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1. Introduction

This introductory part of the TDA User’s Manual contains the following
sections.

1.1 Preface

1.2 Documentation explains the structure of this manual and our
usage of cross-references.

1.3 Installation explains how to install the program on different plat-
forms.

1.4 How to Use the Program provides basic information on invoking
the program and using its commands.

1.5 The Example Archive explains how to find the examples that are
part of the program’s distribution.

1.6 Errors and Error Messages discusses errors that may occur when
using the program.

1.7 Some General Commands describes a few commands that may
be helpful in different contexts.

1.8 Command Flow Control describes commands that can be used
to control command flow, e.g., while and repeat.

1.9 Programming Repetitions describes some commands that can be
used to program repetitions, e.g., for bootstrap applications.

1.10 Using Macros explains how to define and use macros.

d01.tex December 20, 1999
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1.1 Preface

TDA, an abbreviation of Transition Data Analysis, is a computer pro-
gram for statistical computations. Developing the program is a work in
progress. First versions have been developed in 1989. Since then, several
new features have been added. With version 5.7 (June 1994) the pro-
gram has reached some state of maturity. This is reflected in the book
by Blossfeld and Rohwer [1995] providing an introduction to techniques
of event history modeling based on TDA. In fact, this book is supple-
mented by a disk containing, together with a lot of examples, version 5.7
of the program.

We then experimented with several different approaches to develop
a more flexible and easier to use version of the program. In version 5.7
there was no clear distinction between commands, in the sense of basic
procedures, and additional parameters to control the behavior of these
commands. In the preliminary new versions, 6.02 and 6.03, we tried
to cope with this drawback by introducing the concept of sections (of
a command file). However, this idea turned out to be very unwieldy
and, beginning with version 6.1, we therefore follow a different approach:
There is now a clear distinction between commands and parameters.
Each command now represents a single procedure.

Another drawback of the older version has been that the user had
only limited possibilities to influence the order of command execution.
Based on the distinction between commands and parameters there is now
a simple solution. Each command is executed as a separate procedure,
and commands are executed in the same order as given by the user.

As will be explained in the remainder of this documentation, many
more new features have been added to the program. There is no longer a
limited focus on transition data, but we try to make the program useful
for a broad variety of applications. We also mention that, beginning with
version 6.2, the program and its documentation have two authors: Götz
Rohwer and Ulrich Pötter.

Copyright and Distribution. TDA is a non-commercial project. The
program is distributed as freeware under the terms of the GNU General
Public License (GPL) and can be distributed freely according to this
license. Each TDA distribution should contain a file, named copying,

d0101.tex April 19, 1998
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providing a full statement of the GNU General Public License.
TDA contains some functions, or parts of functions, that have been

taken from published sources. Whenever this is the case, this has been
explicitly noted in TDA’s source code and the documentation.1 The copy-
right for these parts is, of course, with their authors.

Finally, we have to add the usual disclaimer. We hope that the pro-
gram will prove to be efficient and reliable. However, as with all complex
programs it is impossible to test its behavior for all possible run-time
conditions and environments.2 Most probably, there are still some errors
in the current version of the program. Therefore, we have to add the
following disclaimer: TDA is distributed without any warranty; without
even the implied warranty of merchantability or fitness for a particular
purpose.

Acknowledgments. Many people and institutions have given support
to the TDA project. We thank the Hamburger Institut für Sozialforschung
(Hamburg) for support of the first steps in the development of TDA. The
program was further developed as part of the research project House-
hold Dynamics and Social Inequality , directed by Hans-Peter Blossfeld,
and supported by grants from the European University Institute (Flo-
rence) and the European Commission (Brussels), and then continued
at the University of Bremen. We also thank a number of people who
have supported the development of TDA, or have given useful com-
ments: Marco Becht, Stefan Bender, Francesco Billari, Hans-Peter Bloss-
feld, Hannah Brückner, Josef Brüderl, Tak Wing Chan, Juri Ciborra,
Sonja Drobnič, Greg Duncan, Christian Dustmann, Beate Ernicke, John
Haisken-DeNew, Jan Hoem, Steffen Kühnel, Anders Holm Larsen, Søren
Leth-Sørensen, Wolfgang Ludwig-Mayerhofer, John Micklewright, Simon
Peters, Rainer Pischner, Ulrich Rendtel, Hilmar Schneider, Gilles Teyssiere,
Andreas Timm, Wolfgang Voges, Achim Wackerow. Karl Ulrich Mayer
(Max Planck Institut für Bildungsforschung, Berlin) and Hans-Peter

1A complex statistical program consists of several different parts. With respect to
numerical problems, one can distinguish three stages. First the framework providing
the command language to control the program, means to handle input and output of
data, and so on. Second, some algorithms that are, in general, also not numerically
critical, for instance calculation of log-likelihood functions and their derivatives. And
finally some numerically (or for other aspects) critical algorithms, for instance matrix
inversion and function minimization. A basic decision has been to take all critical
algorithms from published sources in the literature and to document this explicitly
in the program’s manual.
2The current version of the program has been developed and tested on a SUN Sparc-
Station 10/30. Its behavior on other machines has not been tested.
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Blossfeld (University of Bremen) have kindly provided some example
data (from the Lebensverlaufstudie) for many examples in the documen-
tation.

Finally, we should look forward. To become a useful program, the
development of TDA needs some response from its users. We would be
glad to receive information about problems and bugs and, of course,
suggestions for improving the program.

Götz Rohwer
Ulrich Pötter
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1.2 Documentation

Development of TDA will be documented in a history.txt file and in
a User’s Manual. The history.txt file keeps track of all changes in a
chronological order. Whenever we change some part of the program or
the User’s Manual, and when we add some new features, there should
be a corresponding entry in the history.txt. This file should be part of
each distribution of the program to allow users to update their version
of the program and its documentation.

Since TDA is a work in progress, we make its User’s Manual some-
thing like a loose-leaf book that consists of a set of (more or less) related
single documents (URLs in the WWW’s HTML jargon). An overview of
all available documents can be found in the current table of contents.
Identification and ordering of the single documents follow a hierarchical
scheme with up to four levels, roughly corresponding to parts, chap-
ters, sections, and subsections. The first page of each document shows
its name and the date of its last update. Names of the documents are
created as

dl1.tex first level
dl1l2.tex second level
dl1l2l3.tex third level
dl1l2l3l4.tex fourth level

For example, the current document is d0102.tex. The extension, .tex,
shows that we use LaTeX to create the documents. Actually, the dis-
tributed files are PostScript files and have the extension .ps. We hope
that this strategy allows for an easy update of the User’s Manual. It
should only be necessary to make print outs of new documents, or docu-
ments that have been changed since the last release. Information about
what is new and what has been changed can be found in the history.txt
file.

