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Functional models can be constructed for any kind of object or situation
as far as their properties can be represented by variables. An interest-
ing distinction arises if one considers a collection of individual units, say
Ω = {ω1, . . . , ωn}. Functional models may then refer either to individual
members of Ω, or to Ω as a set. In the former case, models connect vari-
ables characterizing individual members of Ω; such models will therefore be
called individual-level models. In the latter case models connect statistical
variables or distributions that characterize Ω as a set of individual units;
such models will be called population-level models.

The two types of models correspond to different questions. The school
example provides an illustration. On the one hand, one can refer to an
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individual child and ask how his or her educational success depends on the
school type and the parent’s educational level. This is the question of an
individual-level model. On the other hand, one can refer to a population of
children and ask in which way the proportion of successful children depends
on the distribution of school types and parent’s educational levels. This
would be the question of a population-level model.

Statistical social research is predominantly concerned with individual-
level models.1 It is important to recognize, however, that answers to ques-
tions concerning connections between statistical distributions cannot, in
general, be answered from individual-level models. They require population-
level models which allow to take into account constraints and interdepen-
dencies at the population level. In fact, this may already be necessary for
questions relating to the individual level. It will often be the case that what
happens on the individual level depends on circumstances to be defined on a
population level. Individual-level models must then be extended into (some
version of) multilevel models.

Collections of individual units can be small (e.g., classes), or of interme-
diate size (e.g., neighborhoods and communities), or represent whole coun-
tries. In this chapter, I indiscriminately speak of populations and do not
consider distinctions relating to their size. The first section introduces con-
ceptual frameworks for deterministic and stochastic population-level mod-
els. These models relate to statistical populations consisting of individual
units which cannot be identified and therefore differ from models for struc-
tured units. The first section also introduces a version of multilevel models
which combine individual-level and population-level variables. The second
section briefly discusses models of statistical processes using diffusion mod-
els for an illustration. The third section takes up the notion of functional
causality, and discusses how this notion can be used for multilevel and
population-level models.

1 Conceptual Frameworks

1. Deterministic Population-level Models. Suppose that a deterministic in-
dividual-level model, say Ẍ −→ Ÿ , is applicable to all members of a fixed
reference set Ω = {ω1, . . . , ωn}. The ranges of Ẍ and Ÿ will be denoted by
X̃ and Ỹ, respectively.

In a first step one can arbitrarily create values of Ẍ for each ω ∈ Ω and
thereby create values of a statistical variable X : Ω −→ X̃ . This implies a
statistical distribution P[X ]. Given then, for each member of Ω, a value of
Ẍ, one can use the individual-level model to derive corresponding values
of Ÿ and thereby create values of a statistical variable Y : Ω −→ Ỹ that

1See the critical remarks made by Coleman (1990: 1).
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implies a distribution P[Y ]. In this way, the individual-level model for the
members of Ω can be used to construct a functional model for Ω that
associates with each distribution P[X ] another distribution P[Y ].

Notice that the derived model for Ω connects modal variables, but vari-
ables of a special kind, having statistical distributions as values. Such vari-
ables will be called deterministic population-level variables and denoted by
Ẍ∗, Ÿ ∗, and so on. Ranges of possible values will be denoted, respectively,
by D[Ω, X̃ ], D[Ω, Ỹ ], and so on. For example, D[Ω, X̃ ] is the set of all dis-
tributions of variables X : Ω −→ X̃ which can be defined for Ω with the
property space X̃ .2 Of course, population-level variables can also refer to
quantities derived from statistical distributions (e.g., the number of units
exhibiting some specified property), and ranges will then be different from
the standard form.

Using these notations, the model just considered can be depicted by a
diagram of the following form:

Ẍ∗ −→ Ÿ ∗ (1)

where the arrow −→ refers to a deterministic function which assigns to
each possible value of Ẍ∗ exactly one value of Ÿ ∗. It is a functional model
for Ω that shows how values of the endogenous variable Ÿ ∗ depend on
values of the exogenous variable Ẍ∗. So it is an example of a deterministic

population-level model .

2. Populations without Identifiable Units. In accordance with the statistical
approach it will be assumed that population-level models concern popula-
tions whose individual members cannot be identified. Values of population-
level variables are therefore taken as statistical distributions (or quantities
derived from such distributions). When referring to the statistical vari-
ables from which the distributions are derived, one must bear in mind
that population-level models do not distinguish between statistical vari-
ables having the same distribution.

