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Event History Analysis 31 NotationIn this introduction we will approach the analysis of events in timethrough a description of the durations between events. This approachdoes not directly attack the problems of dynamic descriptions in thesocial sciences. However, while the dynamics in any subject area willin general require a specialized study, the study of durations is less de-manding. Moreover, it can often be used to build up more complicatedmodels involving several simultaneous durations, many types of events,or di�erent time scales.The building blocks will therefore be variables T designating durations.We will assume that these variables take values in the positive real num-bers R+ . We make unrestricted use of the properties of the real numbers,their additive and multiplicative structure, their order and completeness.While this allows for a convenient mathematical description, one shouldbear in mind that durations in the social realm, let alone observationspertaining to them, rarely have all the required properties. As long asthe di�erence is born in mind and as long as the use of real numbersleads to convenient approximations, this will do no harm.Since we are mainly interested in the statistical description of durations,the variables T are treated as random variables. For the following, thisbasically means that all possible information on the random variablesare given by their distribution functionF (t) = Pr(T � t): (1)The complement of this function,G(t) = Pr(T > t) = 1� Pr(T � t) = 1� F (t) (2)is often called survivor function.1 If need arises to use several distribu-tion functions, these are denoted by capital letters F;H;M etc. We willwrite F � for the distribution function of functions of T to emphasize therelation to the original variable. The functions themselves, however, mayhave arbitrary names.The density function of T is de�ned asf(t) = lim�t!0 Pr(t � T < t+�t)�t ;1The name is most unfortunate in many applications. But we follow establishedcustom.

Event History Analysis 4provided the limit exists everywhere. If it does, the distribution willbe called continuous. The density can be used more exibly than thedistribution function to express arbitrary probabilities. For any set Afor which a probability is de�ned, we can writePr(T 2 A) = ZA f(u) du:For the distribution and survivor function, this means thatF (t) = Pr(T � t) = Z t0 f(u) duand G(t) = Pr(T > t) = Z 1t f(u) du;as well as the reverse relation, giving the density in terms of the distri-bution or survivor function asf(t) = @@uF (u)ju=t = � @@uG(u)ju=t:Densities are denoted by f; h, and m, corresponding to the capital lettersused for distributions.To denote the distribution of a random variable T , we use the symbolT 'd F:In some cases it is necessary to deal with discrete random variables.Suppose that �0 = 0 < �1 < �2 : : : is a sequence of durations with Pr(T 2f�0; �1; �2; : : : g) = 1. The sequence �0; �1; : : : therefore contains all valuesthe random variable T can take. This is called a discrete distribution.To emphasize the similarity with the continuous case, we denote thedistribution function byF (t) = Pr(T � t) = X�i�tPr(T = �i):This is a right continuous step function. For the probabilities of singledurations we writef(�i) = Pr(T = �i);



Event History Analysis 5so thatf(�i) = F (�i)� F (�i�);where F (�i�) is the limit from the left of F , lims"�i F (s). F (�i)�F (�i�) isthe height of the i th jump of the step function F , stressing the similaritywith the de�nition of a density. We can re-express F in terms of the fby F (t) = X�i<t f(�i):A sample of durations is denoted by t1; : : : ; tn, in contrast to a sequenceof numbers known beforehand, like the �i above. The empirical distribu-tion function of a sample is^Fn(t) = 1n nXi=1 I [ti � t];where I [A] is the indicator function taking the value 1 if A is the case,and 0 otherwise. This is a step function with jumps at the observationsti, of height 1=n. It is a discrete distribution function, giving probability1=n to each of the observed durations t1; : : : ; tn (which in this case neednot be ordered).We try to use a uni�ed notation for integrals with respect to continu-ous distributions, discrete distributions, the mixed case, and empiricaldistributions. Speci�cally, the expectation with respect to the empiricaldistribution function is written asE ^Fn (h(T )) = Z h(t) d ^Fn(t) = 1nXi h(ti):Generally, if Mn(t) is a step function with jumps of height m1; : : :mn atthe points t1; : : : ; tn, we writeZ h(t) dMn(t) = nXi=1mih(ti);so that the integral simply denotes a weighted sum of the values h(ti).If a distribution has both an absolutely continuous part and discreteatoms, an integral with respect to that distribution is the sum of the
Event History Analysis 6integral with respect to its continuous part and the integral with respectto a step function. Thus,Z h(t) dMn(t) = Z h(t)mc(t) dt+ nXi=1mih(ti);where mc is the density of the continuous part and mi is the weight ofthe discrete atoms at the points ti.2 Basic descriptions of durationsWe assume that durations are represented by random variables takingvalues in the nonnegative real numbers. This implies that two descrip-tions of social situations are treated as equal if the descriptions resultin the same distribution function. Within such an approach, aspects ofa situation requiring a more detailed description than what a summaryfunction can provide are excluded. This allows for a uni�ed presentationof some recurrent themes in event history analysis.We start with the discussion of a central concept within the theory of pos-itive random variables, the hazard rate. Another central feature pertain-ing to the observation of event histories is that these need not have cometo an end by the time data are gathered. Such uncompleted sequences ofevents will be referred to as censored. How censored informations can beused in descriptions of summary functions like the distribution functionis the main topic of the latter part of this section.2.1 Distribution function, density, and hazard rateDurations are most often conceived of as the time between speci�c events.Taking a certain primary event as the starting point, the problem is togive a description of the time to the next event of interest. If the clock isset to zero at the time of the primary event, this is equivalent to askingfor the (positive) amount of waiting time for the next event's occurrence.The standard descriptions of this situation in terms of distribution func-tions etc. do not take into account the time position of an observer. Thehazard rate function turns out to be useful in this context. In discrete



Event History Analysis 7time, it is de�ned asr(�i) = Pr(T = �ijT � �i) = f(�i)G(�i�1) ; (3)so that the hazard rate is the conditional probability of an event attime �i, given that there was no event before �i. The conditioning eventfT � �igmay be interpreted as the information of an observer just beforetime �i. If the event did not take place before time �i, the probabilisticdescription should be updated to the conditional probability, given thisinformation. The hazard rate does this for the event fT = �ig.In continuous models one takes the appropriate limit and de�nesr(t) = lim�t!0 1�t Pr(T 2 [t; t+�t) j T � t) = f(t)1� F (t) = f(t)G(t) ; (4)which is the limit of the probability of the occurrence of an event in[t; t + �t), given that there was no event before time t. Note that weshould have written G(t�) to represent the conditioning event fT �tg. But for continuous distributions, G(t�) = G(t). The hazard rate istherefore a measure of the current intensity of an event to occur. It isnot a probability, however, since it can take values larger than 1. As canbe seen from the de�nition, the hazard rate exists if and only if a densityexists.The distribution function, the survivor function, the density, and therate function are equivalent descriptions for the probability distributionof a positive random variable. That is, given one of the functions, theothers can be derived analytically. It is therefore possible to choose thatsummary function that best suits ones purpose.First, in the discrete case, we can use the properties of conditional prob-abilities directly to express the survivor function in terms of the hazardrate. FromG(�ijT � �i) = Pr(T > �ijT � �i) = 1� r(�i)

Event History Analysis 8one gets, going backward in time,G(�i) = Pr(T > �i) = Pr(T > �ijT � �i) Pr(T � �i)= Pr(T > �ijT � �i) Pr(T > �i�1)= Pr(T > �ijT � �i) Pr(T > �i�1jT � �i�1) Pr(T > �i�1)= : : := iYj=1(1� r(�j)): (5)The relation for the density therefore isf(�i) = G(�i�1)�G(�i) = r(�i) i�1Yj=1(1� r(�j)): (6)In the continuous case, the de�nition of the hazard rate leads tor(t) = f(t)G(t) = � @@t lnG(t): (7)On the other hand, solving the implied di�erential equation inG(t) abovegives an expression for the survivor function in terms of the hazard rateG(t) = 1� F (t) = exp�� Z t0 r(u) du� : (8)Di�erentiating this relation gives the density function in terms of thehazard rate:f(t) = r(t)G(t) = r(t) exp�� Z t0 r(u) du� : (9)The di�erences between the formulae in the discrete and continuous caseare in fact more apparent than real. It is possible to express the survivorfunction in the continuous case in an analogous way as in the discrete case(5), although doing so would require the introduction of some conceptsthat aren't needed in the following. However, a useful function witha de�nition that covers both the continuous and the discrete case isthe integrated hazard rate. Using the integral representation introducedabove, this can also be expressed asH(t) = Z t0 11� F (u�) dF (u); (10)



Event History Analysis 9where F (u�) denotes again the limit from the left, lims"u F (s). Care withthe limits is needed here since we do not want to presuppose the existenceof a density in which case F may contain jumps. The denominator inthe integrand above just involves a careful formulation of the probabilityPr(T � u) which need not be equal to G(u) = 1� F (u) = Pr(T > u).From the de�nition we haveH(t) = Z t0 r(u) du and H(t) = � lnG(t)in the continuous case andH(t) = X�j<t r(�j)in the discrete case.In the general case, moreover, if there is a jump of the distribution func-tion at time t, so that F (t)� F (t�) > 0, the corresponding jump in theintegrated hazard isH(t)�H(t�) = Pr(T = tjT � t):The integrated hazard function represents a positive measure in its ownright. The only di�erence from a probability measure is that it is gener-ally not �nite since H(t)!1 for t!1. It �gures below in the contextof estimation, since it equals the expected number of events in the timeinterval [0; t) if durations between events are independent and follow thedistribution F .A last observation used variously below is that the expectation of therandom variable T can be expressed in terms of the survivor function asE(T ) = Z 10 uf(u) du = Z 10 G(u) du; (11)which follows from integration by parts if either side is �nite. Recall theformulae for integration by parts. If R t0 f(u) du = F (t) and R t0 g(u) du =G(t), thenZ t0 f(u)G(u) du = Z t0 G(u) dF (u)= [F (t)G(t) � F (0)G(0)]� Z t0 F (u) dG(u) (12)= [F (t)G(t) � F (0)G(0)]� Z t0 F (u)g(u) du

Event History Analysis 10This is a slightly rewritten version of the di�erentiation rule for productsof functions. If F or G contain jumps but are right continuous, the resultcan be rewritten asZ t0 G(u) dF (u) = [F (t)G(t) � F (0)G(0)]� Z t0 F (u�) dG(u) (13)and Z t0 G(u�) dF (u) = [F (t)G(t) � F (0)G(0)]� Z t0 F (u�) dG(u)�Xu�t(F (u)� F (u�))(G(u)�G(u�)): (14)2.2 Censoring mechanismsSuppose that the duration of interest T starts at time t = 0. Supposefurther that the process is observed during the period [0; c]. This meansthat the event in question is observed to occur only if T � c, before theobservation on the process ceases. If T > c, information on the timingof the event is not available. The observation is said to be censored.The data in this form of observations can be represented in two parts.T � = min(T; c) records either the time of the event if it occurred before c,or the censoring time c if the event did not occur before c. Additionally,an indicator D = I [T � c], being 0 if the observation is censored, 1otherwise, is given.Observations similar to the above situation arise regularly from eventhistories, where observation time necessarily ceases at some point intime. In order to achieve a description of T at least on the interval [0; c],it is necessary to assume that the censoring time does not involve anyinformation on the future course of the process. This will generally betrue if the censoring time is �xed in advance.A slightly more general censoring model allows the censoring time to bea random variable C. In this case a valid description of T is achievableif the random variables C and T are stochastically independent. Thedata are once again represented by the pair (T � = min(T;C); D). Thisis called the independent random censoring model.These two representations of the lack of information arising in event his-tories are rarely very accurate descriptions. While the observation period