Page numbering is done separately for each document. Headers show
the document and page numbers. Since most of the single documents are
very short, cross-references are given only by document numbers. Also
the subject index uses only document numbers, no page references.

d0102.tex December 18, 1999
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1.3 Installation

TDA is written in the programming language C. Current development is
on a SparcStation 10/30 in a UNIX environment. However, since the pro-
gram is command-driven and only marginally relies on platform-specific
features, it is highly portable. The distribution package contains the
source code as well as some precompiled versions. Installation is par-
ticularly easy if an executable version of the program is already avail-
able. With the exception of DOS where the program needs an additional
DOS-extender, it will then consist of a single executable file. In order
to install the program one simply needs to copy the executable file into
a suitable directory of the target machine. Of course, the distribution
package might contain the program in a compressed file format and it
will then be necessary first to uncompress the file.

DOS. A precompiled version for DOS is created with Watcom’s C com-
piler and called tda.exe. In order to be executable it needs an additional
DOS-extender. The distribution package contains dos4gw.exe, a DOS-
extender made available by Watcom as part of its C compiler package.
Installation requires to copy both files, tda.exe and dos4gw.exe, into a
directory of the target machine.

The DOS-extender allows TDA to assess extended memory and work
as a 32-bit program. This sometimes conflicts with other programs when
they try to use the same resources. In any case will it be a good idea to
have a look into the file dos4gw.doc (a plain ASCII file) that describes
several options to re-configure the DOS-extender.

Windows-NT. An executable version of TDA, again compiled with
Watcom’s C compiler, is available. An additional DOS-extender is not
needed. Of course, since TDA is a command-driven program, it must be
executed in a suitable shell.

LINUX. The distribution package of TDA contains an executable ver-
sion for LINUX. The read.me file will give information about the version
of LINUX and the compiler used to compile the program. If this might
not fit with the target LINUX system, it will be be easy to re-compile
the program on the target machine (see below).

UNIX Workstations. For most UNIX workstations there will be no
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precompiled versions of the program. However, assuming that a C-com-
piler is available, it will be very easy to create an executable version for
the target machine. As part of the TDA distribution package comes an
archive that contains the complete source and also a makefile. Simply
extract all files from this archive, then edit the makefile and also have
a look into the main include file, tda.h, in order to check for some
adjustments that might be necessary for the target machine. A final
make tda will then create an executable version of the program.
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1.4 How to Use the Program

TDA is a command-driven program. The normal way to invoke the pro-
gram is to write, in a suitable shell, the command line

tda command1 command2 ...

TDA then executes the commands given in the command line and finally
terminates. Each command is executed separately, in the order given
in the command line (from left to right). If invoked without any com-
mands, the program only shows a short identification message and then
terminates.

Some output is always written into the program’s standard output .
Default is the terminal’s screen. This standard output can be redirected
into an output file by using the syntax

tda command1 command2 ... > name of an output file

To append the standard output to an already existing file one can use
‘>>’ instead of ‘>’. Note that some commands create separate output files
to be used for additional output.

Each command given in TDA’s command line can be a standard
executable command or a special command providing the name of a
command file. This special command is

cf=name of a command file

A command file is a simple text file containing commands to be executed
by the program. A command must begin with a valid keyword identify-
ing the command and must be terminated with a semicolon (;). All text,
beginning with the command’s keyword until the final semicolon, is in-
terpreted as belonging to the same command. Any text following a #
character, until the end of the current line, is interpreted as a comment
and not executed.

Both ways of providing commands can be combined. For instance,
invoking the program as

tda command1 cf=file1 command2 cf=file2 command3 ...
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would first execute command1, then read the command file file1 and
execute the commands found in that file, then execute command2, then
execute the commands in file2, and so on. cf commands can also be
used inside of a command file. Nesting of cf-commands inside of com-
mand files is possible up to 10 levels.

Each command begins with a keyword identifying the command that
must be given in lower-case letters. Many commands also need or allow
for additional parameters. There are basically four syntactical forms.

1. Commands without any parameters:

keyword;

where keyword identifies the command.1 For example, time is a com-
mand without parameters.

2. A second syntactical form is

keyword = rpar1,rpar2,... ;

where keyword identifies the command and rpar1,rpar2,... are addi-
tional parameters that must be separated by commas. As an example,
consider the command

pdata = fname;

In this example, pdata is the keyword identifying the command (print
data), and the parameter fname provides the name of an output file to
be used for writing the data.

3. A third syntactical form is

keyword (par1,par2,...);

where again keyword identifies the command and par1,par2,... are
additional parameters. The brackets indicate that the parameters belong
to the same command. They must be separated by commas.

4. Finally, combining the second and third forms leads to the general
command structure

keyword (par1,par2,...) = rpar1,rpar2 ;

1When explaining commands we always use a terminating semicolon as required in
command files. A semicolon must not be used when the command is given directly
in the program’s command line.
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Box 1 Commands for changing some limitations

maxnv=... maximum number of variables, def. 2000
maxmat=... maximum number of matrices, def. 200
maxstd=... stack size for derivatives, def. 20
cblen=... command buffer length, def. 20000

Most TDA commands have this general structure. Note that there are two
types of parameters. If parameters have default values they are optional,
and when not explicitly given, TDA uses their default values instead. On
the other hand, some parameters do not have default values and must be
provided by the user. For example, the fname parameter for the pdata
command has no default value; the user must explicitly provide the name
of an output file.

If all parameters on the right-hand side are optional, the command
can be used as shown in (3); if all parameters inside the left-hand side
brackets are optional, the command can be given as shown in (2); and
if all parameters are optional, one can simply use the keyword without
any parameters.

Upper and Lower-case Letters. TDA is case-sensitive and distin-
guishes between upper and lower-case letters. Commands and operators
must always be given in lower-case letters. There is basically only one
exception: variable names must begin with an upper case letter, or with
a special character, as will be explained in 2.1.

Termination. Normally, the program executes one command after the
other until execution of the final command is completed. However, each
command has a return status indicating whether the command executed
successfully. As a default, when a command returns with an error, the
program terminates and does not execute any further commands. This
default behavior can be changed with the ierr command. For instance,
given

tda ierr command1 command2 ...

the program will try to execute all commands regardless of whether some
commands return with an error.

Online Use of TDA. There is the possibility to use TDA in such a
way that the program remains loaded. This is achieved by invoking the
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program as

tda i

The program then shows up with a prompt (:). Following the prompt,
one can input commands. A command can be continued on several lines
and must finally be terminated with a semicolon. The command will then
be executed and, having given the standard output for that command,
the program will show up again with its prompt to await new commands.
Termination is with “quit” or “exit”.

Limitations. Most commands have some limitations due to the fact
that the program stores all data in internal memory and must then
know in advance the maximum amount of data to be expected. Some of
these limitations can be controlled by optional parameters. For instance,
when defining new variables, one can use the noc parameter to provide
an upper limit for the maximum number of cases (default is 1000).