In order to emphasize the statistical approach in which individual units
are not identifiable, we avoid using vector-valued population variables hav-
ing the form (Ẍ1, . . . , Ẍn) where the components refer to the individual
members of Ω. This notation is only useful if the purpose is to develop
models for structured units. Moreover, it must be kept in mind that the
population-level models considered in the present chapter do not refer to
structured units but to statistical populations, and hence that assumptions
about relational structures must not presuppose that individual units can
be identified.

2Explicitly indicating Ω in the notation emphasizes its importance in the definition. It
implies, e.g., that the number of units is known.
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3. Distribution-dependent Regression Functions. The model in (1) connects
two marginal distributions. In order to use conditional distributions the
model must be extended to

Ẍ∗ −→ (Ẍ, Ÿ )∗

that associates with each distribution P[X ] a two-dimensional distribution
P[X, Y ] having P[X ] as a marginal distribution. Only in the extended for-
mulation a regression function

x −→ P[Y |X = x]

can be formulated. However, this regression function may also depend on
P[X ] (to be distinguished from the value x). It will be called, then, a
distribution-dependent regression function and written as

(x, P[X ]) −→ P[Y |X = x, Ẍ∗ = P[X ]] (2)

As an example, think of a population, Ω, consisting of n persons who want
to use a train. The train has two classes (j = 1, 2), and sj is the number
of seats in class j. Variables are defined as X(ω) = j if ω buys a ticket
for class j, and Y (ω) = 1 if ω gets a seat (in the class for which he or she
bought a ticket), otherwise Y (ω) = 0. Due to the constraint that results
from the limited number of seats, the regression function will be dependent
on the distribution of X . As an example one can think of a function

P(Y = 1 |X = j, Ẍ∗= P[X ]) = min{1, sj/(n P(X = j))} (3)

4. Corresponding Individual-level Models? If a population-level model re-
sults from independent repetitions of an individual-level model, as was
assumed in § 1, it obviously leads to distribution-independent regression
functions. On the other hand, starting from a population-level model that
implies distribution-dependent regression functions, it is impossible to spec-
ify a corresponding pure individual-level model. The reason is simply that
it is then necessary to refer to a statistical distribution, and this requires a
population-level variable.

The example of the previous paragraph can serve to illustrate the ar-
gument. It is quite possible to define an individual-level variable, Ẍ, that
records whether a person buys a first or second class ticket. Similarly, it
is possible to define an individual-level dependent variable. This obviously
must be a stochastic variable, say Ẏ , with Ẏ = 1 if the person gets a seat,
and otherwise Ẏ = 0. However, there is no function x −→ Pr[Ẏ | Ẍ = x]
because the relationship between Ẍ and Ẏ depends on the distribution of
a statistical variable, X , that provides the distribution of tickets bought in
the relevant population.
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5. A Version of Multilevel Models. A stochastic version of distribution-de-
pendent regression functions (as exemplified by (2)) has the following form:

(x, P[X ]) −→ Pr[Ẏ | Ẍ = x, Ẍ∗ = P[X ]] (4)

The corresponding functional model may be depicted as

(5)
Ẏ

Ẍ∗

Ẍ XXXXXz
XXXXXz
����:
����:

showing that the probability distribution of the endogenous variable de-
pends not only on an individual-level variable, Ẍ, but also on a population-
level variable, Ẍ∗.

A model of this kind can be called a multilevel model since it combines
individual-level and population-level variables. Corresponding to (3), one
would get the formulation

Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ]) = min{1, sj/(n P(X = j))} (6)

In contrast to the deterministic population-level model (3), this model im-
plies some kind of individual-level stochastic process in which probabilities
for getting a seat are defined for generic individuals. Multilevel models hav-
ing the form (5) are therefore different from population-level models. Their
focus on an individual-level endogenous variable suggests to think of these
models as a version of individual-level models that incorporate at least
one exogenous population-level variable. In general, it is not required that
the model also includes a corresponding individual-level variable. A model
that contains both variables, say Ẍ∗ and Ẍ as assumed in the example,
obviously implies restrictions on the idea of independent repetitions. The
assignment of values to Ẍ must be consistent with the specified distribution
Ẍ∗ = P[X ], and must be completed before a value of Ẏ can be generated.
Note that according to (6), the number of persons assigned to seats may
well exceed the number of available seats. (This will be further discussed
in § 8.)

