimation problem has a definite meaning. In the

example just mentioned, one would think of the 16

countries as being a sample of some population of

countries and understand the model as intending

statements about conditional frequencies in that

population.
The situation is quite different if the model is

intended to serve a modal generalization. It is not

possible, then, to explicate the probabilities used in the

formulation of the model by referring to frequencies in

some population. There is, however, an alternative
interpretation that becomes apparent when the func-

tions formulated by a functional model are understood

as rules. The probabilities used in the formulation of a

stochastic function can then be interpreted as express-

ing the uncertainty of the outcome referred to by the

function. For example, following this interpretation,

the function (4) does not make a statement about

some population of countries, but formulates a rule;

and the formulation uses conditional probabilities to
indicate the amount of uncertainty in the rule’s

predictions.
It is remarkable that stochastic functions do not

require assumptions about any sources of the uncer-
tainty which they express. One might well believe that

some part of the uncertainty is due to missing

variables. But the only way to argue for such a belief

would be to find a better model that would allow

better predictions.

Using Stochastic Functions for QCA

I have tried to show that, if understood as rules,

deterministic and stochastic functions can be used

quite analogously. The main difference concerns the

expression of uncertainty. Deterministic functions do

not deny uncertainty (or indeterminacy) but refer this

problem to the application context. In contrast,

stochastic functions make explicit statements about

(some of) the uncertainty to be expected when used
for predictions.

This confirms the conclusion of ‘A Deterministic

Understanding of Causation?’ in the ‘Causal

Interpretations’ section, that no fundamental choice
between deterministic and stochastic models is

required. In fact, without a theory providing ideas

for a sufficient set of exogenous variables to avoid

contradictory observations, it might well be preferable

to use stochastic functions in order to represent the

indeterminacy found in the given data.
An interesting consequence concerns the causal

interpretation. Using stochastic functions, the static

Table 4.

Cases with
R L E S¼ 0 S¼ 1 P(S¼ 1| R, L, E)

0 0 0 0 4 1
0 0 1 2 1 1/3
0 1 1 1 1 1/2
1 0 0 2 0 0
1 0 1 2 0 0
1 1 0 2 1 1/3
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view that thinks of causes as sufficient (and/or

necessary) conditions no longer makes sense. More
reasonable is a stochastic version of the definition of

functional causality given in ‘Static and Dynamic
Notions of Cause’ of the ‘Causal Interpretions’ section.
If all variables are binary, one can again follow the

approach proposed in ‘A New Approach to Incomplete
Data’, namely to find, for each of the independent

variables in turn, all covariate contexts in which a
change �(0,1) in the independent variables has

(a) positive effect: Prð _Y ¼ 1j €X ¼ 1, €Z ¼ zÞ4
Prð _Y ¼ 1j €X ¼ 0, €Z ¼ zÞ,

(b) a negative effect: Prð _Y ¼ 1j €X ¼ 1, €Z ¼ zÞ5
Prð _Y ¼ 1j €X ¼ 0, €Z ¼ zÞ,

(c) no effect: Prð _Y ¼ 1j €X ¼ 1, €Z ¼ zÞ ¼

Prð _Y ¼ 1j €X ¼ 0, €Z ¼ zÞ, or

(d) possible effects are unknown (due to missing

data).

Here €X is used for the causal factor, and €Z ¼ z

represents a covariate context. Similar to the search for
prime implicants of Boolean functions, one might

search for minimal descriptions of covariate contexts
that are required to determine the different

possibilities.36

Conclusions

The article has shown that QCA can be understood in
two quite different ways. On the one hand, it can be

understood as a method for the construction of
Boolean functions that describe a given set of data.

On the other hand, it can be understood as a method
for the construction of functional models. The dis-
tinction is important because it is closely linked to the

question whether, and in which sense, QCA can be
used for the (hypothetical) formulation of causal

relationships. The article has argued that this requires
to consider QCA as a method for the construction of
functional models.

This understanding, moreover, opens the opportun-
ity to locate QCA in the broader framework of

functional models that includes deterministic as well
as stochastic versions. QCA is most often understood
as a method for the construction of deterministic

models which allow one to think of causes in terms of
necessary and/or sufficient conditions. However, when

data exhibit contradicting outcomes it could be a
useful strategy to consider stochastic models instead of
modifying the data in order to make them compatible

with a deterministic model. It will no longer be
possible, then, to think of causes in terms of necessary

and/or sufficient conditions. However, the article
briefly hints to a notion of functional causality that
can be defined in quite similar ways both for
deterministic and stochastic models.

Notes

1. For an introduction and overview see the textbook

edited by Rihoux and Ragin (2009). Another

introductory textbook is Schneider and

Wagemann (2007). These textbooks also provide

references to a broad range of applications.

2. In addition to the textbooks cited in Note 1,

see Yamasaki and Rihoux (2009). Extensive

information is also provided by the COMPASSS

Web site (www.compasss.org).