However, some limitations already occur when the program initializes
its basic data structures before executing any commands. In particular,
the maximum number of variables, string variables, and matrices cannot
be changed after initialization of the basic data structures. Some of these
limitations can be modified by using the commands shown in Box 1.
These commands must be given in the command line when invoking the
program.
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1.5 The Example Archive

Command files and data files for all examples used in the User’s Manual
to illustrate some featurs of TDA are contained in the program’s example
archive, called exam.zoo in the distribution package. One can use the
ZOO archive program to list the contents and to extract all or part of the
files contained in the archive. With the exception of a few files that illus-
trate TDA’s options for using compressed data archives, all files in the
example archive are ASCII text files and can be edited. Most probably,
the files will be UNIX text files, meaning that the end-of-line character
follows the UNIX convention (that is, a single linefeed character). How-
ever, TDA should be able to read data and command files regardless of
the end-of-line convention used to create the files.

The example archive contains additional data and command files not
explicitly referred to in the User’s Manual. In particular, there are several
command files that have been used to create the PostScript plots in the
manual. They might be interesting for people who want to create similar
plots.

The example archive also contains a command file, test.cf, that
simply consists of a sequence of cf commands to call most of the other
command files. Running TDA with test.cf will then sequentially exe-
cute most of the command files contained in the example archive. This
might be helpful in order to check whether the program performs cor-
rectly.

There is a second example archive, ehhnew.zoo, that contains the com-
mand files discussed in Blossfeld and Rohwer [1995], updated for the new
syntax of TDA.
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1.6 Errors and Error Messages

There are two types of errors. First, the user can make errors, meaning
that he or she is not using the program correctly. Second, the program
can make errors, meaning that the program does not perform as it is
expected to do, or does not give proper messages when something goes
wrong. In principle, the program should provide useful error messages
whenever something goes wrong. However, this is not always the case,
and when users find errors or insufficient error messages, they should
send us a note.

Since most error messages should be understandable without further
explanation, it seems not necessary to list them here. However, we give
a few remarks about the main types of errors. (In addition to what is
described below, there are some “fatal” error messages indicating serious
problems in the program’s source code. If such a message occurs, one
should always contact the authors.)

Syntax Errors. The most common type of errors is syntax errors mean-
ing that there is some mistake in providing commands to the program.
When these errors occur, the user should check the command’s defini-
tion. As a general rule, the key words for all commands must be given in
lower case letters. On the other hand, variable names must begin with
an upper case letter in order to be distinguishable from commands. It is
also important that each command in a command file is terminated by
a semicolon.

Errors in expressions. Expressions are used to define variables, func-
tions, or case select statements. Two types of errors can occur. First,
syntax errors, meaning that the definition of an expression cannot be
parsed correctly by the program. We have tried to make the syntax for
expressions to some degree flexible, but there are some restrictions in
using and combining operators. In particular, whenever using variables
as part of expressions, they must already be defined.

A second type of error can occur when it is not possible to evaluate
an expression, for instance, to calculate the logarithm of a negative or
zero argument. These errors will only be detected when actually using
the expression. As a general rule, the program will then give an error
message (hopefully indicating the type of error) and stop the current
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procedure. It is intended that the program’s internal status is then the
same as at the beginning of the procedure. But most probably this will
not always be so.

Errors in reading and writing files. If the program is given a com-
mand to read a file (command file or data file), it first tries to open the
file. If the file name is not preceded by a path, the file is searched in
the current directory. If not found there, the error message will be can’t
open ... Errors can also occur while reading a file; in particular when the
file does not contain proper records, or when the record length exceeds
the maximum (20000 characters), or when the file contains unexpected
characters.

Only two types of errors may occur when writing files. First, when
the name given for the output file does not conform to the rules for
file names as expected by the operating system where the program is
running; and second, when there is not enough space for the file on the
disk.

Errors when exceeding internal limits. Although TDA has been
developed for use with large models and large data sets there are some
limits. Some of these limits can be changed when invoking the program
(see 1.4), others can only be changed when compiling the program (al-
most all definitions can be found in the include file tda.h). In any case,
the program should give an error message when one of these internal
limits is reached.

Insufficient memory. Another type of error occurs when there is in-
sufficient memory. TDA is based on dynamic memory allocation, mean-
ing that, whenever the program requires some memory, this amount of
memory is requested from the operating system, and when the memory
is no longer needed, it is given back to the system. As a consequence
of dynamic memory allocation, memory may be exhausted any time
during the execution of the program, not just during its initialization
phase. When this happens, the program will give an insufficient mem-
ory message and stop with the currently performed procedure. Again,
it is intended that the program’s internal status is then the same as at
the beginning of the procedure. But there are chances that this will not
always be so.

Errors in numerical algorithms. Finally, errors can occur when ex-
ecuting numerical algorithms. There are three types of problems. First,
the program may not be able to execute and finish an algorithm in the



1.6 errors and error messages 3

expected way. For instance, this can always happen when maximizing
a likelihood with one of TDA’s iterative algorithms. The program may
not be able to find a (local) maximum, or to determine the maximum
with the required accuracy. The program should give, then, an appro-
priate error message. A second type of problem regards the numerical
behavior of an algorithm. This includes rounding errors, numerical over-
flow and underflow, and numerical instabilities. These problems will be
discussed separately. Finally, there are simply unknown errors due to in-
sufficient practical experience with the algorithms as they are currently
implemented in the program.
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1.7 Some General Commands

There are a few general commands which are sometimes useful. Box 1
provides a summary.
1. TDA is based on dynamic memory allocation, meaning that the pro-

gram only requests memory from the operating system when this
is actually needed; and when this memory is no longer needed, it
is given back to the system. Most commands need some memory
during execution but it should be no longer allocated when com-
mand execution has finished. There are, of course, some exceptions.
For example, when defining new variables, memory used for the cor-
responding data remains allocated until the variables are explicitly
removed with the clear command (see 2.3).

The mem command can be used to get information about the currently
used memory. Messages about currently used memory do not include
the memory used by the operating system to load the program. Only
the amount of memory explicitly allocated by the program is shown.
This is done first immediately after the program has initialized is ba-
sic data structures. The amount of allocated memory shown when the
program terminates should be equal. As an additional information
when terminating, the program also shows the maximum amount of
memory used during execution of commands.

2. The time command prints the current date and time into the pro-
gram’s standard output and might be useful to get information about
the execution time of commands.

3. If the ierr command is given in the command line, the program tries
to execute all following commands regardless of whether they return
with an error.