6. Stochastic Population-level Models. In § 1 a deterministic population-
level model was derived from independent repetitions of a deterministic
individual-level model. Instead one can start from a stochastic model, say
Ẍ −→→ Ẏ. As an example think of Ω as a set of persons. Values of Ẏ record
their educational level, and values of Ẍ record the educational level of their
parents. Both variables are binary, 0 represents a “low” and 1 represents a
“high” educational level. The stochastic function is given by

Pr(Ẏ = 1 | Ẍ = 0) = π01 and Pr(Ẏ = 1 | Ẍ = 1) = π11
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Let now P[X ] ∈ D[Ω, X̃ ] be the distribution of a statistical variable X ,
representing the parents’ educational levels. The numbers of persons whose
parents have a low or a high educational level are then, respectively, n0 :=
n P(X =0) and n1 := n P(X =1). Now, given the distribution P[X ], what
can be said about the distribution of the educational levels of the members
of Ω ? Since the individual-level model is stochastic, it is not possible to
derive a unique distribution. Instead one has to consider a probability dis-
tribution for these distributions, that is, a probability distribution for the
elements of D[Ω, Ỹ].

In the present example one can use a stochastic variable, say K̇∗, that
records the number of persons in Ω having a high educational level. Possible
values are k = 0, . . . , n. Analogously defined are variables K̇∗

0 and K̇∗
1

referring, respectively, to the subgroups of persons whose parents have a low
or a high educational level. Since values result from independent repetitions,
the distributions are given by

Pr(K̇∗
j = k) =

(

nj

k

)

πk
j1(1 − πj1)

nj−k

(for j = 0, 1), and one gets the mixture distribution

Pr(K̇∗ = k) =

min{k,n0}
∑

l=max{0,k−n1}

Pr(K̇∗
0 = l) Pr(K̇∗

1 = k − l)

for K̇∗ = K̇∗
0 + K̇∗

1 . Notice that K̇∗ is not an individual-level variable but
refers to the population. Pr(K̇∗ = k) is the probability of a distribution of
educational levels in Ω:

Pr(K̇∗ = k) = Probability of (P(Y =1) = k/n)

In contrast to the deterministic population-level variables introduced in § 1,
the variable K̇∗ provides an example of a stochastic population-level vari-

able. The ‘*’ sign is used to distinguish these variables from corresponding
individual-level variables. If not otherwise suggested by the application con-
text, ranges will be taken as sets of statistical distributions. For example,
one might use a stochastic population-level variable Ẏ ∗ having the range
D[Ω, Ỹ]. There is then, for each P[Y ] ∈D[Ω, Ỹ], a (conditional) probabil-
ity Pr(Ẏ ∗ = P[Y ]), to be interpreted as the probability of the statistical
distribution P[Y ].

A stochastic population-level model will be defined as a functional model
that has at least one endogenous stochastic population-level variable. In the
simplest case (as illustrated by the example) the model can be depicted as

Ẍ∗−→→ Ẏ ∗ (7)
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The model connects a deterministic exogenous variable Ẍ∗ with a stochastic
endogenous variable Ẏ ∗. The functional relationship is stochastic (depicted
by the arrow −→→ ) and may be written explicitly as

P[X ] −→ Pr(Ẏ ∗= P[Y ] | Ẍ∗ = P[X ]) (8)

To each value P[X ] of Ẍ∗ the function assigns a probability distribution
for the possible values of Ẏ ∗.

7. Deriving Multilevel Models. The marginal model (7) suffices to derive
population-level regression functions. The derivation of a multilevel model
that explicitly also refers to the individual level requires a population-level
model Ẍ∗−→→ (Ẍ, Ẏ )∗ in which, conditional on a given distribution P[X ],
probabilities for the joint distributions P[X, Y ] are defined. The stochastic
function may be written as

P[X ] −→ Pr((Ẍ, Ẏ )∗ = P[X, Y ] | Ẍ∗ = P[X ])

and is defined for all distributions P[X, Y ] ∈ D[Ω, X̃ × Ỹ] having a fixed
marginal distribution P[X ].

This then allows one to derive a multilevel model in the sense of § 5. The
model includes a deterministic population-level variable Ẍ∗, a correspond-
ingly defined deterministic individual-level variable Ẍ , and a stochastic
individual-level variable Ẏ . The distribution of Ẏ is defined by

Pr(Ẏ = y | Ẍ = x, Ẍ∗ = P[X ]) :=
∑

P[X,Y ]∈D[Ω,X̃×Ỹ]

P(Y = y |X = x) Pr((Ẍ, Ẏ )∗ = P[X, Y ] | Ẍ∗ = P[X ])

with the understanding that the summation only includes joint distri-
butions with a given marginal distribution. If there is no distribution-
dependence, as in the example of § 6, the expression reduces to a simple
individual-level model providing values of Pr(Ẏ = y | Ẍ = x). In general,
however, one needs a multilevel model that allows one to take into account
distribution-dependent relationships.