Event History Analysis 11might be considered �xed in advance, the starting times of the processesof interest are most often not �xed in calendar time. Observations cancease for other reasons than the planned end of a study, especially be-cause subjects drop out of a study.The requirement for valid descriptions of T will in such cases still be thatcensoring at a particular time will not give information on the futuretime course of the process of interest. Over the past decades, probabilis-tic models for censoring have been considerably extended and do coversome of the situations indicated above. However, these models cannotbe empirically veri�ed. They all rely on speculations of what might hap-pen or might have happened in the past. However general they are, theystill need considerable knowledge of the subject matter to judge theirmerits. In e�ect, all that the probabilistic censoring models provide isa framework in which the statistical models and estimators describedbelow are known to work. They scarcely a�ect the estimators form. Tosimplify the following discussion of statistical models and estimators, wewill therefore assume that either censoring takes places at a �xed prede-termined time (or a �xed sequence of times) or that censoring times canbe represented by random variables independent of T .2.3 Observing events through timeOne of the main objectives of statistical theory is to provide estimatesof the distribution function or of other summary functions describingdurations. To do so, one needs a representation of observations thatconnects data with the probabilistic descriptions in terms of randomvariables. We will assume that the observations consist of a sequence ofpairs (ti; di); i = 1; : : : ; n that are realizations of n independent identi-cally distributed random variables T with distribution function F , trans-formed by an independent censoring mechanism. That is, each (ti; di) isinterpreted as a realization from the pair of random variables (T �; D),and any two observations (ti; di) and (tj ; dj) arise from independent butidentical copies of (T �; D). The observations, or functions of the obser-vations, can then be considered as random variables derived from therandom variables of interest. Therefore, the relations between functionsof the data and distributional descriptions of durations can be treatedby probabilistic methods. Moreover, since we deal with repetitions of thesame variables, it is possible to think of the observations as being partof an inde�nite sequence, allowing thus the application of limit theorems
Event History Analysis 12from probability theory.The above conceptions have no special relation with processes developingin time. However, we do need some notation expressing the evolution ofobservations of the variables through time, mimicking the way informa-tion is revealed to an observer. This will basically mean to count eventsand censorings up to some time point t. We will setNi(t) = I [ti � t; di = 1] (15)Ri(t) = I [ti > t] (16)Ei(t) = I [Ti = t; di = 1]: (17)The corresponding sums over the n observations are denoted by the samesymbol without the subscript i. So, N(t) =Pni=1Ni(t) etc. Then, N(t)is the number of uncensored events before time t, and E(t) is the numberof events exactly at time t, excluding censored observations. Also, R(t)is the number of observations that had neither an event or a censoringrecorded before t. This is often referred to as the number at risk attime t, since Ri(t) = 1 implies that the event time is later than t. In thesequel, the same symbolsN;R;E will occasionally be used to refer to therespective quantities when data are replaced by corresponding randomvariables. E.g., N(t) is also used to refer to Pni=1 I [Ti � t;Di = 1]. Themeaning should be clear from the context.2.4 Nelson{Aalen and Kaplan{Meier estimatorsIn a discrete time setting, the estimation of a hazard rate is straightforward. By analogy with the de�nition of the hazard rate, one mightput ^r(�j) = E(�j)R(�j) ; (18)the number of events at �j divided by the number still at risk, or underobservation just before �j , together with the convention ^r(�j) = 0 ifR(�j) = 0. Note that this estimator does not depend on censoring orevent times before �j .From this estimator it is easy to derive respective estimators for thesurvivor function, distribution function, density, and integrated hazard



Event History Analysis 13rate, simply by plugging the estimator ^r into the respective expressionsin terms of the hazard function. For example, one might use^G(�j) = Yk�j(1� ^r(�k)): (19)A simple idea to generalize such estimators from discrete to continuoustime models is to group the observations of the continuous model in �xedtime intervals, and then to proceed as in the discrete case. In a secondstep it might then be checked whether the procedure is still sensible whenthe length of the intervals shrinks towards 0 and whether it approachesthe correct quantity. Suppose there is a partition of R+ into intervals[�j�1; �j). If the length of the intervals is small, approximatelyH(�j)�H(�j�1) � r(�j�1)(�j � �j�1):Summing over the intervals to time t and using ^r from above as an esti-mator of the jumps in the previous formula, one arrives at an estimatorfor the integrated hazard,^H(t) = X�j�t ^r(�j):If the length of the intervals approaches zero, most of the intervals willcontain no or at most one observations. Therefore, one is lead to consider^H(t) = Xtj�t djR(tj) ; (20)where (tj ; dj) now refers to the observations from the continuous model.This is the Nelson{Aalen estimator of the integrated hazard function.If the estimator is used in (8), the resulting estimator for the survivorfunction is~G(t) = Ytj�t e�dj=R(tj): (21)Another possibility to extend the estimator from the discrete case is touse once again the discrete time hazard estimator, but this time in con-junction with the discrete time formula (5). If the length of the groupingintervals [tj�1; �j) shrinks to zero, and the number of events in each
Event History Analysis 14interval tends to at most one, the resultant estimator for the survivorfunction is^G(t) = Ytj�t(1� dj=R(tj)): (22)This is the Kaplan{Meier estimator of the survivor function. Its relationto the Nelson{Aalen estimator is somewhat illuminated by observingthat e�x � 1� xfor small x, so thate�dj=R(tj ) � (1� dj=R(tj));and the two estimators should give similar results.The Kaplan{Meier estimator has another derivation that connects itwith general methods of estimation in censored data models. The startingpoint is not the hazard rate but the empirical distribution that wouldgenerally be used to estimate the survivor function in the absence ofcensoring. This is^Gn(t) = 1nXi I [ti > t]:In the presence of censoring, the approach does not seem to be appealing.For censored observations and t past the censoring time it is not knownwhether in fact the duration was longer than t or not, so that I [ti > t] isnot known. However, one can try to replace the unknown quantities byan estimate, say by its conditional expectation given the censoring time.This is reasonable, sinceG(t) = E(I [T > t]) = E(E (I [T > t]jT �; D)): (23)Then ^Gn(t) = 1nXi E ^G(I [T > t]jT � = ti; Di = di) (24)is an empirical analogue of (23), since the outer expectation can be re-placed by the empirical distribution of the observations. Note that the



Event History Analysis 15inner expectation on the right hand side depends on the distributionfunction. An estimator that solves the above equation is called self con-sistent. Since it is de�ned as a �xed point, a self consistent estimatorcan be computed iteratively by computing ^Gk+1 from the right handside based on ^Gk .Computations need an explicit formula for the right hand side expecta-tion. It is given byE ^G (I [T > t]jT � = ti; Di = di)= ^Pr(T > tjT � = ti; Di = di)= 8>><>>: 0 t > ti; di = 11 ti > t^Pr(T > t)^Pr(T > ti) = ^G(t)^G(ti) else : (25)The algorithm based on the self consistency equation will converge tothe Kaplan{Meier estimator if it is initialized by a discrete distributionwith equal mass on all observations, whether censored or not. If, on theother hand, some of the uncensored observations are initialized with zeromass, the algorithm will never assign positive mass to them. Therefore,the set of self consistent estimators contains more members than justthe Kaplan{Meier estimator.To end this section, three more remarks are in order. First, we note apointwise variance formula for the Kaplan{Meier estimator. It is nor-mally derived from likelihood considerations that are discussed later.The result is Greenwood's formulabV( ^G(t)) = ^G(t)2 24Xtj�t djR(tj)(R(tj)� dj)35 (26)Second, the above formulae assumed that there is at most one observa-tion in any small interval used in the approximation of the continuouscase. The assumption can be deduced from the assumption of a con-tinuous model. As a consequence, the numbers E(�j) in (18) could bereplaced by the event indicator dj , and approximations based on n!1justi�ed from this assumption. But in most data sets there are ties, thatis, more than one event at at least some time points. If the number ofsuch ties is small in comparison to the number at risk, replacing dj byE(tj) will not alter the estimators of this section considerably.

Event History Analysis 16Third, the Kaplan{Meier estimator of the survivor function does notapproach 0 on t > tn when the largest observation tn is censored. Intechnical terms, this will lead to a bias in the estimator. From a practicalpoint of view, the values of the survivor function beyond the largestobservation can never be ascertained. However, in some cases, e.g. whenthe evaluation of expectations is required, some further assumptions areneeded.2.5 Functionals of distributionsIn some applications estimators of summary functions are more than isneeded. Instead of the step functions produced by the Kaplan{Meier orNelson{Aalen estimators one would like to have a summary in termsof quantiles, means, variances etc. All these quantities can be treatedas functionals of the underlying survivor or distribution function. Forexample, the expectation is given byE(T ) = Z 10 u dF (u)and the median bymedian(T ) = F�1(1=2):In these cases it seems natural to use the estimator of the survivor func-tion and plug it into the formula for the respective functional. The caseof the median is instructive. Since the estimator of the survivor functionis a step function, there need not exist a value t with ^G(t) = 1=2, orit need not be unique. Moreover, in contrast to the case of uncensoredobservations, the jump heights of the estimator are not constant. There-fore, in practice neighboring values ^G(tj) > 1=2 > ^G(tj+1) are linearlyinterpolated.A much more di�cult problem is the estimation of moments. Pluggingan estimator of the distribution function intoE(T ) = Z 10 G(u) duwill lead to �nite values only if the largest observation is uncensored. Es-timation of moments does not seem to be feasible without rather strongassumptions.



Event History Analysis 173 Simple regression modelsMany instances of social research involving durations require more thana summary measure for their argument. Very often, the problem maybe cast in terms of regression models, a formulation familiar from cross{sectional analyses. The basic idea is to summarize the di�erences be-tween groups of subjects parsimoniously by indicating the impact ofgroup membership on a measure of central tendency only, e.g. the mean.A common way to express this idea mathematically is to consider theconditional distribution of duration given group membership. If all theconditional distributions look alike except for a di�erent central ten-dency, the di�erences in central tendency might be expressed by a singlenumber, depending only on a linear combination of group membershipindicators.More formally, let Y denote a random quantity of interest. Supposethat conditional on some covariates x, indicating group membership, Yfollows the linear regressionY = x� + � ; (27)where x is a 1� p vector of covariates including a constant, � is a p� 1vector of unknown regression coe�cients, and � is a random variablehaving mean zero and �nite variance. In the following, we will discussan extension of this familiar linear model and its estimation to the caseof possibly censored duration data.2Durations are inherently positive quantities. Inserting durations directlyas dependent variables Y in the above equation may therefore createconceptual di�culties. Changing the \central tendency" of a positivequantity by adding or subtracting some quantity may lead to negativevalues, which are impossible.In analogy to similar arguments used in connexion with discrete depen-dent variable, one might choose a transformation of the original duration2The formulation (27), given in terms of random variables, is meant here and inthe following to refer to the equality of conditional distributions only. All that isimplied is that the conditional distribution of Y , given x, is of the formF �(yjx) = F �0 (y � x�):The random variable � is only used to indicate a certain distribution. The � in theabove equation need not be de�ned on the same probability space as Y . Nor is aninterpretation of � as \unobserved cause" warranted.

Event History Analysis 18to �t the positivity constraint in all cases. An easy transform of dura-tions that will always lead to interpretable results is the logarithm ofthe durations. That is, we set Y = lnT . When using this transform, thee�ect of the covariates on the original time scale corresponds to a scalechange: values of x� < 0 correspond to shortened durations, values ofx� > 0 to prolonged ones.It can be shown that the logarithmic transformation is the only one thatcan express all combinations of e�ects or reverses of e�ects additively.Still, using the logarithms of durations is no panacea. After all, if thee�ects of covariates x� as well as the durations can be ascertained onlyto within a certain interval, many other transforms are consistent witha realistic description and should be used if needed.To distinguish between random variables referring to durations and thosereferring to some transforms, in the following the former will be denotedby T , the latter by Y . The same convention will be obeyed when dealingwith realizations of the random variables. Distribution, survivor, densityand rate functions of transformations Y of the durations of interest will,however, uniformly be denoted by a superscript * on F;G; f; r etc. Ifthe transform Y = g(T ) is monotone, as the logarithmic transform is,we can also consider the censored versions of Y , which are given byZ = min(Y; g(C)) with z denoting the realized value.In the absence of censoring, one can estimate � by minimizing the leastsquares criterionnXi=1(yi � xi�)2 = n Z e2 d ^F �n(e) = nXi=1 Z (y � xi�)2 d ~F �ni(y) ; (28)where ^F �n(e) is the empirical distribution function of the residuals ei =yi � xi�, and ~F �ni(y) = I [yi < y] is the empirical distribution of anobservation yi.Both the second and third representation in the above formula can beused to generalize the least squares criterion by replacing the empiri-cal distributions involved by versions appropriate for censored data. Itturned out, however, to be advantageous to start with the least squaresestimating equationsnXi=1 x0i(yi � xi ^�) = 0 or nXi=1 x0iyi =  nXi=1 x0ixi! ^� (29)