4. The print command can be used to print some text into the pro-
gram’s standard output. The syntax is

print (text) ;

Note that TDA always removes blank characters from strings. To
keep these characters, text should be enclosed in single or double
quotation marks.
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Box 1 General commands

mem; shows current memory usage
time; shows current date and time
ierr; ignore return status of commands
print(text); print text into standard output
data; info about current data matrix
data1; info about currently available variables
mach; info about machine parameters
silent; controls amount of standard output
$string; invokes a shell to execute string
help; online help

5. The data and data1 commands provide information about the cur-
rently defined data matrix. data only shows the number of cases and
variables; data1 additionally shows names and definition of variables.

6. The mach command can be used to get information about some
parameters of the computer where TDA is running. This includes
information about largest and smallest floating point numbers and
the machine’s epsilon (precision). Calculation is based on algorithms
adapted from Malcolm [1972] and Gentleman and Marovich [1974].

7. The silent command controls the amount of information written
into the program’s standard and error output. By default, silent=0.
If silent=1 nothing is written into the standard output, and if
silent=2 nothing is written into the error output. Finally, if silent=3,
neither the standard nor the error output is used.

A further option is provided by silent=-1. By default, matrix com-
mands, and also while, repeat, if, and break commands, do not
echo in the standard output (except when errors occur). While test-
ing command files, it might be useful that also these commands give
some echo and this can be requested with silent=-1.

8. The command

$ string ;

invokes a shell in order to execute string. For example, $dir would
show the current directory. This command is most useful when work-
ing in the online mode (tda i, see 1.4). Note that string must be
enclosed in quotation marks in order to preserve blank characters.
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9. The help command is for TDA’s online help. This requires that the
program has access to the tda.hlp file that contains the help infor-
mation. If given as

help;

the command shows the entry for the help command that explains
how to use the command. Otherwise, the command is

help [=] string;

The command then shows the entry that has a keyword matched by
string. If there is more than one keyword matched by string, the
command only shows the available keywords. Note that string may
contain the wild cards (.,?,*).
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1.8 Command Flow Control

This section describes a few commands that may be helpful to control
the flow of commands in a command file.

Repeat – endrepeat

There are two possibilities to use a repeat–endrepeat construction. The
first is:

repeat (n = expression);

...

endrepeat;

In this construction, expression must be a scalar expression that evalu-
ates to a positive integer, say n. The commands in between repeat and
endrepeat are then repeated unconditionally n times.

A second possibility is to use the repeat command in the form

repeat (n = expression, I );

where I is an arbitrary matrix name. The command then creates a (1, 1)-
Matrix with this name and while repeating the loop sets I(1,1) to the
value of the iteration counter.

While – endwhile

For loops that might depend on a condition one can use the following
construction:

while (expression);

...

endwhile;

The commands in between while and endwhile are repeated as long as
expression is true, i.e., evaluates to a non-zero value. expression can
be any standard or matrix expression that results in a scalar value.
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If – endif

To check for conditions one can use the construction

if (expression);

...

endif;

The commands in between if and endif are executed if expression is
true, i.e., evaluates to a non-zero value. expression can be any standard
or matrix expression that results in a scalar value.

Break

Inside repeat and while loops one can use the command

break;

All commands following a break command are skipped until the next
endrepeat or endwhile command (whatever applies) is reached.

Nesting

The repeat, while, and if commands can be nested up to a level of
100. (This number is defined by MaxRep in the header file tda.h and can
be changed when compiling the program.)
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1.9 Programming Repetitions

This section describes a few commands that might be helpful for com-
mand repetitions as used, for example, in bootstrap applications or other
methods of variance estimation.

Case Selection for Repetitions

There are two related commands. The first one is

dblock (mdef=...) = varlist;

All parameters are optional. If provided, varlist must be a list of
comma-separated variable names and the mdef parameter must spec-
ify a valid matrix name. The command first turns of any possibly active
tsel (temporary case) selection command. It then creates a data struc-
ture that keeps record of blocks in TDA’s internal data matrix, defined
by the variables in varlist. Blocks are defined as contiguous blocks of
data matrix rows where the variables in varlist have identical values;
or, if varlist is empty, each data matrix row is treated as a separate
block.

The dblock command sets the global variable BNOC to the number of
blocks found in the data matrix. This number is available with the type
1 operators bnoc (see 5.2.5.1).

If the optional parameter

mdef = M,

is used, where M is a valid matrix name, the dblock command creates a
(NOC,1)-matrix with the specified name, say M, and sets

M(i,1) = block number of case (data matrix row) i

NOC is the global variable that keeps record of the number of currently
selected cases (rows) in TDA’s internal data matrix.

The second command is

repsel (id = V) = S;
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where S is a matrix expression with dimension (BNOC,1). The command
requires that BNOC has previously be defined with the dblock command.
Like the dblock command, the repsel command turns off any possibly
active tsel (temporary case) selection.

The repsel command works in two different ways depending on whether
the optional id parameter is used.
1. If the id parameter is not used, the command creates a new data

matrix (actually it creates a filter for the current data matrix) where
the cases (rows) in block i (i = 1, . . . , BNOC) are repeated S(i, 1) times,
or omitted if S(i, 1) ≤ 0.

2. If the id parameter is used, it must specify a valid variable name, say
V. The repsel command then creates a new data matrix where block
i consists of those cases (rows) where the value of V equals S(i, 1).

Finally note that the repsel command remains active until: (1) a new
repsel command is given, or (2) the data matrix is removed, or (3) a
tsel command is given, or (4) a dblock command is given, or (5) the
command is explicitly turned off with the command

repsel = off;

Saving Data Matrix Blocks in a Matrix

The comamnd

mdefb(B,expression);

can be used to save a block of data matrix rows in a matrix. The com-
mand requires that the dblock command has been used previously to de-
fine data matrix blocks. B must be a valid matrix name, and expression
must be a scalar expression that evaluates to a valid block number, say
n. The mdefb command then creates a matrix named B and copies block
number n from the current data matrix into this matrix.
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1.10 User-defined Macros

Defining Macros

A macro can be defined with the command

macrodef(MNAME) = { string1; string2; ... };

MNAME is an arbitrary string to be used as the name of the macro.
string1, string2, ... must be valid TDA commands, or already defined
macro names. MNAME then becomes a new command, and

MNAME;

is executed as

string1;

string2;

...

string1, string2, ... may contain variable arguments having the pre-
defined names:

$1, $2, ..., $100

The maximal number of arguments equals the maximal number of macros,
defined by the constant MaxMacro in the header file tda.h. (The value is
currently set to 100.) When defining a macro, variable arguments must
be contiguous, that is, $1, $2, $3, ... Apart from this requirement,
they can be used in any way. When invoking the macro name with ar-
guments, TDA uses the following ordering:

MNAME(arg n+1, arg n+2, ...) = arg 1, arg 2,...,arg n;

arg i is then substituted for $i in the macro definition. Arguments can
be skipped by using consecutive commas. The corresponding argument
in the macro definition will then be empty. (This can be checked with
the exists operator, see 5.2.5.1.)
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Local Matrix Names

Inside a macro definition one can use the command

local(A,B,C,...);

where A,B,C,... are matrix names. The command declares the specified
matrix names as being only locally defined. Then, using these names for
matrix operations inside the macro will not conflict with identical names
that are already defined outside of the macro. The command is ignored
if used outside of a macro definition.