8. Endogenous Population-level Variables. An important task of functional
models is to provide explicit representations of the (substantial) processes
that generate the outcomes of interest. Multilevel models are particularly
interesting because they allow one to investigate how individual outcomes
may also depend on endogenously generated values of population-level vari-
ables (statistical distributions). To illustrate, assume that all of the n chil-
dren in the population Ω want to attend a school that has capacity for
s children. Selection depends on an admission test, and the probability
of successfully passing the test depends on the parent’s educational level
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recorded by X (0 low, 1 high). The probabilities are, respectively, π0 and
π1. Finally, if the number of successful children is not greater than s, all of
them are admitted; otherwise s of them are randomly selected.

In order to set up a multilevel model the following variables will be used.
Ẍ∗ provides the distribution of parents’ educational levels in the popula-
tion; Ẍ is the corresponding individual-level variable. K̇ records whether
a generic individual successfully passes the admission test (1 if successful,
0 otherwise); the corresponding population-level variable K̇∗ records the
number of individuals who successfully pass the test. Ẏ = 1 if an individ-
ual is accepted to visit the school, otherwise Ẏ = 0. The model may then
be depicted as follows.

(9)Ẏ

K̇∗

K̇ XXXXXz
XXXXXz
����:
����:

Ẍ∗

Ẍ --

--

Three processes can be distinguished.

a) The individual-level process Ẍ −→→ K̇ which, by assumption, is not
distribution-dependent and can be independently repeated. The con-
ditional probabilities are simply given by Pr(K̇ = 1 | Ẍ = j) = πj .

b) The population-level process Ẍ∗ −→→ K̇∗ which, of course, depends on
the distribution P[X ] given as value of Ẍ∗ but results from independent
repetitions of the individual-level process mentioned in (a). Calculation
of Pr(K̇∗= k | Ẍ∗= P[X ]) can be done as illustrated in § 6.

c) Finally there is a process that generates values of Ẏ depending on K̇ and
K̇∗. It might be considered as an individual-level process (as suggested
in § 5). However, examples of this process cannot be realized in the form
of independent repetitions of the individual-level model.

Given a value of K̇∗, a distribution of the population-level variable Ẏ ∗ that
records the number of finally accepted individuals cannot be generated from
independent repetitions. In fact, in the example a deterministic function
connects K̇∗ with Ẏ ∗:

Pr(Ẏ ∗= y | K̇∗= k) =

{

1 if y = min{k, s}
0 otherwise

A reduced individual-level model can further illustrate the limitations and
possibilities of independent repetitions (due to constraints on endogenous
population-level variables). One can start from

Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ], K̇∗ = k) = πj min{1,
s

k
}

Assuming that K̇∗, given Ẍ∗, is (approximately) independent of Ẍ, it is
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−→ P(X = 1)

Figure 1 Dependence of the sum term in (10) on P(X = 1) for
different values of s. Parameters: n = 100, π0 = 0.5, and π1 = 0.8.

possible to average over possible outcomes:

Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ]) = (10)

πj

n
∑

k=0

min{1,
s

k
}Pr(K̇∗= k | Ẍ∗= P[X ])

The sum on the right-hand side can be interpreted as the mean proportion
of finally accepted children, measured as part of the children who success-
fully passed the test, the mean taken over all possible repetitions of the
process. Assuming n = 100, π0 = 0.5, and π1 = 0.8, Figure 1 illustrates the
dependence of this mean proportion on P(X = 1) for different values of s.
Multiplication with πj would show how the probability of being accepted
depends on the distribution of X .

Thus, (10) can well be used to derive expectations of individual out-
comes (“ceteris paribus”). However, it cannot be used to generate a distri-
bution of outcomes in the population because independent repetitions will
not guarantee an adherence to the constraint s.