Event History Analysis 19instead of the least squares criterion (28). In 1979, Buckley and Jamesproposed to replace the censored observations Z by the conditional ex-pectation of Y given the observed (censored) data and the covariates:Y � = E� (Y j z; d; x) = dz + (1� d)E� (Y j Y � z; x) : (30)This is an example of a general strategy dealing with incomplete data.It consists of replacing the unknown values of observables by their ex-pectations, using all information available from the data (here, Y � z)as well as the information provided by the model structure. In this case,the dependence on model structure is reected by the dependence of theconditional expectation on the unknown parameter �.Replacing Y in expression (29) by its conditional expectation gives1nXi x0iE ^� (Y j zi; di; xi) = 1n  nXi=1 x0ixi! ^� : (31)The Buckley{James estimator ^� is de�ned as the solution of the nor-mal score function for � when the expectation on the left hand side iscomputed using ^�.Using the model formula (27) and a �xed �, an empirical version of theconditional expectation can be evaluated:^E� (Y j zi; di; xi) = ^yi(�) (32)= dizi + (1� di)^E� (Y j Yi � zi; xi)= dizi + (1� di) xi� + R1ei e d ^F �� (e)^G��(ei) != dizi + (1� di) nXk=i vik(�)(zk � xk�) + xi�!where ^F �� is the empirical distribution function (e.g. the Kaplan{Meierestimator) of the residuals, ^G�� is the empirical survivor function 1� ^F �� ,and we have putvik(�) =8<: wk(�)^G��(ei) if ei < ek0 otherwise

Event History Analysis 20and wk(�) = ^P�(� = ek) ;so that wi(�) is the height of the jump of the empirical distribution atthe i th residual.3 A solution ^� of the estimating equation (29) thereforesatis�es:^� =  nXi=1 x0ixi!�1 nXi=1 dix0izi + nXi=1(1� di)x0i^yi( ^�)! : (33)This leads to a straightforward iterative procedure for the computationof ^�:1. Assign starting values ^�0.2. Compute ^yi( ^�j) according to (32) using the Kaplan{Meier proce-dure as estimator for the distribution of the residuals.3. Compute ^�j+1 using the right hand side from (33). This is a simpleleast squares regression of the pseudo data ^yi( ^�j) on the regressorsx.4. Go back to step 2 unless some convergence criterion is met.To be numerically e�ective, this simple iterative strategy needs elabora-tion. Following the steps of the algorithm, the basic choices are:1. Starting values may be obtained using the least squares estimatortreating all observations as uncensored. Other choices (e.g. usingonly uncensored observations) are of course possible but do notseem to have a decisive inuence on the procedure.2. The Kaplan{Meier estimator is not uniquely de�ned on the wholereal line if the largest residual is censored. Buckley and Jamessuggest to always treat the largest residual as uncensored. This willlead to an underestimation of the regression constant, but shouldscarcely a�ect the other regression estimators. Further choices arediscussed by e.g. Efron (1988).3For ease of notation it is assumed here that the observations are ordered accordingto the magnitude of the corresponding residuals.



Event History Analysis 214. The iteration may not converge to a unique value. This is due tothe fact that the right hand side of (33) is a piecewise linear func-tion in �: Changing � does not change the weights vik(�) unlessthe ranks of the residuals change. Therefore, the estimator may os-cillate between several values ^�. The discontinuity of (33) hampersthe analytic treatment of the estimator. Moreover, the number oflimiting values in �nite samples is not predictable, but may poten-tially be rather large. Fortunately, the phenomenon seems to be ofpractical interest only in rather small samples, in situations wherethe e�ect of covariates is small, or when the convergence criterionis very strict. In situations where a unique estimator is required(e.g. simulations, using the procedure as building block for morecomplicated models, etc.) one may use the arithmetic mean of alllimit values of the algorithm as an estimator. Otherwise, the dif-ferent values of the limiting cycle of estimators are very close andit may su�ce to report just one of them.A very simple estimator of the variance of ^� may be obtained by restrict-ing attention to the uncensored observations:cvar( ^�) = (x0diag(di)x)�1 ^�2BJ^�2BJ = 1nu � pXi �diei � 1nu X diei�2 ; (34)where nu is the number of uncensored observations. This is the sameas the classical variance estimator in the linear model with uncensoreddata. Since the estimator is computed from the uncensored observationsonly, it will not be very e�cient. Moreover, it implicitly assumes thatthe variances of the non censored residuals are homoscedastic. But thisis true only if the censoring variable follows the same regression as theuncensored dependent variable Y . With respect to the last point, a betterestimator of the residual variance is^�2�BJ = nun(nu � p)Xi  diei + (1� di)Xk vik( ^�)e2k! : (35)In this formulation, the censored squared residuals are replaced by theirconditional expectations. Combining ^�2�BJ with the �rst equation in (34)provides an estimator of the variance of ^� that is (asymptotically) equiv-alent to a bootstrap estimator when the resampling is done holding the
Event History Analysis 22censoring information �xed. Experience with the two variance estimatorssuggests that the second version is more stable and has often smallermean squared error than the �rst version. Both, however, are generallyconservative.

4 Durations: ParameterizationBroadly speaking, a parameterization expresses a possibly large set ofdistributions, regressions, or interdependencies through a few (real) num-bers. Parameterizationsmay serve several purposes: They summarize as-pects of the data, they focus attention on interesting speci�c features,they allow for easy formal manipulations, they simplify comparisons be-tween situations, and they can be used for simulations. In the following,we will treat several choices of parameterizations for the two main build-ing blocks of duration models: how covariates a�ect duration, and howthe class of durations and their properties can be described.Together, these two building blocks, if fully speci�ed, uniquely deter-mine the conditional distribution of the durations under consideration.From a probabilistic point of view, this is all one needs to know. Intro-ducing a family of conditional distributions by using a parameterizationsets the frame for inference procedures, discussions, and the critique ofproposed models. But with event history data, even when dealing onlywith durations, there are two more aspects that need attention. First,taking the temporal reference of duration models seriously allows for theintroduction of covariates that change over time. Whether the marginaldistribution of conventional covariates are speci�ed as part of the modelbuilding process or not seems to be largely a matter of convenience. Withcovariates changing over time, more care is needed. Without specifyingtheir path through time, one cannot even derive such simple characteri-zations as the conditional moments of durations. Second, most observa-tions of durations su�er from a de�ciency of sample information due tocensoring. Without a formal representation of this lack of informationone cannot hope to successfully confront models and observations. Bothaspects, time dependent covariates and models for the censoring process,will be discussed at the end of this section.



Event History Analysis 234.1 Covariate e�ectsCovariates reect the many aspects judged important in the comparativedescription of durations. They may relate to properties of individuals orgroups, to group membership or changing environments and situations.While a comprehensive classi�cation of their possible roles does not seemto be warranted, an understanding of the way covariate e�ects can beintroduced parametrically is necessary to make e�cient use of the gainthey provide over the direct inspection of subgroups. The introductionof covariates reduces the burden of comparing many di�erent subgroupsto an examination of a vector � of regression parameters. But the inter-pretation of this numerical summary depends heavily on how covariatesare supposed to a�ect a proposed model.4.1.1 Scale modelsIn section 3 we introduced a regression model for durations derived fromthe classical linear model techniques. The interpretation of covariate ef-fects in this model can be based on a distribution function F0 a�ectedby a linear combination of covariates, x�:Pr(lnT � ln t j x;�) = F �lnT jx(ln t j x;�) = F �0 (ln t� x�) (36)The conditional distribution of the logarithm of duration given the co-variates is a shift by an amount of x� of some basic distribution F �0 . Thebasic distribution F �0 corresponds to a situation with covariate valuesx = 0.4 The conditional densities, if they exist, satisfy a similar relationf�lnT jx(ln t j x;�) = f�0 (ln t� x�); (37)exempli�ed in �gure (1):It is clear that one can use either one of the graphs in �gure (1) as astarting point and de�ne the other as an appropriate shift. Therefore, in-terpreting the action of covariates as a shift of densities does not dependon the choice of x = 0 for the baseline distribution or density. Any othervalue x0 can be chosen as reference point. Then the e�ect of covariatesx on the density is a shift of the location of the density correspondingto covariates x0 by an amount of (x� x0)� .4Possibly up to a further shift given by the intercept term �0
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Figure 1: Densities of lnTThe relation in terms of distributions (36) or densities (37) can also bereexpressed in terms of random variables aslnT = x� + � with � 'd F �0 (:): (38)Written in this way, some of the operation on distributions or densitiescan be reduced to arithmetic operations on random variables. Often, thisleads to more transparent formulations.5While this interpretation is familiar from the classical linear model itonly works for the logarithms of durations. It is certainly easier to havean interpretation in terms of durations, not just their logarithms. On thescale of durations, the distribution functions for di�erent values of thecovariates are related byPr(T � t j x;�) = Pr(lnT � x� � ln t� x�) (39)= Pr(Te�x� � te�x�) = F0(e�x�t)Here, the basic distribution function F0 once again corresponds to asituation with covariates x = 0. The graphs of the distribution functions5The equality in (38) can in most cases only be interpreted as equality in distri-bution. This is what is needed for the interpretation above. But equality of randomvariables, if it can be ascertained, is a much stronger property. To take a simple ex-ample, if T1 is uniformly distributed on (0; 1), then T2 := 1 � T1 is also uniformlydistributed on (0; 1). But Pr(T1 = T2) = 0. We will not discuss possible uses ofequality of random variables in (40) because it can be rarely justi�ed in social scienceapplications.



Event History Analysis 25for given x are squeezed or stretched along the t{axis, depending onwhether x� is negative or positive, but the lower end of their support,namely t = 0, is preserved. In terms of densities we get the relationf(t j x;�) = f0(te�x�)e�x�:The densities are not only scaled along the t{axis, but also their heightchanges. The �gure (1) above, comparing densities for log durations,changes accordingly (see �gure (2)). A direct comparison of the graphs

Figure 2: Densities of Tof the densities is not as easy as in the case of the logarithms of durations.But the relation (39) of the distributions suggests an interpretation interms of random variables. Suppose there is a random variable T0 withdistribution function F0, corresponding to durations with covariates x =0. Then, durations T with covariate x are represented byT = ex�T0 with T0 'd F0(:): (40)This may be interpreted as a scaling of the underlying time structure:Positive values of x� expand the time relative to the one on which T0 isde�ned. Events develop slower on this time scale, so that durations aregenerally longer. On the other hand, negative values of x� contract timerelative to T0 processes. Developments are faster and durations generallyshorter.Sometimes, especially in technical applications, this model of covariatee�ects can be linked directly to physical features of the environment:
Event History Analysis 26machines working under higher load, at higher voltage, higher temper-ature etc. deteriorate faster. And these features of environment can becaptured by respective covariate values. With such examples in mind,model (40), or its equivalent expressions (39) in terms of distributionfunctions, is often called accelerated failure time model . In view of thescale change expressed in (39) the term scale model is also used.The relations between distributions, survivor functions, and rates in scalemodels can be summarized as follows:Pr(T � t j x;�) = F (t j x;�) = Pr(T0ex� � t) = Pr(T0 � te�x�)= F0(te�x�)G(t j x;�) = 1� F (t j x;�) = G0(te�x�)f(t j x;�) = f0(te�x�)e�x�r(t j x;�) = f(t j x;�)G(t j x;�) = r0(te�x�)e�x� (41)A further summary function is the quantile function de�ned as the (gen-eralized) inverse of the distribution function:Q(p) = F�1(p) := infft j F (t) � pgFrom (41) we getQ(p j x;�) = Q0(p)ex�;where Q(p j x;�) is the quantile function corresponding to covariatevalue x and Q0(p) is the one corresponding to x = 0. The logarithms ofthe quantile functions are therefore related bylnQ(p j x;�) = lnQ0(p) + x�: (42)As a simple check of the appropriateness of the scale model one can plotthe logarithms of empirical versions of the quantile function for di�erentsubgroups de�ned by x. The resulting graphs should be separated by aconstant value.Further consequences of (40) are simple relations for the moments of T ,namelyE(T jx;�) = ex�E(T0 )E(T 2 jx;�) = e2x�E(T0) etc., (43)



