Aufgabenblatt 6

Stellen Sie sich für die nachfolgenden Aufgaben ein Land X vor, in dem jedes Jahr ausschließlich 25bis 28-jährige Frauen Kinder zur Welt bringen und in dem weder Ein- noch Auswanderung stattfindet.

- 1. Welche Geburtskohorten stellten in diesem Land die potentiellen Mütter des Jahres 2000?
- 2. Verwenden Sie die Ihnen aus der Vorlesung bekannte Notation und stellen Sie anhand einer geeigneten Formel dar, wie die absolute Geburtenzahl im Jahr 2000 im Land X sowohl über altersspezifische Perioden- als auch Kohorten-Geburtenziffern berechnet werden könnte.
- 3. Im Weiteren sind folgende Angaben über verschiedene Geburtskohorten bekannt:

τ	$\gamma_{1971, au}$	$ C_{1971,\tau}^f $	$\gamma_{1972,\tau}$	$ C_{1972,\tau}^f $	$\gamma_{1973,\tau}$	$C_{1973,\tau}^f$	$\gamma_{1974,\tau}$	$\left C_{1974,\tau}^f \right $	$\gamma_{1975, au}$	$ C_{1975,\tau}^f $
25	0.7	1500	0.6	1600	0.4	1600	0.4	1600	0.4	1700
26	0.6	1450	0.4	1550	0.3	1500	0.4	1500	0.4	1600
27	0.5	1350	0.5	1500	0.7	1400	0.5	1400	0.5	1500
28	0.4	1300	0.6	1400	0.6	1300	0.6	1300	0.6	1400

- 4. Berechnen Sie die absoluten Geburtenzahlen der Jahre 1999 und 2000.
- 5. Berechnen Sie hypothetische Geburtenzahlen für die Jahre 1999 und 2000 über die Formel

$$b_t^* = \sum_{\tau = \tau_o}^{\tau_b} \gamma_{t_{ref},\tau} \cdot |C_{t-\tau,\tau}^f|$$

indem Sie die Geburtskohorte C_{1971}^f als Referenzkohorte verwenden. Interpretieren Sie Ihre Ergebnisse.

6. Berechnen Sie hypothetische Geburtenzahlen für die Jahre 1999 und 2000 über die Formel

$$b_{t}^{*} = \sum_{\tau=\tau_{c}}^{\tau_{b}} \gamma_{t_{ref},\tau} \cdot \frac{\bar{\gamma}_{t-\tau,\tau_{b}}}{\bar{\gamma}_{tref,\tau_{b}}} \cdot |C_{t-\tau,\tau}^{f}|$$

indem Sie sich einmal auf die Geburtskohorte C_{1971}^f und das andere Mal auf die Geburtskohorte C_{1975}^f als Referenzkohorte beziehen.

Interpretieren Sie Ihre Ergebnisse.

- 7. Welchen inhaltlichen Unterschied macht es aus, wenn hypothetische Geburtenzahlen über die unter 5.) oder die unter 6.) dargestellte Formel berechnet werden?
- 8. Stellen Sie sich eine bestimmte Tierart vor, bei der jedes Tier maximal fünf Jahre alt werden kann ($\tau_m = 5$). Reproduktion findet ausschließlich in den Altersstufen von $\tau_a = 2$ bis $\tau_b = 4$ statt. Zudem sind die altersspezifischen Geburten- und Sterbeziffern der weiblichen Tiere bekannt:

$$\beta_2^* = 0.8$$
 $\beta_3^* = 1.5$ $\beta_4^* = 0.7$ $\delta_1^f = 0.1$ $\delta_2^f = 0.2$ $\delta_3^f = 0.2$ $\delta_4^f = 0.3$ $\delta_5^f = 1$

Der Anteil weiblicher Nachkommen an allen Nachkommen beträgt in jedem Jahr ungefähr 40%. Des weiteren ist bekannt, wie viele weibliche Tiere in einem Ausgangsjahr t=0 in den einzelnen Altersstufen in einem bestimmten Gebiet leben:

$$\mathbf{n_0^f} = \begin{pmatrix} 3000 \\ 2000 \\ 2500 \\ 1500 \\ 1000 \end{pmatrix}$$

- (a) Konstruieren Sie mit diesen Angaben eine Leslie-Matrix.
- (b) Ermitteln Sie die Populationsvektoren $\mathbf{n_t^f}$ für $\mathbf{t}=1$ bis $\mathbf{t}=5$.

ABGABETERMIN: 8.7.2005