2 Models of Statistical Processes

1. Process Frames and Models. Statistical processes have been defined as
temporal sequences of statistical variables. They may be depicted as

Y0 −→ Y1 −→ Y2 −→ Y3 −→ · · · (11)

These variables have a common range, Ỹ , and are defined alternatively for a
fixed reference set, Ω, or for a sequence of changing reference sets, Ω0, Ω1, . . .
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Models of such processes can be descriptive or analytical. Analytical models
must be conceived of as population-level models. A stochastic version may
be depicted as

Ÿ ∗
0 −→→ Ẏ ∗

1 −→→ Ẏ ∗
2 −→→ Ẏ ∗

3 −→→ · · ·

It begins with a deterministic population-level variable Ÿ ∗
0 providing the

initial distribution, followed by a sequence of stochastic variables. The ar-
rows represent not just temporal sequence but stochastic functional rela-
tionships between population-level variables. As an illustration we briefly
discuss diffusion models.

2. Simple Diffusion Models. Diffusion models concern the spread of some
property in a population and start from the idea that the speed of the
spread depends in some way on the number of units which already got
the property.3 A basic version considers a fixed reference set, Ω, and uses
statistical variables Yt such that

Yt(ω) =

{

1 if ω got the specified property until (and including) t
0 otherwise

Consequently, if Yt(ω) = 1 for the first time, it stays at this value forever.
The corresponding individual-level variable will be denoted by Ẏt, and the
number of individuals with Ẏt = 1 will be denoted by Ṅ∗

t .4 The construction
of a diffusion model can then start from a multilevel model which, for a
single time step, may be depicted as

(12)
Ẏt+1

Ṅ∗

t

Ẏt XXXXXz
XXXXz

����:
����:

The state of a generic individual in t+1, Ẏt+1, stochastically depends on its
previous state Ẏt and on Ṅ∗

t , that is, the current number of individuals who
already are in the specified state. A simple specification of the stochastic
function is

P(Ẏt+1 = 1 | Ẏt = 0, Ṅ∗
t = nt) = α

nt

n
(13)

In addition one needs a specification for the generation of Ṅ∗
t+1. Assuming

that the aggregation results from independent repetitions, one can use

Pr(Ṅ∗
t+1 = nt+1 | Ṅ

∗
t = nt) = (14)

(

n − nt

nt+1 − nt

)

π
nt+1−nt

t (1 − πt)
n−nt+1

3See, e.g., Bartholomew (1982), Mahajan and Peterson (1985), Rogers (1995), Morris
(1994), Palloni (2001).

4Notice that Ṅ
∗

t is derived, not from Ẏt, but from the population-level variable Ẏ
∗

t

recording the distribution of Yt in Ω.
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Box 1 Simulation of diffusion processes according to (13) and (14).

(1) t← 0, n0 ← initial value

(2) t← t + 1

(3) nt ← nt−1; do (n− nt−1) times: draw a random number ǫ
equally distributed in [0, 1], if ǫ ≤ α nt−1/n then nt ← nt + 1

(4) if nt < n continue with (2), otherwise end.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

Figure 2 Ten simulated diffusion processes, generated with the
algorithm shown in Box 1. Parameters: n = 100, n0 = 1, α = 0.1.

with πt := α nt/n. The formula provides probabilities for possible develop-
ments of the diffusion process. To get an impression of these possible de-
velopments, Figure 2 shows ten simulated diffusion paths, generated with
the algorithm in Box 1.

3. Pure Individual-level Models. The basic idea of a diffusion model is to
think of probabilities of individual-level variables as dependent on popula-
tion-level properties. This requires a multilevel model and an aggregation
mechanism as exemplified by (13) and (14).

In order to stress the importance of an explicit reference to the popula-
tion level, I briefly consider the idea to interpret individual-level transition
rate models as describing diffusion processes.5 The approach starts from
transition rates r(t) := Pr(Ẏt+1 = 1 | Ẏt = 0). This allows one to derive a

5See, e.g., Diekmann (1989), Brüderl and Diekmann (1995).
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survivor function

G(t) =

t−1
∏

j=0

(1 − r(j))

describing the individual-level process. Estimating such a function from a
given set of data, it may also be interpreted as the estimated proportion of
individuals not infected until t. On the other hand, if not viewed as a data
model, but as a generic functional model, the interpretation of G(t) as a
proportion becomes problematic because there is no explicit reference to a
population.

One may think of the population, implicitly presupposed by interpret-
ing G(t) as a proportion, as resulting from independent repetitions of the
individual-level transition rate model. There remains, however, an impor-
tant difference to the diffusion model of § 2. Starting from an individual-
level transition rate model would allow independent repetitions of individ-
ual processes. This would not be possible with a multilevel diffusion model.
Even the very simple version described in § 2 would not allow an indepen-
dent generation of individual processes because time-dependent transition
rates depend on outcomes of the population-level process.