Event History Analysis 27so that the relation for the variances areV(T jx;�) = e2x�V(T0)Since the logarithms of durations form a location{shift family, the con-ditional variances V(ln T jx;�) are constant. This homoscedasticity mayalso be used for model checking.4.1.2 Proportional hazards modelsInstead of looking at transforms of random variables as in (40) one canconsider how covariates transform some baseline distribution or othersummary function. The hazard rate is the most useful summary func-tion from a dynamic point of view. Therefore it seems natural to examinetransforms of a hazard rate r(tjx;�). Since a hazard rate is nonnega-tive, its transforms by any covariate values should also be nonnegative.Moreover, a hazard rate corresponding to a proper distribution functionshould transform to one corresponding to a proper distribution function.In other words, if some baseline integrated hazard diverges to in�nity,the same should be true for its transformed counterpart. The simplestway to achieve this is to multiply a baseline hazard rate by a positivefunction of the covariates. An obvious choice for the positive function isthe exponential. With this choice we are let to the following model forcovariate e�ects:r(t j x;�) = ex�r0(t): (44)The model posits that positive values of x� correspond to larger inten-sities in comparison to situations with x� = 0. With larger intensitiesfor all t, events will tend to happen earlier and durations will be shorter.On the other hand, negative values of x� give rise to smaller intensities,so that events tend to happen later, and durations will be longer.6Anexample is plotted in �gure (3). For obvious reasons, models in which apositive function of covariates multiplies a baseline hazard rate are calledproportional hazards models . The implied relations for the survivor func-6Note that the sign of x� has opposite consequences in a scale model.
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Figure 3: Proportional Hazard Ratestions, distributions, and densities are:Pr(T > t j x;�) = G(t j x; �) = e� Z t0 r(u j x; �) du= e�ex�H0(t) = G0(t)ex�F (tjx;�) = 1�G(tjx;�) = 1�G0(t)ex� (45)f(tjx;�) = ex� �G0(t)ex� � 1� f0(t):Of the above formulae, the �rst one, expressing the survivor functionsgiven a covariate value as an exponentiation of a baseline survivor func-tion, is the most useful. Even though the expectation of a positive ran-dom variable can be expressed through the integral of its survivor func-tion as given in (11), there is no explicit formula relating the momentsfor di�erent values of the covariates.7Moreover, the quantile function, while easily computable, cannot be useddirectly for model checking purposes. On the other hand, the propor-tional hazards model can be written in regression form:lnH0(T ) = �x� + � with � 'd 1� e�eu ; (46)7In this connexion, the formalism of Laplace transforms briey treated in section4.2.5 proves helpful.



Event History Analysis 29where H0 is the integrated hazard corresponding to the baseline distri-bution F0 and � follows an extreme value distribution with distributionfunction 1 � exp(� exp(u)). For strictly increasing integrated hazardsthis follows fromG(t j x;�) = Pr(T > t j x;�) = Pr(lnH0(T ) > lnH0(t) j x;�)= Pr(�x� + � > lnH0(t)) = Pr(� > lnH0(t) + x�)= e�elnH0(t)+x� = e�ex�H0(t)= G0(t)ex� :The regression representation (46) is useful for model comparison pur-poses. An increasing transformation of durations can be expressed asa homoscedastic linear regression with known extreme value distribu-tion. On this transformed scale, the covariates shift the location of thestandard extreme value distribution. Speci�cally, one can compare theproportional hazards and scale models using the regression representa-tion. First, the scale model (47) can be expressed in regression formas lnT = x� + ��: (47)Here, �� speci�es a random variable with distribution equal to the dis-tribution of the logarithm of the baseline random variable lnT0 in (40)and � is used as an arbitrary but �xed scale parameter. If the extremevalue distribution is chosen as the distribution of �, it follows that1� lnT = ln�T 1=�� = x�=� + �: (48)This is precisely of the regression form (46) for proportional hazardsmodels with the special integrated hazardH0(t) � t1=� . The correspond-ing survivor function isG(t j x;�) = Pr(T > t j x;�) = Pr� 1� lnT > 1� ln t j x;��= Pr�x�� + � > 1� ln t� = e� exp� 1� ln t� x�� �= e� exp��x�� � t1=� : (49)
Event History Analysis 30and the relation of the hazards isr(tjx;�) = e�x�� r0(t) with r0(t) = 1� t1=��1 (50)Starting with a scale model and assuming the extreme value distributionas baseline for the logarithm of durations one is lead to a proportionalhazards model with integrated baseline hazard H0(t) � t1=� . In theproportional hazards parameterization the covariate e�ect is the negativeof the one in the scale parameterization, corresponding to the fact thatpositive covariate e�ects in the scale model express longer durationswhile negative covariate e�ects in the proportional hazards model expresslower hazards and thus longer durations. Moreover, the covariate e�ectin the proportional hazards expression is scaled by the scalar �. It maybe asked whether all scale models can be reexpressed as proportionalhazards models or vice versa. This is not the case and the exampleabove is the only one that is expressible both as scale and as proportionalhazards model.4.1.3 Other transformation modelsThe e�ect of covariates in proportional hazards models is to multiplysome baseline hazard rate. Instead of a multiplicative transform of hazardrates one might be interested in other easily interpretable transforms,possibly based on other summary functions than hazards. In parallel tothe well understood logit models for binary data one might e.g. look atthe odds of an event before time t versus an event after time t. Usingthe logarithms of the odds as an appropriate scale for covariate e�ects,one is lead to the following relation between log odds for an event beforevs. after time t:ln 1�G(t j x;�)G(t j x;�) = x� + ln 1�G0(t)G0(t) (51)for some baseline survivor function G0. In terms of odds,1�G(t j x;�)G(t j x;�) = ex� 1�G0(t)G0(t) :For positive x�, the odds for earlier events are larger than for the base-line survivor function. Since this is supposed to hold for all t, event



Event History Analysis 31probabilities are larger and therefore durations are shorter. This modelis generally refered to as log{odds model. The implied relations betweensurvivor functions and hazard rates, respectively, are:G(t j x;�) = 11 + ex� 1�G0(t)G0(t)r(tjx;�) = r0(t) � ex�G0(t) + (1�G0(t)) � ex� :As can be seen from the relation of the rate functions, the hazard ratesare not proportional. In fact, the relative rates r(tjx1;�)=r(tjx2;�) forany two covariate values x1 and x2 converge to 1 as t �!1. Therefore,the class of proportional hazards models and the class of log{odds modelsdo not contain common members.As in the case of both proportional hazards and scale models the log{odds models can be represented in regression form asln 1�G0(T )G0(T ) = �x� + � with � 'd 11 + exp(u) ; (52)where the error distribution is given by the survivor function of thelogistic. Comparing this with the regression form (47) of a scale model itis seen that the only common member of the class of scale and log{oddsmodels is the log{logistic distribution.A slight generalization of the log{odds model, the {odds model, is givenby 1�G(t j x;�)G(t j x;�) = ex� 1�G0 (t)G0(t) for  > 0 and (53)lnfG(t j x; �)g = ex� lnfG0(t)g for  = 0The resulting survivor function isG(t j x;�) = 1�1 + ex� 1�G0(t)G0 (t) �1= :For  �! 0, this approaches a proportional hazards model, while for = 1 it reduces to the log{odds model. Since the {odds model inter-polates between the proportional hazards and the log{odds models it
Event History Analysis 32is well suited for model assessment purposes. On the other hand, sincethe interpretation of covariate e�ects depends on the value of , andsince this value is sometimes estimated from the data, it is less suited toexpress a well de�ned covariate e�ect.4.1.4 Comparing regression coe�cients across modelsIn the previous sections, several covariates are assumed to a�ect a modelthrough a linear combination x� = �0 + �1x1 + : : :+ �kxk only. Linearcombinations of covariates are the most popular choice for the descrip-tion of joint e�ects. First, using a linear combination of covariates torepresent joint e�ects is only rarely a real limitation of functional form.This is especially evident when the number of di�erent covariate valuesis small, when interaction terms are introduced, or when �xed trans-forms of covariates (e.g. polynomials) are taken into account. Second,linear combinations are easily treated, both mathematically and algo-rithmically. Last but not least, the interpretation of �i as the e�ect of aunit increase in the covariate value xi on (a certain aspect of) the givenmodel is very simple. Moreover, if covariates, say xi and xj , are de�nedon similar scales, a linear speci�cation allows for a direct comparison oftheir e�ects via �i and �j .On the other hand, as the discussion of covariate e�ects in the previoussections should have made clear, a direct comparison of regression coef-�cients across models is possible only in very special circumstances. Forthe family of distributions (49), which is both a scale and a proportionalhazards model, the relation of coe�cients turned out to be�PH = ��SC� ;where �PH and �SC are the vectors of regression coe�cients in the pro-portional hazards and the scale model, respectively. A similar relationcan be shown to hold for the family of distributions that are both a log{odds and a scale model. In both cases, the respective regression vectorsare the same up to a scalar multiple. They are proportional.This suggests to look at the equivalent e�ects ij := �i=�j for �j 6= 0instead of the regression coe�cients themselves. The equivalent e�ectsij express the change in the covariate value xj required to achieve anequivalent e�ect on the model as a unit change in xi. In the above exam-ple, the equivalent e�ects ij do not change when the parameterization



Event History Analysis 33is changed from a scale model to a proportional hazards model. In asimple linear regression, the ij do not change when the scale of thedependent variable is changed. Also, when comparing several simple re-gressions with the same set of covariates but with the dependent variablemeasured di�erently, the ij can be compared across models, while theinterpretation of the � vectors changes with the scale of the dependentvariable and the marginal distribution of the covariates in the di�erentsamples.This constancy of ij cannot be expected to hold across all contemplatedmodels. Astonishingly, however, it holds approximately in a variety ofcircumstances. More speci�cally, it holds for small e�ects j�j � 0 whenusing di�erent classes of covariate e�ects like proportional hazards orscale models. This approximation improves as the marginal distributionof the covariates becomes more symmetric. In the case of jointly normalcovariates, the ij are exactly constant across models, at least asymptot-ically. Moreover, the approximation results also cover the case of incom-plete data, e.g. when grouped or discrete duration data are representedby continuous models.Further insight into the role of the equivalent e�ects may be gained fromconsidering a nonlinear scale model. Suppose the conditional expectationof lnT is given by a nonlinear function � of a linear combination ofcovariates, that isE(ln T j x;�; �) = �(x�) (54)Then, since@@xj �(x�) = @�(x�)@x� �j ;E � @@xj �(x�)� = E � @�(x�)@x� ��j = c�j ;where the expectations in the last equation are taken with respect to themarginal distribution of the covariates and c is a scalar constant depend-ing on �, �, and the distribution of the covariates. In other words, thecoe�cient vector � is proportional to the mean derivative of the regres-sion function �. Therefore, the equivalent e�ects ij are also invariantwith respect to di�erent regression functions or marginal distributionsof the covariates in this nonlinear scale model.

Event History Analysis 344.1.5 Semi{parametric models of covariate e�ectsWhile using linear combinations of covariates is su�cient in many situ-ations, there are cases where more general speci�cations are warranted.One typical situation is when some covariates (e.g. age or income) takeon many possible values and interest centers on the comparison of e�ectsfor all values of that covariates. It seems natural to replace the linearcombination of covariates by some nonlinear function �. This leads tomodels of the form�(x1; : : : ; xk) = �0 + �1x1 + : : :+ �k�1xk�1 + gk(xk);where gk is some nonlinear function. These models are called partly ad-ditive models . One can of course add further nonlinear terms, and whenall terms, linear or not, are denoted by gi, model (4.1.5) can be writtenas �(x1; : : : ; xk) = �0 + g1(x1) + : : :+ gk(xk): (55)Since the constant term �0 is only identi�ed when the nonlinear functionsgi are constrained, one often uses the normalization E(gi (Xi)) = 0 or itsempirical counterpart. Also, some assumptions on the smoothness of thegi are generally added. For estimation purposes, one wants to considerobservations close to a given covariate value x as giving information onthe value of the function �(x). And this is only possible if the function� and therefore the gi do not change too abruptly.Note that the additive combination of covariate e�ects still allows for aninterpretation of one e�ect when all others are kept constant. The e�ectof that covariate can usefully be expressed (plotted, etc.) without regardto the values of all other covariates.Also, the additive structure can be used in a stepwise �tting procedurewhere each term gi is treated separately. Namely, one may consider thee�ect of the covariates gj(xj); j 6= i in any step of the �tting procedureas �xed. Since � is additive, one can then �t the residual of the modelgiven gj(xj); j 6= i against the covariate xi conditioned in the same way.This leads to a sequence of one dimensional estimating problems whereeach covariate is considered in turn. Such one dimensional problems aretypically solvedmuch easier than the general multidimensional regressionproblem where all covariates have to be considered simultaneously.On the other hand, the partly additive model does not approximate allfunctional forms. Nor does it cover the important case of interactions.