3. These notations are used: X.Y¼1 iff X¼ 1 and

Y¼ 1; X þ Y¼ 1 iff X¼ 1 or Y¼ 1; X0 ¼ 0 iff

X¼ 1. The logical multiplication (and) has

priority over the logical addition (or). The

expression ‘iff’ is short for ‘if and only if ’.

4. The term property space is used here to denote any

set of properties that can be used to characterize

the elements of a reference set.

5. In this text, R denotes the set of real numbers.

6. X may consist of several components,

e.g. X¼ (A, B, C, S). Since the distinction between

one- and multi-dimensional statistical variables is

purely formal and has no substantive meaning,

it will only be mentioned if components need to

be distinguished.

7. P½X� will be taken as a function that provides,

for each element or subset of X , the correspond-

ing proportion of cases in V. Referring to

a specific value x2X , a standard notation would

be PðX ¼ xÞ, meaning the proportion of cases in

V for which the variable X has the value x. For

example, using the data in Table 1, one finds the

proportion PððA, B, C, SÞ ¼ ð1, 0, 1, 1ÞÞ ¼ 6=38.

8. In this text, the term ‘modal’ will be used

to remind of possibilities (and probabilities). For

a broader discussion of ‘modal thinking’, see

White (1975).

9. The designation reflects the very broad usage of

the term ‘causal’ in the scientific literature. It is

certainly reasonable, and will be done below, to

distinguish different understandings and defini-

tions of causality.
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10. A variable is called endogenous (or dependent)

if its values depend on other variables defined in

the model; otherwise it is called an exogenous

(or independent) variable.

11. For a detailed discussion of deterministic and

stochastic functional models, see Rohwer (2010).

12. Of course, like statistical variables, modal variables

may consist of several components, e.g. €X ¼

ð €X1, . . . , €XmÞ having the range X ¼

X 1 � � � � � Xm or some subset of this product.

13. See the remarks made by Ragin (1987, p. 98). For

an illustration of the temptation to focus solely on

a solution of the minimization problem, see Ragin

et al. (2003, pp. 331–336).

14. Proposed by Ragin, this kind of missing data is

called limited diversity in the QCA literature; see,

e.g. Ragin (1987, p. 204), Ragin and Rihoux

(2004a, p. 7), and Schneider and Wagemann

(2007, p. 101). The missing constellations are

often called remainders.

15. See Ragin and Rihoux (2004a, p. 7).

16. See, e.g. Ragin (1998).

17. I here follow Gerring’s (2004) understanding of

case study research. The argument, of course, does

not exclude the possibility to use QCA in case

study research.

18. See, e.g. Ragin (1987, 2000), Mahoney (2000,

2003, 2008), Rihoux (2006), Schneider and

Wagemann (2007).

19. See, e.g. Cartwright (2004).

20. The relevant source is Mill’s System of Logic which

first appeared in 1843. I refer to the 10th edition

of 1879.

21. See Ragin (2000, pp. 99–104).

22. See already Mill (1879, Vol. I, p. 504); see also

Mackie (1965: 61).

23. There are 16 cases with S¼ 1, and in nine of these

cases is A.C¼ 1.

24. Ragin (1987, p. 99) has made a similar point:

‘Neither necessity nor sufficiency exists indepen-

dently of theories that propose causes.’

25. Since the model is deterministic, its variables are

marked by two points.

26. See, e.g. Mahoney (2008).

27. For example, Lieberson (1992, 1994, 1997),

Goldthorpe (2000, p. 50), and King, Keohane and

Verba (1994, pp. 87–89). See also the discussion of

‘deterministic explanations’ by Mahoney (2003).

28. The philosophical question eventually concerns

whether, outside the realm of analytic truths, the

idea of ‘a totality’ of sufficient conditions can be

given any clear meaning.

29. It is assumed that the expression ‘causal factor’

refers to a (binary) variable having a specified

value.

30. INUS is an abbreviation of ‘insufficient but

nonredundant part of an unnecessary but suffi-

cient condition’.

31. A covariate context of a variable €Xi is any

selection of variables from €X1, . . . , €Xm that does

not contain €Xi which are given specified values.

32. For a detailed discussion of this notion of

functional causality, see Rohwer (2010).

33. Instead of searching for additional variables,

it sometimes might be possible to get rid of

contradictions by redefining already included

variables (e.g. by changing cut-off thresholds for

dichotomization). This possibility was suggested

by an anonymous reviewer.

34. See Ragin (1987, pp. 113–118; 1994, p. 120),

Ragin and Rihoux (2004b, p. 23), and Ragin

(2008, pp. 27–28).

35. The notation Pr½ _Y � is used for the probability

distribution of the stochastic variable _Y , formally

analogous to the notation P½Y � for the frequency

distributions of a statistical variable Y; see Note 7.

Correspondingly, Prð _Y ¼ yÞ is used to denote the

probability of _Y ¼ y and distinguished from

PðY ¼ yÞ, that is, the frequency of Y¼ y in some

specified reference set.

36. For a similar approach, called ‘logic regression’,

see Ruczinski, Kooperberg and LeBlanc (2003).
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