4. Modeling Interdependencies. It is obvious that diffusion models imply
some form of distribution-dependence and, consequently, interdependency
among the individual units in the population. It is therefore an interest-
ing question whether these interdependencies can be explicitly represented.
One can think in terms of interactions between members of two groups,

N 0
t := {ω |Yt(ω) = 0} and N 1

t := {ω |Yt(ω) = 1}

It often seems plausible that a diffusion process depends on contacts be-
tween members of these two groups, and moreover on properties of the
interacting individuals. However, an explicit representation of such con-
tacts would only be possible if one could refer to identifiable individuals.6

If this is not possible one can nevertheless follow another idea and use
groups (equivalence classes) instead of identifiable individuals.7

Assume that X̃ = {x̃1, . . . , x̃m} is a property space that allows one to
define relations between its categories which can be interpreted as proxim-
ities between units in Ω. For example, X̃ might be a set of spatial loca-
tions, and δkl := R(x̃k, x̃l) is some measure of proximity between x̃k and

6This is assumed in the approaches proposed by Strang (1991), Strang and Tuma
(1993), Greve, Tuma and Strang (2001), Yamaguchi (1994), Buskens and Yamaguchi
(1999). These models therefore relate to diffusion processes in structured units.

7To be sure, the idea is not new but has a long history in modeling structured diffusion
processes; see Morris (1994).
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x̃l. Given then a statistical variable X : Ω −→ X̃ , one can define groups
Ωj := {ω |X(ω) = x̃j} (j = 1, . . . , m), and one can assume that δkl is a
measure of proximity between members of Ωk and Ωl, respectively.

The population variable Ṅ∗
t that records the number of units that got

the specified property until t can be replaced by a vector (Ṅ∗
1t, . . . , Ṅ

∗
mt),

having components Ṅ∗
jt that record the number of units in Ωj who got the

specified property until t. Finally one can generalize (13) into

Pr(Ẏt+1 = 1 | Ẏt = 0, Ẍ = x̃j , Ṅ
∗
1t = n1t, . . . , Ṅ

∗
mt = nmt) = (15)

m
∑

k=1

δjk αk

nkt

n

This is now a multilevel diffusion model where the probability of getting
the specified property depends on the group, Ωj , an individual unit belongs

to and, for k = 1, . . . , m, on the value of Ṅ∗
kt and the proximity between

Ωj and Ωk. To complete the model, formally analogous to (14), one can set
up a separate equation for each group:

Pr(Ṅ∗
j,t+1 = nj,t+1 | Ṅ

∗
1t = n1t, . . . , Ṅ

∗
mt = nmt) = (16)

(

nj − njt

nj,t+1 − njt

)

π
nj,t+1−njt

jt (1 − πjt)
nj−nj,t+1

with πjt :=
∑

k δjkαknkt/n and nj denoting the size of group j. It is there-
fore possible to sequentially simulate diffusion processes in basically the
same way as was done with the algorithm in Box 1. (Illustrations will be
discussed in the next section.)
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3 Functional Causality and Levels

1. Distribution-dependent Causation. Assume a multilevel model as defined
in § 5 of Section 1 that has the form

(17)Ẏ

Z̈∗

Ẍ XXXXXz
XXXXXz
����:
����:

The property spaces X̃ (of Ẍ) and Z̃ (used for D[Ω, Z̃]) may be identi-
cal or different. In any case, the functional causal relationship between Ẍ
and Ẏ may depend on values of Z̈∗. The causal relationship will then be
called distribution-dependent .8 Obviously, the notion presupposes a multi-
level model and cannot be explicated in an individual-level model that does
not explicitly refer to a population.

2. Individual Effects of Changing Distributions. Distribution-dependent cau-
sation concerns the dependence of a causal relationship, say between Ẍ
and Ẏ , on a statistical distribution, say P[Z]. Thinking of possible effects
of changes of such distributions, one can distinguish between individual-
level and population-level effects. Concerning individual-level effects, the
question is how a change in the distribution P[Z] changes the relationship
between Ẍ and Ẏ .

The question can be considered in two forms. The example of § 8 in
Section 1 will be used to illustrate the distinction. One version considers
how the conditional probability Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ]), defined in
(10), depends on the distribution of X if Ẍ has a fixed value, say Ẍ = j. An
answer can be derived from Figure 1 by multiplying the curves with πj . The
solid line in Figure 3 shows the result for s = 50. The admission probability
of a child whose parents have a high educational level gets smaller when
the proportion of those children increases. The converse holds for children
having parents with low educational level. If their proportion increases also
their admission probability gets larger.