Additional Commands

1. In order to check the expansion of macros one can use the command

expand = MNAME (arguments) = arguments;

This will show the expanded macro based on the provided arguments
but will not execute the commands.

2. The command

macrolist;

gives a list of currently defined macros.

3. The command

macroclear;

deletes all currently defined macros.
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2. Data Handling

Like many other statistical programs, TDA is build around the concept of
a rectangular data matrix with rows corresponding to cases and columns
corresponding to variables. This data matrix is used for quite different
data structures, like cross-sectional data, panel data, event-history data,
and relational data. In fact, the concept of a data matrix is quite indepen-
dent from the interpretation of its contents providing information about
a specific type of data. This interpretation is only done by commands
when using part of the data matrix as data input.

Part 3 will give more information on different kinds of data structure.
The sections in the current part explain how to create and modify TDA’s
internal data matrix, quite independent of its interpretation as a specific
data structure.

2.1 Variables explains TDA’s concept of variables as it is used when
referring to the internal data matrix.

2.2 Creating New Variables explains the nvar command to be used
to create and modify a data matrix.

2.3 Removing Variables explains how to remove variables from the
current data matrix and how to delete the whole matrix.

2.4 Recoding Variables explains how to recode already existing vari-
ables.

2.5 Dummy Variables explains the ndvar command that can be used
to create dummy variables and interaction effects.

2.6 String Variables discusses a few possibilities to use string vari-
ables.

2.7 Namelists explains the concept of namelists that can be used to
abbreviate a list of variable names.

2.8 Temporary Case Selection explains the tsel command for tem-
porary case selection.

d02.tex April 19, 1998



2 data handling 2

2.9 Writing Data Files explains the pdata command that can be
used to write the internal data matrix, or selected variables, into
an output file.

2.10 Data Archives explains how to create and use compressed data
archives.

2.11 Special Format Data Files explains TDA system files and com-
mands that provide an interface to SPSS portable files and to
Stata files.

2.12 Data File Utilities describes some commands that can be used
to investigate data files.
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2.1 Variables

TDA’s data matrix is a rectangular array with rows corresponding to
cases and columns corresponding to variables. In this context, a variable
is defined as a column in the data matrix. Creating a data matrix means
to define one or more variables. The data matrix can then be modified
by adding and removing variables.

Each variable has a unique name. Variable names are strings of up
to 16 characters which may consist of the following letters:

A,. . . ,Z, a,. . . ,z, 0,1,. . . ,9, , @, $

The first character of a variable name must be an upper case letter, or
one of the characters “ ”, “@”, “$”. The other characters can be upper
or lower case. Variable names are case sensitive, that is, lower and upper
case letters are distinguished. The syntax to define variables is:

VName <s> [pfmt] (label) = definition,

The terminating comma indicates that these expressions are not com-
mands, but parameters which can only be used as part of the nvar
command that will be explained in 2.2.

VName is required and defines the variable’s name.

<s> is optional and can be used to define a storage size (see below) for
the variable’s values; the default is <4>, that is, values are stored
as single precision floating point numbers.

[pfmt ] is optional and can be given to define a format statement to be
used when writing the variable into an output file. The syntax for
pfmt is width.prec, where width is the field width and prec the
precision. It will be an F format (for example, 0.100) if width is
positive, or an E format (for example, 1.0E-1) if width is negative.
The default print format depends on the variable’s type and storage
size and will be explained in 2.2.

(label) is optional and can be used to define a variable label. If defined,
the label is (sometimes) used in TDA’s standard output. The max-
imum length is 120 characters. There are no default labels.
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definition is required and specifies how the variable is to be generated.
There are three different possibilities: standard numerical variables,
archive variables, and string variables.

1. The syntax for standard numerical variables is

VName <s> [pfmt] (label) = expression,

where expression may consist of numerical constants, random numbers,
references to an external data file or to previously defined variables, and
operators. How to define expressions will be explained in 5.2. Here we
only mention how to refer to entries in an external data file. This is done
by using the special keywords c1,c2,c3,... referring, respectively, to
the first, second, third, and so on numerical entries in the records of an
external data file. For example, Y=c2, would define a variable Y taking
values corresponding to the second numerical entry in the records of an
external data file. It is possible directly to combine such references. For
example, S = c1 + c2, would define a variable S with values created as
the sum of the first and second numerical entries in the records of an
external data file.

When referring to an external data file, it is possible to create a
sequence of variables simultaneously. The syntax is

VName{n, m} <s> [pfmt] (label) = ck,

with n and m (0 ≤ n ≤ m) and k (k ≥ 1) integers. This defines a
sequence of m − n + 1 variables with names created by appending an
integer i = n, . . . ,m to VName. The first of these variables refers to the
kth entry in the data file, the second refers to the k + 1.th entry, and so
on. For example, Y{1,3} = c2, would be expanded into Y1=c2, Y2=c3,
and Y3=c4.

2. Variables can also be created by referring to a compressed data
archive. Such variables are called archive variables, the syntax is

VName <s> [pfmt] (label) = A:AVNAME,

where AVNAME is the name of a variable in the data archive. Note that
the prefix, A:, is required to indicate that the following expression is to
be interpreted as the name of a variable in the archive. The concept of
data archives will be explained in 2.10.
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Box 1 Types of variables

1 if the variable is a string variable.

2 if the variable is a numerical constant.
3 numerical variables which do not (directly or indirectly) involve

type 2 operators.

4 numerical variables which (directly or indirectly) involve type 2
operators.

5 if the variable is defined inside of an edef command for episode
data.

3. TDA’s data matrix may only contain data for numerical and for string
variables. variables having How to define and use string variables will be
explained in 2.6.

Types of Variables. Each variable has a specific type providing in-
formation about how the values of the variable can be generated and,
consequently, how the variable can be combined with other variables by
operators. Box 1 explains the different types.

There is an important distinction between type 1 and type 2 opera-
tors. Type 1 operators can be evaluated by using only information from
a single row in the data matrix, or a single record in a data file. On
the other hand, type 2 operators need information from other parts of a
data matrix. For instance, the lag operator is a typical type 2 operator
referring to lagged values of a variable. If the definition of a variable
contains type 2 operators, its values cannot be generated sequentially
but only when all required information is available.