Event History Analysis 35To deal with nonlinear e�ects and interactions simultaneously, regressiontrees are often employed. Instead of using sums of smooth functions theidea is to express the regression function by step functions given by�(x1; : : : ; xk) = LXl=1 clI [(x1; : : : ; xk) 2 Rl]: (56)Here, Rl is an element of a partition of the covariate space so that theregression function takes on the value cl on the region Rl. The computa-tional burden in constructing such a regression function is much reducedif the partition is made up from rectangles with sides parallel to thecoordinate axes in the covariate space. Moreover, an easy interpretationof the partition becomes available in that case. The region to which anobservation belongs can be determined by a sequence of simple binarydecisions, each concerning only one variable. The regions are build bysplitting the covariate space along one dimension according to whetherthe value of the jth covariate, say, is larger or smaller than a certainvalue. These splits can equivalently be represented by a tree: Suppose,e.g., (x1; x2) 2 R2 and consider the partition of R2 into the rectanglesR1 = fx1 � 0; x2 � 0g; R2 = fx1 � 0; x2 > 0g; R3 = f0 < x1 � 1; x2 �1g; R4 = f0 < x1 � 1; x2 > 1g and R5 = fx1 > 1; x2 2 Rg. The regionsare indicated in �gure (4).
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0 1Figure 4: Partitions in a regression treeThe same information is given in the binary tree in �gure (5), where theterminal nodes (or leaves) represent the respective regions. Note that
Event History Analysis 36the choice of a root, the highest level in the tree representation, maynot be unique. Moreover, the interpretation of a split on a lower level ofthe tree will depend on all those splits on higher levels that lead to thatsplit (its \ancestors"). But the tree representation can be enhanced byadding statistical information on the subsets established at a node. Thismay be the degree of subgroup homogeneity with respect to duration, orthe relative accuracy of prediction of a split etc. With such informationadded, regression trees are an e�ective regression summary.
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R3 R4Figure 5: Regression tree4.2 Classes of distributionsThe conditional distribution of durations is fully speci�ed if in additionto a parameterization of covariate e�ects the baseline distribution is de-�ned. Traditionally, in the context of regression models, there are onlyrarely discussions on the choice of a baseline distribution. In that situa-tion, most aspects of the statistical behavior of estimators depend on the�rst few moments of the distribution only. A peculiar feature of eventhistory analysis is a much stronger interest in families of distributionsand their properties. One of the reasons is that with censored observa-tions, estimates of simple characteristics (e.g. expectations) will dependstrongly on the choice of baseline distributions. Another reason is thatmodels for durations are often only a �rst step in the analysis of morecomplex systems of events. In this case, the properties of the constituentdistributions will constrain the properties of the whole system.



Event History Analysis 374.2.1 Exponential distributionThis last point is well demonstrated by the exponential distribution thatfrequently serves as a reference or as a starting point for the constructionof more complicated models. The exponential distribution has densityfa(t) = ae�at a > 0: (57)Its distribution, survivor, and rate functions areFa(t) = 1� e�atGa(t) = e�at (58)ra(t) = a;respectively. The constancy of the rate function is sometimes referred toas signifying no time dependence. Since the hazard function, if de�ned,uniquely determines the distribution, the exponential is the only class ofdistributions with this property.The constancy of the hazard function is related to the basic characteris-tic of the exponential distribution, its lack of memory property. It statesthat at any given time t, the residual duration from t onward has thesame distribution as the distribution itself. In other words, the infor-mation that an event did not occur before time t does not change theprobability of its occurrence within (t; t+ s] from the initial probabilityPr(T 2 (0; s]). Aging has no e�ect, and this is expressed by a constantintensity for the occurrence of an event, ra. In the context of stochasticprocess models, this means that information on the past of a processdoes not add any information on its future beyond what is known aboutthe state of the process at time t. This allows for the construction ofprocess models with an easily understood dependence on the past. Moreformally, the lack of memory property of the exponential distributionfollows fromPr(T > t+ sjT > t) = Pr(T > t+ s)Pr(T > t)= G(t+ s)G(t) = e�a(t+s)e�at = G(s): (59)Moreover, the exponential distribution is the only distribution with this
Event History Analysis 38property.8A further simple but useful property is that for any positive randomvariable T with integrated hazard H(), its hazard transform H(T ) isexponentially distributed with parameter a = 1. Suppose, for simplicity,that the integrated hazard H() is continuous and strictly increasing.Then,Pr(H(T ) > t) = Pr(T > H�1(t)) = eH(H�1(t)) = e�t: (60)This transformation was already used when deducing the regression formof the proportional hazards model (46). In the present context, the haz-ard transform is often used as a device for model checking and for thecomparison of distributions since it allows for the reduction of any dis-tribution to the exponential. This may then serve as standard againstwhich departures can be judged.The expectation and variance of the exponential distribution areE(T ) = 1aV(T ) = 1a2 :It follows that the coe�cient of variation, the ratio of the standard de-viation to the mean, is unity. For this reason, the exponential may alsoserve as a baseline for judging relative dispersion.4.2.2 Weibull distributionBecause of the lack of memory property, the exponential distribution isoften not an appropriate representation of durations in the social sci-ences. Moreover, since it depends on one parameter only, it is not veryexible when �tted to data. A two parameter extension of the expo-nential distribution arises from the introduction of a second parametertransforming the time scale. A simple choice is the class of distributions8Excluding the degenerate case Pr(T > t) � 0, this follows from Cauchy's equa-tion. Writing V (t) := ln Pr(T > t) and multiplying (59) by Pr(T > t) leads toV (t+ s) = V (t) +V (s). The only continuous solutions to this equation are the linearfunctions, V (t) = V (1)t = �at, say. The result follows upon exponentiation.



Event History Analysis 39having survivor, distribution, density, and rate functionGa;b(t) = e�(at)bFa;b(t) = 1� e�(at)bfa;b(t) = babtb�1e�(at)b (61)ra;b(t) = babtb�1;where a; b > 0. This class of distributions is referred to as the Weibullclass of distributions. The parameter b is often called the Weibull pa-rameter.The rate function is monotone increasing or decreasing depending onwhether b > 1 or b < 1. For b = 1, it reduces to the exponential dis-tribution. The Weibull family therefore often serves as a representationfor deviations from a constant hazard rate in the direction of mono-tone time dependence (compare �gure 6). The Weibull class was already
b=1.0
b=1.5
b=0.5

Figure 6: Weibull hazard ratesencountered, in thin disguise, when discussing the intersection of theproportional hazards class and the scale model for covariate e�ects. Torecapture the representation used in (49) from the one given above, oneonly has to putb = 1�a = e�x�:

Event History Analysis 40Consequently, a representation using a proportionality factor for the haz-ard function instead of a scale factor is also possible. This can be achievedby settingb� = ba� = abresulting in the hazard function r0(t) = a�tb��1. These di�erent param-eterizations of the class of Weibull distributions are equivalent in thatthey give rise to exactly the same class of distributions. Moreover, froman analytic point of view, transforming one parameterization into an-other in the foregoing example is a smooth operation. Still, the di�erenttypes of parameterizations should be kept in mind. One reason is thatexisting software packages tend to use di�erent versions of parameteri-zations implying di�erent interpretations and the necessity to translatethe interpretation for one parameterization into another. A second reasonis that the statistical properties of some inference procedures, notablyWald's test for regression parameters, do change with the parameteriza-tion employed (see section 5 for some further comments).A property of the Weibull class that makes it quite popular in several ar-eas of application is its appearance as the asymptotic distribution of theminima of independent random variables. To start with, a simple consid-eration shows that the minima of Weibull distributions are themselvesdistributed according to the Weibull law. Suppose that there are n in-dependent random variables Ti; i = 1; : : : ; n, each distributed accordingto the same Weibull law with parameters a; b as in (61). ThenPr(mini (T1; : : : ; Tn) > t) = Pr(T1 > t \ : : : \ Tn > t)= nYi=1Pr(Ti > t)= (Pr(T1 > t))n ;where the second equality follows from independence and the third fromthe assumed identical distribution. Inserting the survivor function of theWeibull distribution givesPr(mini (T1; : : : ; Tn) > t) = e�n(at)b = e�(n1=bat)b :



Event History Analysis 41That is, the minimum of n identically distributed, independent Weibullrandom variables follows again the Weibull distribution with the sameWeibull parameter b and a scale parameter equal to n1=ba. Therefore,the Weibull family is said to be closed under the forming of minima.Of greater importance in social science applications is the more generalfact that a similar result holds asymptotically without specifying an un-derlying class of distributions. Namely, for a large class of distributions itcan be shown that their appropriately scaled minima tend to the Weibulldistribution. More precisely, given a sequence of such random variables,Ti; i = 1; : : : , there are sequences of numbers cn and dn such that thedistribution ofdn(mini (T1; : : : ; Tn)� cn)tends to a Weibull distribution. This fact is sometimes exploited in mod-eling situations where one is interested in the time to the �rst arrival ofa job o�er, say, presupposing that there were many simultaneous appli-cations for a job and the applicant chooses the o�er that arrives �rst.In the social sciences, variants of the argument are invoked to justifythe choice of the Weibull distribution in applications ranging from thetheory of choice and the theory of search unemployment to theories ofinformation processing in the human brain. In a more formal context,it is used to generate models for competing risks. Multivariate gener-alizations of the argument are employed in models involving a discreteresponse with only a few categories. It should be noted, however, thatin contrast to the situation described by the central limit theorem, thenorming constants cn, dn, and the rate of convergence depend heavilyon the underlying distribution.9The expectation and variance of the Weibull distribution can be derivedfrom a change of variables by setting u = (at)b. The Jacobian of the9E.g., in the case of the minima of Weibull distributions, it is seen from the aboveresult for n random variables that the normalizing sequence dn needs to be of theform n1=b. The norming thus changes for any change in the underlying commonWeibull parameter. This situation should be compared with a simple version of thecentral limit theorem, where the asymptotic normal distribution for sums of inde-pendent identically distributed variables follows from a condition on the existence ofmoments, irrespective of other features of the underlying distributions. Moreover, thestandard norming 1pn always applies. An argument based on extreme value theory,if only based on a rough asymptotic approximation, cannot sustain the same force ofargument as similar ones based on the central limit theorem. A thorough but accessi-ble discussion of the probabilistic aspects of the theory can be found in: J. Galambos:The Asymptotic Theory of Extreme Order Statistics; Wiley 1978.

Event History Analysis 42transformation u! t = u1=b=a is given by J(u) = u1=b�1=ab, so thatE(T ) = Z 10 Ga;b(t) dt = 1a Z 10 u1=be�u du = �(1=b+ 1)a ;where �() is the gamma function satisfying the functional equation �(x+1) = x�(x). Speci�cally, �(n) = (n�1)! for all integers n > 0. Repeatingthe same argument leads toE(T 2) = Z 10 t2fa;b dt = �(2=b+ 1)a2 :Thus the variance of the Weibull distr��bution is given byV(T ) = 1a2 ��(2b + 1)� �(1b + 1)2�An argument to the same e�ect, but perhaps closer in spirit to the prob-abilistic arguments used thus far, would be to refer to the moments ofthe exponential distribution via the hazard transform. Since (aT )b isexponentially distributed with unit parameter, the n{th moments of Tis simply the n=b{th moment of the exponential distribution divided byan. This connexion will also be exploited in section 4.2.4.4.2.3 Log{logistic distributionA further two parameter class of distributions with some convenientproperties is given by the following survivor, distribution, density, andhazard functions:Ga;b(t) = 11 + (at)bFa;b(t) = (at)b1 + (at)bfa;b(t) = babtb�1[1 + (at)b]2 (62)ra;b(t) = babtb�11 + (at)b ;where a; b > 0. This is called the log{logistic class of distributions. Ifb > 1, the hazard function has a single maximum at (b � 1)1=b=a. If
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b=1.0
b=2.0
b=0.7

Figure 7: Log{logistic hazard ratesb < 1, the hazard function is decreasing. This is illustrated in �gure 7.From the relationfa;b(t) = btGa;b(t)[1�Ga;b(t)]one can reduce the problem of �nding the moments of the log{logisticdistribution to that of the moments of a beta distribution with densityproportional to x��1(1�x)��1 on the interval [0,1]. This is achieved bythe substitution u = Ga;b(t). It follows thatE(Tn) = 1an�(1 + nb )�(1� nb ) (63)Note that the n{th moment of the log{logistic distribution only exists ifb > n. The log{logistic distribution therefore has heavier tails than theother distributions treated in this section.The log{odds transform of the log{logistic distribution is linear in ln tln 1�Ga;b(t)Ga;b(t) = b(lna+ ln t);and this may be used for model checking and in characterizations involv-ing the log{odds model as in (52). The log{logistic distribution and itsparameterization will be further discussed in section 4.2.6.