Another version of the question concerns how the effect of a change of
Ẍ depends on the distribution of X . Accordingly, the broken line in Figure
3 shows the dependence of

E(Ẏ |Ẍ = 1, Ẍ∗= P[X ]) − E(Ẏ |Ẍ = 0, Ẍ∗= P[X ])

on P(X = 1). It is seen that also the comparative advantage of children
having parents with a high educational level diminishes if their group ex-
tends.

8The special case where Z̈
∗ refers to a statistical distribution of values of Ẍ is often

called frequency-dependent causation, following Sober (1982).
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Figure 3 Dependence of Pr(Ẏ = 1|Ẍ = 1, Ẍ∗ = P[X]) (solid line) and
E(Ẏ |Ẍ = 1, Ẍ∗ = P[X]) − E(Ẏ |Ẍ = 0, Ẍ∗ = P[X]) (broken line) on
P(X = 1). Parameters: n = 100, s = 50, π0 = 0.5, and π1 = 0.8.

3. Population-level Effects. A quite different question concerns effects of
changes in statistical distributions at the population level. In the example:
How does the proportion of children who get admitted depend on changes
in the distribution of parents’ educational levels? Since the population-
level model is stochastic, there is no unique distribution of the statistical
variable Y representing the proportion of admitted children. However, one
can calculate a mean proportion as follows:

P(Y = 1) ≈ Pr(Ẏ = 1 | Ẍ = 0, Ẍ∗= P[X ]) P(X = 0)+ (18)

Pr(Ẏ = 1 | Ẍ = 1, Ẍ∗= P[X ]) P(X = 1)

Figure 4 shows how this proportion depends on P(X = 1), the proportion
of children having parents with a high educational level. It is seen that the
relationship is mainly governed by the constraints due to s, the school’s ca-
pacity. Under a broad variety of circumstances, changes in the distribution
of X have no effect for the distribution of Y .

The example not only shows that population-level effects can be quite
different from individual-level effects. It also shows that an apparent ab-
sence of a relationship at the population level can be the result of counter-
acting processes at the individual level.

4. Relationships Between Levels. It seems obvious that neither determin-
istic nor stochastic functional relationships can connect an individual-level
variable with a population-level variable.9 On the other hand, as shown
by the previously discussed multilevel models, it is quite possible that a

9This does not exclude the possibility that selecting the value of an individual-level
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Figure 4 Dependence of P(Y = 1) as defined in (18) on P(X = 1) for
selected values of s. Parameters: n = 100, π0 = 0.5, and π1 = 0.8.

stochastic function connects a population-level variable with an individual-
level variable. In fact, both variables may refer to the same property space,
e.g. Ẏ ∗

t −→→ Ẏt+1 as assumed in a simple diffusion model. The temporal
relationship may be left implicit; it is important, however, to be explicit
about the process that leads from the population-level to the individual-
level variable.10

To illustrate, assume that Ω represents children educated in a school.
Ẏ records a child’s educational success (0 or 1), Ẍ records the parents’
educational level (0 or 1), and the population-level variable Ẍ∗ provides a
statistical distribution, P[X ], of the values of Ẍ in the school. Assuming
that Ẏ stochastically depends on Ẍ and Ẍ∗, the model has the structure
of (5) in Section 1. Would it make sense to change Ẍ into an endogenous
variable Ẋ resulting in the model

(19)Ẏ

Ẍ∗

Ẋ XXXXXz
XXXXXz
����:
����:66

The question is whether, and how, one can think of a process leading from
Ẍ∗ to Ẋ. Of course, knowing a value of Ẍ∗ would allow to better predict
values of Ẋ . But how can one think of a substantial process?

An example would be that the school can select children according to

variable may constrain the range of possible values of a (corresponding) population-level
variable.

10This has been stressed in the literature dealing with modeling contextual effects, see,
e.g., Blalock (1984), Duncan and Raudenbush (1999).
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the educational level of their parents. Of course, a selection process cannot
change values of Ẋ for any given child. In fact, the idea of a selection process
presupposes a population of children having fixed values of the selection
variable. From the point of view of the school, however, the model may
well be used to consider causal effects of different selection policies.

5. Self Selection with Constraints. We now reconsider a previously dis-
cussed example with self selection: The educational success Ẏ (0 or 1) de-
pends on the parents’ educational level Ẍ (0 or 1) and on the school type
Ż (1 or 2), and it is assumed that Ż is an endogenous variable depending
on Ẍ.