The definition of variable types applies recursively. For example, con-
sider the definition of a variable that does not contain type 2 operators
but refers to type 4 variables. It will then, nonetheless, become a type 4
variable.

Storage Size Options. Each data matrix variable is stored according
to a specific storage size. Whenever TDA displays the currently defined
data matrix variables, the storage size is shown in a column labeled S.
The possible value are shown in Box 2.

The storage size can be specified individually for each variable in its
definition. The default storage size is 4, meaning that values are stored
as single precision floating point numbers. The required memory for the
data matrix is then 4 · NV · NOCMAX, where NV is the number of variables
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Box 2 Storage size options

0 values are stored as single bits,
range: 0 – 1.

1 values are stored as single bytes,
range: +/− 127.

2 values are stored as two-byte integers,
range: +/− 32000.

4 values are stored as single precision floating point numbers,
range: about 7 significant digits.

5 values are stored as four-byte integers,
range: 9 significant digits.

8 values are stored as double precision floating point numbers,
range: about 15 significant digits.

< 0 negative values are used for string variables. The absolute
value of the storage size equals then the length of the string
variable.

and NOCMAX the maximum number of cases. However, if a variable is
defined as a single numerical constant, the storage size is always 8 and
only one double precision value, regardless of the number of cases in the
data matrix, is allocated in internal memory. One should note that TDA

does not check whether values of a variable fit into a specified storage
size. In particular this may cause problems if missing value codes have
to be inserted for variables with a <0> storage size.
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2.2 Creating New Variables

There is a single command, nvar, for creating new variables. If a data
matrix does not already exist, the command creates a new data matrix,
otherwise the command adds variables to the existing data matrix. Box 1
shows the syntax. Most parameters are optional. Required is at least one
vdef parameter, that is, an expression of the form

VName <s> [pfmt] (label) = definition,

to define a variable (see 2.1). Variable names must be unique. A vari-
able name can be used only once on the left-hand side of an expression
defining a variable.

Number of cases. If a data matrix does not already exist, one can use
the noc parameter to set an upper limit for the number of cases. Default
is noc=1000. If none of the variables refers to an external data file, or to
a data archive, TDA will create a data matrix with exactly noc cases. If
at least one of the variables refers to an external data file (defined with
the dfile parameter), the number of cases will be min{noc, n}, where n
is the number of records that can be read from the data file. If one of the
variables refers to a data archive file, the default maximum number of
cases will be equal to the number of records in the archive data file. The
noc parameter is only effective if a data matrix does not already exist.
The number of cases in an existing data matrix cannot be changed.

External data files. As explained in 2.1, the definition of variables can
refer to entries in an external data file by using the keywords c1,c2,...
It is then necessary to provide the name of the external data file with
the dfile parameter. The syntax is

dfile = name of data file,

This parameter can be used several times (maximum is 100). TDA reads
all data files sequentially. Of course, the data files should have an identi-
cal record structure. Alternatively, variables can refer to a data file in a
data archive, see 2.10. Note that variables defined in an nvar command
must not refer simultaneously to an external data file and to an archive
data file. Also, only a single archive data file can be referenced in each
nvar command.
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Box 1 Syntax for nvar command

nvar (

vdef, definition of a variable; this parameter can be used
several times to define several variables simultane-
ously

noc=..., maximum number of cases, def. 1000
isc=..., separation character between entries
dfile=..., definition of an external data file
dreclen=..., fixed length of data file records
nmrec=..., number of multiple records, def. 1
ffmt=..., format information for data file records
match=..., information about matching variables
isel=..., case selection while reading data
vsel=..., case selection while creating variables
break=..., break on condition
dblock=..., definition of block mode
bsel=..., block mode case selection
fmt=..., new print format
arcdic, shows value labels for archive variables
mblnk=..., new missing value code: blanks, def. -1
mstar=..., new missing value code: stars, def. -1
mpnt=..., new missing value code: points, def. -1
mmatch=..., new missing value code: mismatches, def. -3
mgen=..., new missing value code: general, no default
df=..., creates an output data file
keep=..., keep variables for df option
drop=..., drop variables for df option
bsize=..., maximum block size, def. 1000
dtda=..., TDA description file
dspss=..., SPSS description file

);

As default, TDA assumes that data file records are terminated by end-
of-record characters. This can be a single line-feed character (LF), or a
single carriage-return character (CR), or a LF-CR sequence as used by
DOS. This allows the records in a data file to have varying length. If
all records in a data file have the same length one can use the dreclen
parameter to specify this type of data file. Given the parameter

dreclen = n,



2.2 creating new variables 3

with a positive integer n, TDA assumes that each record consist of ex-
actly n characters, including any end-of-record characters (if present).
Whether a data file has fixed record length can be checked with the
lcnt command, see 2.12.2.

Free and fixed format files. External data files should be plain ASCII
files with a free or fixed record structure. Records in a data file may be
data records or comments. Empty records consisting of only blank char-
acters, and records beginning with a # character, are interpreted as com-
ments; all other records are assumed to contain valid data. As default,
TDA assumes a free format record structure, that is, numerical entries in
the data file records are separated by at least one: blank, comma, semi-
colon, or tabulator character. This then identifies the numerical entries
referenced by the c1,c2,c3,... keywords.

The isc parameter can be used to change the separation character
in a free-format data file. The syntax is

isc = ’c’,

where c is a specific character.1 Then, only the character c is treated as a
separation character and each single occurrence of this character counts
as a separate separation character. For example, using the parameter
isc=’,’, the record 10,,20 would result in three values: 10, a missing
value, and 20. The missing value would be of type MBlnk.

Alternatively, there can be a fixed format with, or without, separation
characters, meaning that the data in a data file record have fixed lo-
cations, beginning at a fixed physical column. It is then necessary to
provide information about the location of variables by using the ffmt
parameter. The syntax is

ffmt = c1(n1-m1),c2(n2-m2),c3(n3-m3),...,

This means that numerical entries referenced by c1 begin in physical
column n1 and end in physical column m1, and analogously for c2,c3,...
If a variable occupies only a single physical column, one can use c1(n1)
instead of c1(n1-n1). Note that it suffices to provide this information
for variables which are actually referenced by c1,c2,... keywords. It
is not necessary to provide additional information about the type of

1All characters are used as given, except for the character t which is translated to a
tabulator character. A blank characters can be specified as isc=’ ’.
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numerical entries. Numerical entries can be integers or floating point
values. Floating point values can be given in an F format, for example
-0.312, or in an E format, for example -3.12e-1. The number of significant
digits used depends on the variable’s storage size, see 2.1.