Event History Analysis 444.2.4 Gamma distributionAnother two parameter family of distributions that is often applied isthe gamma{distribution. It is given by:Ga;b(t) = 1� 1�(b) Z t0 abub�1e�au duFa;b(t) = 1�(b) Z t0 abub�1e�au dufa;b(t) = 1�(b)a(at)b�1e�at (64)ra;b(t) = fa;b(t)Ga;b(t) ;with a; b > 0. It reduces to the exponential distribution for b = 1. Itsmoments areE(T ) = baV(T ) = ba2 : (65)The presence of the incomplete gamma function in the survivor functionmakes it a rather cumbersome model to work with. But its usefulnessin theoretical arguments derives from the fact that the family is closedunder summation. If T1, T2 are independent gamma variates with thesame scale parameter a but possibly di�erent gamma parameters b1 andb2, then their sum T1+ T2 is once again a gamma variate with the samescale parameter a and gamma parameter b1 + b2. Since the exponentialdistribution corresponds to b = 1, an immediate consequence is that thesum of n independent exponential distributions with the same scale ais gamma distributed with scale a and gamma parameter b = n. Thismakes the gamma family an attractive candidate if an event is assumedto happen after the cumulative e�ects of several intermediate events. Itis also used in the context of renewal processes and as a computationallyconvenient component in mixture models.4.2.5 MixturesThe weighted mean of two survivor functions G1 and G2,G(t) = pG1(t) + (1� p)G2(t) ; p 2 [0; 1] (66)



Event History Analysis 45is again a survivor function. This is a useful and fundamental deviceto produce new distributions from given ones. It is often interpreted interms of heterogeneity : Suppose that there is an indicator V 2 f1; 2gidentifying two groups with di�erent survivor functions G1 and G2. IfPr(V = 1) = p, the marginal survivor function of the duration T isgiven by (66). The mixture therefore describes the survivor function ifeither the information on group membership V cannot be obtained or ifone is interested in describing the situation without reference to groupmembership.A special case of this model, themover{stayer model , has a long traditionin sociological research. It posits that there is a subgroup that neverexperiences the type of event under consideration. In mobility researchor demography, there are persons never changing their position or nevermarrying. Since these subgroups cannot be identi�ed beforehand, themarginal survivor function is a mixture of the formG(t) = pG1(t) + (1� p); (67)where the survivor function of the group not experiencing an event isunity. The above survivor function is sometimes called defective, be-cause its limit for t ! 1 is 1� p > 0. Equivalently, the correspondingdistribution function converges to p < 1. As a result, the expectationin this model is in�nity. Considering the above mentioned applications,the model is mildly unrealistic, if only because no one can live up toits expectation. Still, it might produce a useful approximation in someapplications.The idea of heterogeneity can be generalized by allowing not only dis-crete but general random variables. The realizations of these randomvariables are then often interpreted as characterizing a certain propertyof individuals. In the model building process, the heterogeneity vari-ables are therefore treated on the same footing as other covariates. Thusthe introduction of covariates in the general discussion of mixtures willmake it possible to examine the e�ects of heterogeneity with respect tothe di�erent forms of covariate e�ects discussed earlier.Suppose that in addition to the covariate vector x there is a randomvariable V , having the same distribution for all values of x, and inu-encing the conditional distribution of duration. If V is not included inthe set of regressors, the resultant survivor function of T conditional onx is the expectation of the conditional distribution of T given x and V
Event History Analysis 46with respect to the distribution of V , M(), say:Pr(T > t j x;�) =: G(t j x;�) = EM (G0(t j x; V ;�)) (68)= Z G0(t j x; v;�) dM(v)The survivor function G is said to be a mixture derived from the mixingdistribution M and the mixed distribution G0. The mixed distributionG0 is also called a kernel.The e�ect of the mixing operation in the the present context is twofold.First, it generally changes the mixed distribution. If the mixed distri-bution belongs to some parameterized family, one gets a new family ofdistributions. If, in addition, the mixing distribution is allowed to comefrom a parameterized family, the mixing operation leads to a new pa-rameterized family described by the parameters of both, the mixed andthe mixing distribution. Second, except in special circumstances, the op-eration changes the way the included covariates act on the underlyingfamily of distributions. Mixture models are therefore a useful tool to en-large both the families of distributions and the classes of covariate e�ectsconsidered.The case that the random variable V acts as in a proportional hazardsmodel on the kernel is of special importance. Suppose, therefore, thatthe hazard conditional on x and V is of the formr(tjx; V ;�) = V r0(tjx;�) with Pr(V � 0) = 1: (69)Mixtures of this special form are called proportional mixtures. In techni-cal or medical applications|where durations describe times to a failureor death and where the variable V refers to environmental e�ects|themodel is often termed frailty model.Computations and the derivation of characteristics of the mixed distri-bution can be eased considerably by noting the close connexion of thismodel with the Laplace transform. The Laplace transform of a positiverandom variable V is de�ned to beLM (t) = EM �e�tV � = Z e�tv dM(v): (70)The function LM (t) is thus seen to be the survival function of a propor-tional mixture with a unit exponential distribution as kernel. But thereare extensive tables of Laplace transforms and many characterizations



Event History Analysis 47of their properties.10This relationship can also be exploited for generalproportional hazards models, sinceG(t j x;�) = EM �e�V exp(x�)H0(t)�= Z e�vex�H0(t) dM(v) = LM �ex�H0(t)� : (71)That is, a proportional mixture of a proportional hazards model is theLaplace transform of the mixing distribution, evaluated at the integratedhazard, ex�H0(t).As an example, consider the gamma distribution as a mixing distributionwith scale a = � and gamma parameter b = �. Its density ism�(v) = 1�(�)��v��1e��v: (72)Setting a = b = � as above leads to the standardization E(V ) = 1 andV(V ) = 1=�, compare (65). Its Laplace transform is of an especiallysimple form:LM (t) = 1�1 + 1� t��Using the exponential distribution and proportional covariate e�ects asthe kernel, one getsG(t j x;�; �) = LM �ex�t� = 1�1 + 1�ex�t�� :The density and hazard function of this distribution aref(tjx;�; �) = ex�(1 + 1�ex�t)�+1r(tjx;�; �) = ex�1 + 1�ex�t : (73)This family of distributions is called after Pareto. Note that the lastformula above implies that the covariates do not act proportionally in10see: F. Oberhettinger/L. Badii: Tables of Laplace Transforms; Springer 1973 andW. Feller: An Introduction to Probability Theory and its Applications, vol. II; Wiley1971, chap. XIII, for a general discussion.

Event History Analysis 48the mixed distribution. Speci�cally, the ratio of any two hazard functionscorresponding to two di�erent values of the covariates converges to unityfor t!1.Using the above gamma distribution as the mixing distribution in con-junction with a general proportional hazards model as the kernel leadsto survivor functions of the formG(t j x;�; �) = 1�1 + 1�ex�H0(t)�� : (74)Now, the integrated hazard function H0(t) is monotone increasing. Thesame is true for the odds of survival (1 �G(t))=G(t), as well as for thetransform (1 � G(t))=G(t) that was used in the de�nition of the {odds model (53). In the absence of further restrictions on the rate orsurvivor function, the proportional mixture with gamma mixing distri-bution represents the same family of distributions and the same covariatee�ect as the {odds model. In other words, a proportional hazards modelwith gamma heterogeneity is formally and observationally equivalent tothe {odds model. While the former posits a proportional e�ect of thecovariates on the hazard function plus heterogeneity, the latter positsnon{proportional e�ects but no heterogeneity. It follows that a good �tof the proportional mixture model cannot be regarded as empirical evi-dence for some form of heterogeneity. It may equally well be an indicationof non{proportional covariate e�ects.To end the discussion of proportional gamma mixture, we note its po-tential usefulness in the context of dependent durations. If, say, two du-rations are independent given covariate information and heterogeneityV , and if the heterogeneity term acts proportional on the hazard rate,Pr(T1 > t1; T2 > t2 j x; V = v;�)= Pr(T1 > t1 j x;�1)v Pr(T2 > t2 j x;�2)v : (75)If V follows the gamma distribution (72), the joint survivor function ofT1; T2 is given byPr(T1 > t1; T2 > t2 j x;�)= Z Pr(T1 > t1 j x;�1)v Pr(T2 > t2 j x;�2)v dM(v)= 1�1 + 1�H1(t1 j x;�1) + 1�H2(t2 j x;�2)�� ;



Event History Analysis 49where H1 and H2 are the integrated hazard functions of the distribu-tions in (75). The value of V may characterize a common property ofindividuals or a common environment. Since T1 and T2 share the samevalue of V = v, marginalizing the distribution of the two distributionswith respect to V leads to dependent duration variables.In the special case of a gamma heterogeneity term, � can be seen as ameasure of dependence, with � ! 1 corresponding to independence.At the same time, � ! 1 implies a vanishing variance for the mixingdistribution, so that the values of V become concentrated around thevalue 1. In other words, the inuence of common factors or the environ-ment tends to a common value for all random variables considered. Foran interpretation, however, it should be noted that � features also inthe marginal distributions of T1 and T2, respectively, via (74). Since themarginal distributions alone contain information on �, the parametercannot be said to pertain solely to dependence.As the above examples demonstrate, proportional mixtures of propor-tional hazards models will in general lead to non{proportional covariatee�ects. It may be asked whether this is true for all mixing distributionsM . The answer is in the negative. Using the relation given by the Laplacetransform of a mixing distribution and the mixture (71), one needs onlyto consider Laplace transformsLM (t) = e�t� with � < 1:It can be shown that such Laplace transforms do correspond to thedistributions of positive random variables. But (71) then results inG(tjx;�) = LM (ex�H0(t)) = e�(ex�H0(t))� ;which is again a proportional hazards model. A su�cient condition toinsure that proportional mixtures of proportional hazards models arenot also in the class of proportional hazards models is to postulate a �-nite expectation for the heterogeneity term. This condition is sometimesstipulated when an empirical distinction between heterogeneity and pro-portional kernel is required. While this might be a reasonable assumptionin special cases, there is obviously no way to decide problem empirically.It remains to examine scale models|the second broad class of covari-ate e�ects|in conjunction with mixtures. Suppose, therefore, that thecovariates as well as the heterogeneity term act as in a scale model,
Event History Analysis 50multiplying an underlying duration variable T0. In terms of logarithmicdurations, the model can be written aslnT = x� + �+ U; U 'd M(u) or (76)lnT = x� + ��; �� = �+ UOn the transformed scale, mixing changes only the residual distribution.On this scale, introducing a mixing distribution does not lead to interest-ing consequences with regard to covariate e�ects. It simply increases thevariability of the error term. Speci�cally, a scale mixture of a scale modelof covariate e�ects is a scale model. However, the baseline distributiondesignated by T0 is changed. This once again illustrates the interplaybetween the speci�cation of covariate e�ects and mixtures.4.2.6 Combining models for covariate e�ects and distributionsGiven a class of distributions together with a parameterization, a ratherdirect way to introduce covariate e�ects is to make the parameters func-tions of the covariates. This will in some cases reduce to one of the classesof covariate e�ects discussed before. For example, in the parameteriza-tions used here, the parameter a in the exponential, Weibull, log{logistic,and gamma distributions are scale parameters. Putting a = exp(�x�)leads to a scale model of covariate e�ects.However, the second parameter in all the above two parameter classesdoes not have such an easy interpretation. Still, under certain circum-stances it might be desirable to let these parameters be functions of someof the covariates, and exible software packages allow for this possibility.Since the parameterization of a class of distributions is highly arbitraryand mostly follows custom, the interpretation of such models will requireclose scrutiny of the underlying parameterization.Another possibility is to use one of the classes of covariate e�ects in con-junction with a class of distributions. E.g., none of the two parameterclasses has a parameter representing proportional e�ects on the hazardrate. Introducing a proportional hazards model for the log{logistic dis-tribution results in the hazard ratera;b(tjx;�) = ex� babtb�11 + (at)b (77)