How to set up a corresponding multilevel model? One can start from
exogenous variables Ẍ∗ and Z̈∗ providing, respectively, statistical distri-
butions of educational levels and school types. The distribution of school
types is taken as exogenous because it does not result from parental choices.
Nevertheless, there will be a selection of school types that takes place in the
frame of a given distribution Z̈∗ = P[Z]. The selection processes concern
the distribution of a variable (Ẋ, Ż) having marginal distributions given by
values of the exogenous population-level variables Ẍ∗ and Z̈∗. A multilevel
model may then be depicted as follows:

(20)
(Ẋ, Ż)

Z̈∗

Ẍ∗ XXXXXz
XXXXz

����:
����: - Ẏ

Of course, one needs assumptions about the selection processes that gener-
ate the distribution of (Ẋ, Ż). Here we continue with a previous numerical
illustration and assume Pr(Ż = 2 | Ẋ = 0) = 0.4 and Pr(Ż = 2 | Ẋ = 1) =
0.8. However, these are parents’ plans, and they might be incompatible with
the given distribution of school types. One therefore needs an additional
mechanism that solves possible conflicts. For an illustration we simply as-
sume that parents having a high educational level can realize their plans
first:

Pr(Ẋ = 1, Ż = 2 | Ẍ∗= P[X ], Z̈∗= P[Z]) = (21)

min{Pr(Ż = 2 | Ẋ = 1)P(X = 1), P(Z = 2)}

From this assumption one can calculate the joint distribution of (Ẋ, Ż) and
finally the distribution of Ẏ .

In particular, one can investigate how the causal effect of a change
∆(0, 1) in Ẋ, that is, E1 − E0 with

Ej := E(Ẏ |Ẋ = j, Ẍ∗= P[X ], Z̈∗= P[Z]) (22)
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Figure 5 Dependence of (a) E1, (b) E0, and (c) E1 − E0, as defined
in (22), on P(Z = 2) (proportion of schools of type 2).

depends on the distribution of school types. Based on the numerical speci-
fication of the function (Ẋ, Ż)−→→ Ẏ previously assumed, this is shown in
Figure 5.

6. Time-dependent Effects. Further considerations concern causal relation-
ships in models of statistical processes. An example of the diffusion model
introduced in § 4 of Section 2 will be used for illustration. In this example
there are two groups (m = 2), identified by x̃1 and x̃2. Parameters are

α1 = 0.2, α2 = 0.1, δ11 = 1, δ12 = δ21 = 0.1, δ22 = 0.5,

The population size is n = 1000, and the group sizes are n1 = 600 and
n2 = 400. Diffusion processes are generated with a slightly modified version
of the algorithm in Box 1. Figure 6 shows one of these processes that starts
from n1,0 = n2,0 = 1.

In order to assess effects of group membership one can compare the con-
ditional probabilities (transition rates) defined in (15). Figure 7 illustrates
their development for the example. These are now time-dependent effects.
Moreover, the effects heavily depend on the distribution of X . Figure 7 was
generated with group sizes n1 = 600 and n2 = 400. Changing the distri-
bution, e.g., into n1 = 100 and n2 = 900 will result in completely different
effects as shown by Figure 8.
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Figure 6 Simulation of a structured diffusion processes with two
groups. Parameter values are defined at the beginning of § 4. Initial
values are n1,0 = n2,0 = 1.
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Figure 7 Development of the conditional probabilities defined in (15),
simulated with group sizes n1 = 600 and n2 = 400.
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Figure 8 Development of the conditional probabilities defined in (15),
simulated with group sizes n1 = 100 and n2 = 900.
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Figure 9 Development of the overall rates defined in (23). Solid line:
n1 = 600 and n2 = 400, dotted line: n1 = 100 and n2 = 900.

7. Mixing Group-level Effects. The previous paragraph considered the con-
ditional probabilities defined in (15) separately for each group. Overall
rates, for the whole population, can be derived by mixing the group-specific
rates in the following way:

Pr(Ẏt+1 = 1 | Ẏt = 0, Ṅ∗
1t = n1t, . . . , Ṅ

∗
mt = nmt) = (23)

∑

jPr(Ẏt+1 = 1 | Ẏt = 0, Ẍ = x̃j , . . .) P(X = x̃j | Ẏt = 0)

Mixing is with proportions P(X = x̃j | Ẏt = 0), denoting the proportion of
members of group x̃j in the risk set at t. Figure 9 illustrates these overall
rates for two different distributions of the group variable X .