Missing values. A data file may contain non-numerical entries to in-
dicate missing values. With free format data files, TDA automatically
recognizes two types of missing values: a single point (.) and a single
star (*). With fixed format data files, TDA also recognizes blank fields,
meaning that the location where to expect a numerical entry consists of
only blank characters. In all these cases, the default missing value code
is -1, but may be changed with the mpnt, mstar and mblnk parameters,
respectively. In all other situations, when TDA cannot correctly read a
numerical entry in a data file record, the program stops with an error
message. This behavior can be changed with the parameter

mgen = value,

Given this parameter, TDA substitutes value for all numerical entries
which cannot be read correctly.

Multiple records. As default, TDA assumes that each physical record
in an external data file corresponds to one logical record. There is then
a one-to-one correspondence between physical data records and rows of
the data matrix. Alternatively, one can define logical records consisting
of two or more physical records. Given the parameter

nmrec = n,

TDA creates logical records by concatenating n physical records (default
is nmrec=1). End-of-record characters are not removed but replaced by
blank characters to provide separation characters between numerical en-
tries, see Example 2.

Matching new variables. When a data matrix already exists, the nvar
command adds the new variables to the existing data matrix. For each
row in the existing data matrix, and each new variable, a numerical value
will be added to the data matrix.

There are then two possibilities for adding the new variables to the
already existing data matrix. As default, TDA assumes trivial matching ,
meaning that values for the new variables are created sequentially for
each row in the existing data matrix. If the data matrix contains n rows
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and the definition of the new variables refers to an external data file
containing less than n records, the variables get the missing value code
-3 in the remaining data matrix rows. This missing value code can be
changed with the mmatch parameter.

Alternatively, one can control the matching of new variables with the
match parameter; the syntax is

match = A1,B1,A2,B2,...,

where A1,A2,... must be new variables and B1,B2,... must be vari-
ables in the already existing data matrix. Values for the new variables
are then created in such a way that values of A1 and B1, A2 and B2, and so
on, are equal. Implied is a one-to-many mapping. Values of the new vari-
ables should be unique with respect to A1,A2,...; and identical values
will be created for all data matrix rows having corresponding B1,B2,...
values. An example will be given below. Again, the new variables get the
missing value code -3 (optionally modified by the mmatch parameter) for
all data matrix rows without a match with the B1,B2,... variables. The
variables A1,A2,... used in the match parameter must be of type 2 or
3 and, in particular, must not contain type 2 operators. Also, the match
option is not compatible with block mode (see below), and none of the
variables must be a string variable.

Case selection. As default, TDA uses all data records from an external
data file, or archive data file.

1. The isel parameter can be used to select data file records. The syntax
is

isel = expression,

expression is then evaluated for each data file record, and a record is
only used if the result is not equal to zero. For example, given

isel=c1[10,,20],

TDA will only use records where the first numerical entry (c1) has a
value in the range from 10 to 20. Or, given

isel=le(rd,0.1),

only a 10% random selection of the input records will be used.
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The isel expression is evaluated while reading the records from
an input data file. Therefore, expression can only refer to informa-
tion that is available in this situation. For external data files specified
with the dfile parameter, expression may only contain numerical con-
stants, random numbers, type 1 operators, already existing variables, and
references to data file entries (c1,c2,c3,...). When using an archive
data file, expression may only contain numerical constants, random
numbers, type 1 operators, already existing variables, and references to
archive variables; these archive variables must be specified in the nvar
command and must belong to the same data file.

2. The isel parameter can only be used to select cases based on infor-
mation in an external or archive data file; it is not possible to reference
variables specified as new variables in the current nvar command. To
allow for this possibility, one can use the vsel parameter with syntax

vsel = expression,

meaning, again, that only those cases are selected for the data matrix
where expression results in a nonzero value. In this case, expression
may contain numerical constants, random numbers, type 1 operators and
references to variables of type 2 or 3. The parameter works as follows:
For each case in the data matrix, the program first creates values for all
new variables, then the vsel expression is evaluated based on this data
matrix row, and depending on the result, the data matrix row is kept or
removed. Note that vsel expressions may not contain type 2 operators
and, if referring to any of the new variables, these variables should be of
type 1, 2 or 3. — Note that the vsel parameter can only be used when
the definition of at least one of the new variables refers to an archive or
external data file. Note also that the vsel parameter cannot be used in
block mode.

3. The break parameter provides a further option. Given

break = expression,

the creation of new data stops with the first record where expression
becomes a nonzero value. — Note that the break parameter can only be
used when the definition of at least one of the new variables refers to an
archive or external data file. Note also that the break parameter cannot
be used in block mode.
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Block mode. As default, TDA treats each data file record, and corre-
sponding data matrix row, separately. Alternatively, one can select block
mode by using the parameter

dblock = VName,

where VName is the name of a variable. TDA then treats each sequence
of records (data matrix rows) where VName has the same value as one
block of records. For instance, if VName refers to an ID variable in a data
file containing a certain (variable) number of records for each ID value,
the records belonging to the same ID number are treated as one block
of records.

The effect is that type 2 operators are evaluated differently. As de-
fault, type 2 operators are evaluated for all records in the data matrix.
For example, mean(X) will result in the mean value of variable X calcu-
lated for all data matrix rows. However, if operating in block mode,
type 2 operators are evaluated separately for each block of records;
mean(X), for example, will then result in a different mean value for each
block of records. More detailed information can be found in 5.2.6.

The variable used to define block mode must be of type 2 or 3, and
that the block mode option is not compatible with the match parameter
(non-trivial record matching).

If new variables are created in block mode there is an additional
option for case selection. The parameter is

bsel = expression,

At the end of each block of records, TDA evaluates expression for each
record in the current block and, if the result is zero for at least one
record, the whole block is skipped. expression may contain numerical
constants, random numbers, type 1 operators and references to variables
of type 2, 3, and 4. It is thus possible to use type 2 operators for defining
variables and then use these variables for the bsel expression. For ex-
ample, assume we want only select individuals with at least five records.
One can then first define a variable, say BN = bnrec, counting the num-
ber of records in each block, and then use the parameter bsel=ge(BN,5).
Note that the bsel parameter can only be used when the definition of at
least one of the new variables refers to an archive or external data file.

While vsel and break parameters cannot be used in block mode, it
is possible to use the isel parameter. isel expressions are evaluated
while reading new records from the input file.
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Box 2 Default print formats

storage size print format

0 2.0
1 4.0
2 6.0
4 0.0
5 11.0
8 0.0

Print formats. Associated with each variable is a specific print format
to be used when values of the variable are written into an output file.
This print format can be specified in the variable’s definition (see 2.1). If
this option is not used the variable gets a default print format depending
on its storage size. Default print formats are shown in Box 2, where 0.0
indicates a “free format” meaning that only up to seven significant digits
are used.

Since the default storage size is 4, all variables without an explicitly
specified print format will get a free format. This can be changed with
the fmt parameter. All variables having a (default) free format will then
get the new print format specified with the fmt parameter. The syntax
is

fmt = n.m,

where n and m are integers and m ≥ 0. |n| is the field width, and m is
the precision, i.e., the number of digits after the decimal point. If n ≥ 0
it will be an F format, if n < 0 it will be an E format.