Event History Analysis 51with survivor functionGa;b(tjx;�) = 1(1 + (at)b)ex�=a : (78)Comparison with the general proportional gamma mixture (74) revealsthat this is the same as a gamma mixture of a Weibull model, wherethe variance of the mixing distribution is given by V(V ) = 1=� =a exp(�x�) and the Weibull scale parameter in this interpretation isexp(x�=b)a(b�1)=b. Thus, in this model the covariate e�ect might be seenas either arising from a proportional hazards model or from the simul-taneous determination of the variance of a mixing distribution and thescale.It has sometimes been proposed to use both a proportional hazards anda scale model for covariate e�ects. While some covariates might multi-ply the hazard rate, others might multiply the scale of a model. Whethersuch a distinction is possible will depend on the class of distributions cho-sen. Both e�ects are basically the same within the Weibull class, whilethe log{logistic might be extended to allow both for a scale and a pro-portional hazards e�ect. However, extreme care is needed when the twocovariate sets contain common members. First, the ability to distinguishthe two e�ects hinges strongly on the family of distributions considered.Second, as can be seen from the case of the extended log{logistic distri-bution above, changes in proportional e�ects will also be reected in thescale of the model. Third, both, higher rates and accelerated scales, whiletheoretically distinct concepts, lead to shorter durations. Since observa-tions of durations are the only empirical basis for claims about covariatee�ects, estimators of the e�ects for the same covariates will tend to behighly correlated.4.3 Time dependent covariatesOne of the distinguishing aspects in the analysis of durations is thepossibility to consider the impact of time varying covariates. Whethercovariates represent the state of the environment, the stages of a decisionprocess, or the contingencies of an actor, these changing circumstancescan be incorporated in most duration models. The interpretation of theire�ects will depend not only on the form of covariate e�ects considered,but also on assumptions on the time path of these covariates.

Event History Analysis 52Suppose �rst that the development of covariate values through time canbe assumed to be �xed, or known in advance, or, at least, not to dependon the action of subjects �guring in the description of the durationsof interest. This kind of covariates is called a de�ned time dependentcovariate, if its time path can be ascertained without recourse to theactual event history. Otherwise, it is called ancillary.Suppose next a proportional hazards model for the e�ect of such covari-ates. The e�ect of time dependent covariates can then be reected in animmediate e�ect on the hazard at time t induced by the value of thecovariate at the same time. Formally, this is written asr(tjx(t)) = r0(t)ex(t)� : (79)An important special case arises when the process x(t), considered as afunction of time, is a step function. Let the process x(t) be piecewiseconstant in the time intervals 0 < �1 < : : : < �m < 1. Then theresultant conditional survivor function has a rather simple form sincethe integrated hazards can be evaluated piecewise also. For �m < t <1,e.g., G(tjx(u)u2[0;t)) = e� Z t0 ex(u)�r0(u) du= e��ex1� Z �10 r0(u) du+ : : :+ exm� Z t�m r0(u) du� (80)= e��1(H0(�1)�H0(0))� : : :� �m(H0(t)�H0(�m)):An important application of this idea is used in a generalization of theclass of exponential distributions. Fixing the values of the time intervals�0 = 0 < �1 < : : : < �m < 1 and setting exp(x(u)�) = �k for u in theinterval [�k�1; �k) as above, while choosing the constant rate r0(u) � 1gives rise to the piecewise exponential distribution. Its hazard rate isgiven by the function that is constant on the intervals �0 = 0 < �1 <: : : < �m <1, taking the value �k on the k th interval. The hazard rateis therefore a step function. It follows that the survivor function is givenby G(tjx(u)u2[0;t)) = e� (�0�1 + �1(�2 � �1) + : : :+ �m(t� �m)) (81)



Event History Analysis 53Choosing appropriate intervals and steps, it might be used to approx-imate other hazard rate functions. From (80), if �0 = 0 < �1 < : : : <�m <1 are the jump times of the covariate process x(t), we getG(tjx(u)u2[0;t))= e�ex(�1)�(H0(�0)�H0(0))� : : :� ex(�m)�(H0(t)�H0(�m))= mYk=1� G0(�k)G0(�k�1)�ex(�k�1)� � G0(t)G0(�m)�ex(�m)� (82)= mYk=1 (Pr(T0 > �k jT0 > �k�1))ex(�k�1)� �(Pr(T0 > tjT0 > �m))ex(�m)�More generally, time dependent proportional covariates that are stepfunctions with respect to time can be treated as in (80), if the integratedhazards have closed form expressions.If the covariates act proportional on the hazard but are not step func-tions, one needs to be able to compute the integral with respect to time ofexp(x(u)�)r0(u) to get an expression for the survivor function and othersummary functions. Models of this form with de�ned covariates are some-times used to express deviations from the assumed proportional e�ect ofcovariates. A case in point is the use of the covariate x(u) = x=(1 + u)for some �xed covariate x. The covariate e�ect in a proportional hazardsmodel is then�(x(t);�) = ex�=(1+t): (83)The ratio of the hazard rates for two values of x, say x1 and x2, willthen tend to one, in contrast to the proportional hazards model that wasused as a starting point. Obviously, other forms of covariate e�ects or ofclasses of distributions can be obtained from deliberately choosing timedependent functions as covariates. As an example, consider x(u) = lnuin an exponential model. The rate then is r(tjx;�) = exp(�0+�1x(t))t =exp(�0)t�1+1. In other words, the covariate transforms the exponentialmodel into a Weibull model.One may also start with a scale model of covariate e�ects. If time depen-dent variables are supposed to act immediately at each point in time, thephysical interpretation of scale models leads the interpretation of covari-ate e�ects as changing the velocity of the underlying process as compared
Event History Analysis 54to a uniform motion represented by the duration T0. But change of ve-locity is acceleration. Therefore, putting	(t) = Z t0 e�x(u)� du;one arrives at the expressionT = 	�1(T0);which may be compared to the relation T = exp(x�)T0 for the scalemodel with �xed covariates. However, there is no special case similar tothe piecewise constant case considered above. The integrals have to beworked out on a case by case bases. Moreover, if there are two or moretime dependent covariates, the order of applying the respective transfor-mations will matter. For both reasons, this type of transformation modelis only rarely considered.De�ned or ancillary time dependent covariates can be used to extendthe form of covariate e�ects and/or the class of distributions, and mayhave a direct interpretation as immediate e�ects of changing values ofcovariates. These simple interpretations are no longer available for evolu-tionary covariates. These covariates depend on the history of the wholeprocess, and might not even be de�ned independently of the process un-der consideration. Simple examples are provided by measures that areoutcomes of the process itself, like the amount of unemployment bene-�ts received, when the interest centers on the duration of unemployment.Because of respective regulations, the amount of unemployment bene�tswill often simple be a re-expression of the duration of unemployment. Inthese cases, measures of e�ects can only be interpreted when the jointprocess is taken into account.4.4 Censoring processesThe process that leads to censored observations is in general not of in-terest in itself. If censoring is judged to be non-informative, it neitherenters into the construction of estimators nor in the interpretation ofresults.On the other hand, censoring will certainly play a decisive role for theevaluation of estimators and for their precisions in any given sample.If in a sample of a hundred observations, two are censored, this is will



Event History Analysis 55certainly signify a di�erent information than that based on a hundred ob-servations of which 90 are censored. Information on the censoring processis therefore needed for both the theoretical and the practical comparisonof estimation procedures and results.Of even greater practical importance is the fact that the probabilistic de-scription of situations with censored observations is incomplete. If onlythe conditional distribution of the durations and the covariate e�ects aregiven, it is only possible to simulate complete observations, but never theimpact of censored observations. This hampers the analysis of implica-tions of assumed models as well as their criticism in a context whereanalytical results are especially di�cult to obtain.Speci�cation of any censoring time independent of the duration time issu�cient to guarantee non-informative censoring. But a special case ofthat situation is very useful, both conceptually and empirically. Suppose,therefore, that censoring times and durations are independent. Moreover,assume that the rates of the durations and the censoring times do exist,and that they are proportional. Disregarding covariates for the moment,the assumption implies the existence of a constant a withrC(t) = ar0(t); (84)where rC is the rate function of the censoring time and r0 is the ratefunction of the duration of interest. This special relationship betweenindependent censoring times and durations is called the Koziol{Greenmodel. The model has some simple but extremely useful consequencesfor simulations. First, the survivor function of the censored time T � =min(C; T ) isPr(T � > t) = Pr(C > t; T > t)= e�aH0(t)e�H0(t) = e�(1+a)H0(t):In other words, all the distributions of T , C, and T � have proportionalhazards.Second, the probability of censoring, Pr(D = 0), is equal to the ratio
Event History Analysis 56a=(1 + a):Pr(D = 0) = Pr(C < T )= Z Pr(T > u)hC(u) du= Z e�H0(u)ar0(u)e�aH0(u) du= Z e�(1+a)H0(u)ar0(u) du= a1 + a Z e�(1+a)H0(u)(1 + a)r0(u) du= a1 + a;where the equality in the last line follows upon observing that the in-tegrand in the next to last line is the density of the random variableT �.Third, the censoring indicator D and the censored duration time T � areindependent. This follows from the same reasoning as above, in reverseorder:Pr(D = 0)Pr(T � > t) = a1 + ae�(1+a)H0(t)= a1 + a Z 1t (1 + a)r0(u)e�(1+a)H0(u) du= Z 1t e�H0(u)ar0(u)e�aH0(u) du= Z 1t Pr(T > u)hC(u) du= Pr(T > C > t) = Pr(D = 0; T � > t):It can also be shown that the independence of the censoring indicatorand the censored durations is su�cient for the Koziol{Green model tohold.If the Koziol{Green model holds, it is possible to simulate censored ob-servations by independently simulating the censoring indicator D andthe censored times T �. This allows for a simple control over censor-ing proportions in simulations. Moreover, some awkward computations



Event History Analysis 57in the evaluation of the performance of estimators are considerably re-duced. The Koziol{Green model of censoring has therefore become aconvenient starting point for the evaluation of censored data models,both practically|through simulations|and theoretically.5 EstimationIn the presence of censored observations there is no uni�ed method forthe construction of estimators with good properties. Of the many pro-posals, we have already mentioned two non{parametric estimators ofsurvivor functions and the Buckley{James regression estimator. Threeother construction methods that are especially useful in the context ofregression models are treated next.5.1 Maximum likelihoodSuppose �rst that a fully speci�ed model for both the distribution andthe covariate e�ect are given. Denote the parameter(s) of the distributionby �, the parameters of the covariate e�ect model by �, and the resultingconditional density by f(tjx; �; �). In the case of uncensored observationsfrom independent replications of T jx, the joint density of n observationsis given bynYi=1 f(tijxi; �; �):This may also be seen as a function of �; � for given (ti; xi); i = 1; : : : ; n,in which case it is called the likelihood functionL(�; �) = nYi=1 f(tijxi; �; �): (85)One may de�ne estimators as those values of �; � that maximize thefunction L,(^�; ^�) = arg max�;�L(�; �); (86)the maximum likelihood estimator. To be of use in the analysis of du-rations, censoring must be included in the de�nition. Using the inde-pendent random censoring model from section 2.2, the data are now
Event History Analysis 58(ti; di; xi). Their density involves the survivor function K and the den-sity k of of the censoring variable C and is given bynYi=1 (f(tijxi; �; �)K(ti))di (G(tijxi; �; �)k(ti))1�di : (87)The contribution of n uncensored observation (di = 1) to the likelihoodis the density of the duration, f(tijxi; �; �), times the probability of acensoring time C after the observed duration, K(ti). The contributionof a censored observation (1 � di = 1) is the probability of a durationlarger than ti time the density of a censoring time at ti.If the censoring distribution does not contain information on (�; �), thelikelihood function is up to a multiplicative constant (terms not depend-ing on � or �)L(�; �) = nYi=1(f(tijxi; �; �))di(G(tijxi; �; �))1�di : (88)That is, the likelihood is the product of the densities of the uncensoredobservations times the survivor functions of the censored observations.Because of the product structure of the likelihood function it is ad-vantageous to use the logarithm of the likelihood, the log{likelihood`(�; �) = lnL(�; �) as the function to be maximized. It is the sum ofthe logarithms of the densities or the survivor function respectively.As an example, suppose T jx is exponential with hazard rate ex�. Thedensity is ex� exp(�ex�t) and the survivor function is exp(�ex�t), sothat the log{likelihood function is`(�) = nXi=1 di �xi� � exi�ti�+ (1� di)(�exi�ti)= nXi=1 dixi� � nXi=1 exi�ti:If the covariate vector contains only a constant, the maximum likelihoodestimator can be given explicitly, since then`(�) = nXi=1 di� � nXi=1 e�ti:



