Dr. U. Pötter Datengewinnung SoSe 2005

Aufgabenblatt 2

Funktionen

- 1) Es sei $A:=\{1,2,3,4\}$ und $B:=\{0,\ldots,20\}$, und außerdem sei eine Funktion $f:A\longrightarrow B$ durch f(a):=a(a-1) definiert.
 - a) Berechnen Sie f(2) und f(4).
 - b) Berechnen Sie $f(\{2,4\})$ und f(A).
 - c) Berechnen Sie $f^{-1}(12)$ und $f^{-1}(\{12\})$.
 - d) Berechnen Sie $f^{-1}(\{5\})$ und $f^{-1}(\{5,6\})$.
 - e) Ist $f^{-1}(f(A)) = A$? Gilt das immer?
 - f) Berechnen Sie $f(f^{-1}(B))$.
 - g) Zeigen Sie: $f(f^{-1}(B)) \subseteq B$.
 - h) Berechnen Sie $\{f^{-1}(\{b\})\,|\,b\in B\}$ und zeigen Sie, dass $\{f^{-1}(\{b\})\,|\,b\in B\}$ eine Partition von A ist.
- 2) Die folgende Tabelle enthält in der ersten Zeile Namen von Personen und in der zweiten Zeile das gegenwärtige Alter:

Betrachten Sie diese Tabelle als Definition einer Funktion mit dem Namen X, die jeder Person ihr gegenwärtiges Alter zuordnet.

- a) Geben Sie den Definitionsbereich der Funktion an (im folgenden A genannt).
- b) Geben Sie den kleinstmöglichen Wertebereich der Funktion an (im folgenden B genannt).
- c) Berechnen Sie für jedes Alter $b\in B\colon X^{-1}(\{b\}),\, |X^{-1}(\{b\})|,\, |X^{-1}(\{b\})|/|A|.$

- 3) Sei $X:\Omega\longrightarrow \tilde{\mathcal{X}}$ eine Funktion. Seien weiter A und B Teilmengen von Ω . Konstruieren Sie ein Beispiel und zeigen Sie dann:
 - a) $A \subseteq B \Longrightarrow X(A) \subseteq X(B)$.
 - b) $X(A \cap B) \subseteq X(A) \cap X(B)$.
 - c) $X(A \cup B) = X(A) \cup X(B)$.
- 4) Sei X: Ω → X̃ eine Funktion. Seien weiter C und D Teilmengen von X̃. Konstruieren Sie ein Beispiel und zeigen Sie dann:
 - a) $C \subseteq D \Longrightarrow X^{-1}(C) \subseteq X^{-1}(D)$.
 - b) $X^{-1}(C \cap D) = X^{-1}(C) \cap X^{-1}(D)$.
 - c) $X^{-1}(C \cup D) = X^{-1}(C) \cup X^{-1}(D)$.
- 5) Sei $A \subseteq \Omega$. Die Indikatorfunktion der Menge A ist die Funktion $I[A]: \Omega \to \{0,1\}$ mit $I[A](\omega)=1$, falls $\omega \in A$, $I[A](\omega)=0$, falls $\omega \in \Omega \setminus A=A^c$. Konstruieren Sie jeweils ein Beispiel und zeigen Sie dann allegemein:
 - a) $I[A \cap B] = I[A]I[B]$
 - b) $I[A \cup B] = \max\{I[A], I[B]\}$
 - c) $I[A^c] = 1 I[A]$
 - d) $A \subseteq B \Leftrightarrow I[A](\omega) \leq I[B](\omega) \ \forall \omega \in \Omega$

Rechnen mit dem Summenzeichen

- 6) Berechnen Sie:
 - a) $\sum_{i=1}^{10} i$
 - b) $\sum_{k=2}^{21} (k-1)$
 - c) $\sum_{i=1}^{5} \sum_{k=1}^{2} ik$
- 7) Zeigen Sie folgende Beziehungen, wobei c eine Konstante ist und x_i und y_i beliebige reelle Zahlen bezeichnen.
 - a) $\sum_{i} cx_{i} = c \sum_{i} x_{i}$
 - b) $\sum_{i} (x_i + y_i) = \sum_{i} x_i + \sum_{i} y_i$
 - c) $\sum_{i=1}^{n} (c + x_i) = nc + \sum_{i=1}^{n} x_i$
 - d) $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$