Event History Analysis 59The derivative of the log{likelihood function, the score function U(�) isU(�) = @@� `(�) = nXi=1 di � nXi=1 e�ti:Setting this to 0 results in^� = lnPni=1 diPni=1 ti :In general, the score function of the i th observation has expectation 0and its covariance, the information matrix, can also be expressed asIi(�) = E� (Ui(�)U 0i (�)) = �E� �@2`i(�)@�2 � : (89)In the exponential example, I = E� (e�T �). This equals 1 in the absenceof censoring. The large sample theory of regular models suggests thatthe inverse of the information matrix is the asymptotic variance of ^�, sothat it can be used for the computation of con�dence intervals and teststatistics. However, the expectation in the de�nition of the informationwill normally depend on the censoring distribution so that it cannotbe evaluated without strong assumptions. In our example, E� (e�T �) =e� R exp(�e�u)K(u) du.In practice, the information is therefore replaced by the observed infor-mation, the negative of the sum of the second derivatives of the log{likelihood function. In the case of the exponential,Iobs(�) = � nXi=1 �@2`i(�)@�2 � = e� nXi=1 ti (90)In the context of tests, ^� is substituted for � in Iobs(�). In the example,Iobs(�) = Pi di. The Wald test then uses ( ^� � �0)Iobs( ^�)�1( ^� � �0)as a test statistic of the hypotheses �0. It should be born in mind thatthis procedure is not invariant under re-parameterization, such as whenthe exponential distribution in the example is reexpressed by a = e� .Moreover, in regression contexts the procedure may lead to unreliableresults if the absolute value of some regression coe�cients ^� gets large.The method of maximum likelihood is applicable in most situationswhere the censored likelihood (88) can be written down and where the
Event History Analysis 60factoring of the likelihood (87) is judged appropriate. It provides a gen-eral method of estimation in many situations and is algorithmically sim-ple. It may fail to produce reliable results, however, in situations withthreshold parameters, for models containing many parameters, and inthe presence of forms of incomplete data other than random censoring.5.2 EM and the missing information principleA much more exible approach to incomplete data follows from themissing information principle that was already encountered when dis-cussing the self-consistency property of the Kaplan{Meier estimator andthe Buckley{James estimator. In both cases, some standard estimators,the empirical distribution function in the case of the Kaplan{Meier esti-mator and the least squares estimator in the case of the Buckley{Jamesestimator were generalized to allow for censored data by replacing theunknown quantities by their expectation given the available data. Thesame principle can be used within the context of maximum likelihoodestimation. The starting point in this case is the log{likelihood function.If there are incomplete observations, the full data log{likelihood termsare replaced byE�;� (`i(�; �;T; x)jT � = t); (91)where the expectation depends on the current parameter values (�; �)and T � are the incomplete data (min(T;C); D in the case of censoring).The resulting log{likelihood function is then maximized with respect tothe parameters, and the procedure is iterated.In the case of the Buckley{James procedure the complete data scorefunction is U(�) = x0(Y � x�) from the normal linear regression model(27). The expectation satis�esE� (U(�;Y; x)) = 0 : (92)and the root ^� ofXi U( ^�; yi; xi) = 0is the maximum likelihood estimator. Even if the distribution is notnormal | so that the root of the score function ^� need no longer bea maximum likelihood estimator | it is often consistent and e�cient.



Event History Analysis 61When the variables are censored with variables Z; d; x, then the censorednormal score function can be expressed asU�(�;Z; d; x) = E(U(�;Y; x) j Z; d; x) ; (93)the conditional expectation of the score function with complete observa-tions given the incomplete observations. This suggests using an empiricalversionE ^� (U( ^�; Y; x j Z; d; x)) = 0for estimation, and this is just (31). It remains to consider the computa-tion of the conditional expectation. From the perspective of the normallinear regression model one might try to use the normal distribution.However, one can only expect the good properties of the estimators evenoutside the normal distribution to extend to censored data situations ifthe conditional expectation is computed from a non{parametric estima-tor. In the case of right censored observations, this amounts to using theKaplan{Meier estimator (which is the non{parametric maximum likeli-hood estimator) as in the Buckley{James procedure.5.3 Partial likelihoodAnother extension of maximum likelihood ideas is the partial likelihoodthat allows estimation of proportional covariate e�ects without speci-fying a parameterized baseline distribution. Consider the proportionalmodelf(t; x;�) = ex�r(t)e� Z t0 ex�r(u) du: (94)Let t(1) < t(2) : : : < t(n) be n ordered event times, all assumed to beuncensored. Let Ij be the label of an observation with an event at t(j) andR(t(j)) be the set of observations without an event before t(j). R(t(j)) iscalled the risk set at the event time t(j). Note that R(t(j)) from (15) is thenumber of elements in R(t(j)). As an example consider �gure 5.3. Here,R(t(1)) = f1; 2; 3; 4g;R(t(2)) = f1; 2; 4g;R(t(3)) = f1; 2g; and R(t(4)) =f2g. The set of indices Ij , the ordered event times t(j), and the covariatesx(i) are jointly equivalent to the original data. If nothing is known aboutthe hazard function r, the t(j) will contain little information about �.On the other hand, the distribution of Ij can be computed without
Event History Analysis 62

-- --
t!i = 4i = 3i = 2i = 1

t(1) t(2) t(3) t(4)Figure 8: Risk Setsknowledge of r. The conditional probability of an event for observationi at the j th event time given the history up to the j th event isPr(Ij = i j (t(k); x(k))k=1���j ; (Ik)k=1���j�1)= r(t(i))ex(i)�Xk2R(t(i)) r(t(k))ex(k)�= ex(i)�Xk2R(t(i)) ex(k)� (95)Because of the proportional covariate e�ect, this conditional probabilitydoes not depend on the hazard rate r. Neither does it depend on the eventtimes t(j). Therefore, the joint distribution of the indices fI1; : : : ; Ing isthe product of the above conditional probabilitiesPr(I1; I2; � � � ; In) = nYj=1 exIj�Xk2R(t(j)) ex(k)� (96)If some observations are censored, a similar expression results in whichall possible event times of the censored observations are considered. If D



Event History Analysis 63is the set of distinct uncensored observations and Ri the risk set corre-sponding to the event time of the i th observation, the partial likelihoodcan be written asPL(�) = Yi2D exi�Xk2Ri exk� ; (97)where the product is taken with respect to uncensored observations only.The partial likelihood depends only on the order of events, not on theirtiming. It is therefore invariant with respect to monotone transforms ofthe time scale.The derivation of the partial likelihood included only the probabilitiesof the indices and information from the covariates. But from (95) alone,one cannot reconstruct the probability of the sample. Thus, no fullyspeci�ed probability distribution is used, in contrast to the derivation ofmaximum likelihood estimators. Hence the name partial likelihood.Though the maximizer of the partial likelihood, the partial likelihood es-timator, is not in general equivalent to a maximum likelihood estimator,it shares a lot of the properties of the maximum likelihood estimators.Speci�cally, the second derivatives of the log partial likelihood behavelike the observed information and can be used for the construction oftests and con�dence intervals.The score function of the partial likelihood is@@� lnPL(�) = XU(�; ti; di; xi)= Xi2D0BB@x0i � Xk2Ri x0kexk�Xk2Ri exk� 1CCA= Xi2D(x0i �Ai(�)0): (98)The term Ai(�) may be interpreted as the expectation of the covariatesx in the i th risk set if the xi are sampled proportional to exi� from therisk set. Similarly, the negative of the second derivative of the partiallikelihood is the sum of covariance matrices of covariates from the risksets. It follows that it is non negative de�nite if the moment matrices in
Event History Analysis 64the risk sets are non singular. The partial likelihood is therefore concaveand function maximizing algorithms generally converge rapidly.



Event History Analysis 656 References6.1 Text BooksP.K. Andersen/�. Borgan/R.D. Gill/N. Keiding: Statistical Models Based onCounting Processes; Springer 1993H.-P. Blossfeld/G. Rohwer: Techniques of Event History Modeling; LawrenceErlbaum 1995D.R. Cox/D. Oakes: Analysis of Survival Data; Chapman and Hall 1984T.J. Hastie/R.J. Tibshirani: Generalized Additive Models; Chapman and Hall1990T.R. Fleming/D.P. Harrington: Counting Processes and Survival Analysis; Wi-ley 1991J.D. Kalbeisch/R.L. Prentice: The Statistical Analysis of Failure Time Data;Wiley 1980N.B. Tuma/M. Hannan: Social Dynamics; Academic Press 19846.2 ArticlesP.K. Andersen: Survival analysis 1982-1991: The second decade of the propor-tional hazards regression model; Statist. Med., 10, 1991, 1931{1941E. Arjas: Survival models and martingal dynamics (with discussion); Scand.J. Statist., 16, 1989, 177{225W.E. Barlow/R.L. Prentice: Residuals for relative risk regression; Biometrika,75, 1988, 65{74J. Buckley/I. James: Linear regression with censored data; Biometrika, 66,1979, 429{436K.A. Doksum/M. Gasko: On a correspondence between models in binary re-gression analysis and in survival analysis; Int. Statist. Rev., 58, 1990, 243{252B. Efron: Logistic regression, survival analysis, and the Kaplan-Meier curve;J. Am. Statist. Assoc., 83, 1988, 414{425R.D. Gill: Understanding Cox's regression model: A martingale approach; J.Am. Statist. Assoc., 79, 1984, 441{447N.L. Hjort: On inference in parametric survival data models; Int. Statist. Rev.,60, 1992, 355{387J. Hobcroft/M. Murphy: Demographic event history analysis: A selective re-view; Population Index, 52, 1986, 3{27

Event History Analysis 66O. Intrator/C. Kooperberg: Trees and splines in survival analysis; Statist. Med.Res., 4, 1995, 237{261N.M. Kiefer: Economic duration data and hazard functions; J. Ec. Literature,26, 1988, 646{679L. Le Cam: Maximum likelihood: an introduction; Int. Statist. Rev., 58, 1990,153{171R.G. Miller: What price Kaplan-Meier?; Biometrics, 39, 1983, 1077{1081D. Oakes: Multiple time scales in survival analysis; Lifetime Data Anal., 1,1995, 7{18T. Petersen: Recent advances in longitudinal methodology; Ann. Rev. Sociol.,19, 1993, 425{454J.D. Teachman/M.D. Hayward: Interpreting hazard rate models; Soc. Meth.Res., 21, 1993, 340{371L.J. Wei: The accelerated failure time model: A useful alternative to the Coxregression model in survival analysis (with discussion); Statist. Med., 11, 1992,1871{1885



Index{odds model, 31Accelerated failure time model,26Buckley{James estimator, 19CensoringKoziol{Green model, 55Censoring time, 10Distribution function, 3Distributionsdefective, 45exponential, 37frailty model, 46gamma, 44log{logistic, 42Pareto, 47piecewise exponential, 52proportional mixture, 46scale mixture, 50Weibull, 39Equivalent e�ects, 32Greenwood's formula, 15Hazard functiontime dependence, 37, 39Hazard rate, 6Hazard transform, 38Heterogeneity, 45Independent random censoring,10Integrated hazard rate, 8Kaplan{Meier estimator, 14
Lack of memory property, 37Laplace transform, 46Likelihood function, 57Log{odds model, 31Mixture, 46Mover{stayer model, 45Nelson{Aalen estimator, 13Partial likelihood, 63Partly additive model, 34Proportional hazards model, 27Regression tree, 35Scale model, 26Self consistency, 15Survivor function, 3Ties, 15Time dependent covariatesancillary, 52de�ned, 52evolutionary, 54

67