Print formats for archive variables are created in the same way as
for other variables: If a format information is provided in the definition
of a variable, this will be used, otherwise the print format found in the
archive’s variable description file will be used.

In connection with archive variables one can also use the arcdic
parameter to request information about value labels. If available in the
archive’s variable description file, this information is then written into
TDA’s standard output.

Directly writing output files. Using the df parameter, it is possible
to write data directly into an output file without creating a data matrix.
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Box 3 Example data file d1.dat

1 1.1 2 3

2 2.2 3 4

3 . 4 *

4 4.4 5 6

Box 4 Command file d1.cf

nvar(

dfile = d1.dat, # specifies data file

X1 = c1, # define variables

X2 = c2,

X3 = c3,

X4 = c4,

);

pdata = d1; # print data matrix to output file d1

The syntax is

df = name of an output file,

Given this parameter, TDA generates data for all new variables but does
not store the data in the internal data matrix. Instead, the data are
written directly into the output file. This allows to create subsets of very
large data files which cannot be kept in internal memory. As default,
all variables are written into the output file; optionally, one can select
subsets of variables, alternatively with the keep or drop parameter. Note
that this parameter can only be used if a data matrix does not already
exist and can only handle variables of type 1 – 4. Furthermore, type 4
variables can only be used if the nvar command operates in block mode.
If in block mode, this procedure needs memory for at least the maximum
number of records per block. The default maximum block size is 1000,
but can be changed with the bsize parameter.

In addition, one can use the dtda and dspss parameter to request
additional output files describing the generated data. The description
conforms to the TDA or SPSS syntax, respectively.

Example 1 Box 3 shows a simple data file. There are four records
containing integer and floating point values. Two values are missing. It
is a free format data file since all entries are separated by at least one
blank character, but also a fixed format data file.
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Box 5 Part of standard output from d1.cf

Creating new variables.

Idx Variable T S PFmt Definition

-----------------------------------

1 X1 3 4 0.0 c1

2 X2 3 4 0.0 c2

3 X3 3 4 0.0 c3

4 X4 3 4 0.0 c4

Creating a new data matrix.

Maximum number of cases: 1000

Using data file(s): d1.dat

Free format. Separation character(s): default.

Reading data file: d1.dat

Read records: 4

Created a new data matrix.

Number of cases: 4

Number of variables: 4

Missing values numerical code

------------------------------

Blank 0 -1

Star 1 -1

Point 1 -1

Box 6 Command file d2.cf

nvar(

dfile = d1.dat,

X1 = c1,

X2 = c2,

X3 = c3,

X4 = c4,

ffmt = c1(1),c2(3-5),c3(7),c4(9),

);

pdata = d2;

Command file d1.cf, shown in Box 4, can be used to create a data
matrix containing the data from this data file. The parameters in the
nvar command first specify the data file and then define four variables
corresponding to the four entries in the data file records. The pdata
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Box 7 Command file d3.cf

nvar( resulting output file d3

dfile = d1.dat, ------------------------

X1 = c1, 1.0 1.1 2.0 3.0 2.0 2.2 3.0 4.0

X2 = c2, 3.0 -1.0 4.0 -1.0 4.0 4.4 5.0 6.0

X3 = c3,

X4 = c4,

X5 = c5,

X6 = c6,

X7 = c7,

X8 = c8,

nmrec = 2,

fmt = 4.1,

);

pdata = d3;

command prints the data matrix into an output file.
Box 5 shows TDA’s standard output from the nvar command in d1.cf.

A table replicates the definition of variables. The columns labeled T, S,
and PFmt show the type, the storage size and the print format, respec-
tively. Some information about missing values is given at the end.

The data file can also be referenced as a fixed format data file. This
is illustrated by command file d2.cf, shown in Box 6. The two output
file, d1 and d2, should be identical.

Example 2 Command file d3.cf in Box 7 illustrates the nmrec param-
eter for concatenating physical records. nmrec=2 means that always two
physical records are combined into one logical record. Each logical record
then has 8 entries which are referenced by the variables X1,...,X8. The
right part of the box shows the resulting output file, d3. Note that the
missing entries in the data file have been substituted by the default
missing value code, -1.

Example 3 Command file d4.cf, shown in Box 8, illustrates how to
add new variables to an existing data matrix. The first nvar command
creates a data matrix in the same way as was done by command file
d1.cf in Box 4. The second nvar command reads the data file again
and defines identical variables, Y1,...,Y4. Without using the match
parameter this would be identical to defining Y1 = X1,... However, the
command file uses the parameter match=Y3,X1, and the resulting data
matrix, shown in the bottom of the box, is therefore created in such a
way that these two variables match. Note that there is no match for the
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first data matrix row. In this row, all new variables get the missing value
code for mismatches, -3.
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Box 8 Command file d4.cf

nvar( # creating a new data matrix

dfile = d1.dat,

X1 = c1,

X2 = c2,

X3 = c3,

X4 = c4,

fmt = 4.1,

);

nvar( # adding variables

dfile = d1.dat,

Y1 = c1,

Y2 = c2,

Y3 = c3,

Y4 = c4,

match = Y3,X1, # match Y3 with X1

fmt = 5.2,

);

pdata = d4;

resulting output file d4

------------------------

1.0 1.1 2.0 3.0 -3.00 -3.00 -3.00 -3.00

2.0 2.2 3.0 4.0 1.00 1.10 2.00 3.00

3.0 -1.0 4.0 -1.0 2.00 2.20 3.00 4.00

4.0 4.4 5.0 6.0 3.00 -1.00 4.00 -1.00
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2.3 Removing Variables

To remove variables from the current data matrix one can use the com-
mand

clear = varlist;

where varlist is a list of variable names separated by commas. All vari-
ables specified in varlist must be available in the current data matrix.
These variables are then removed, that is, all data and data structures
associated with these variables are deallocated. Alternatively, one can
use the command

clear;

without any parameters to delete the whole data matrix. One can then
begin to create a new data matrix by using nvar commands. Note that
it is always possible to get information about the currently defined data
matrix by using the data and data1 commands, see 1.4.

If varlist on the right-hand side of the clear command contains
namelists (see 2.7), these nameslists and also the variables contained
in these namelists are deleted. To remove nameslists, but to keep the
contained variables, one can use the command

clearnl = list of namelists;

Then all namelists given on the right-hand side, but no variables, will
be deleted.

d0203.tex April 19, 1998
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2.4 Recoding Variables

Variable names must be unique, it is not possible to use the name of
an already existing variable inside an nvar command to define a new
variable with the same name. It is possible, however, to change the values
of an existing variable. The command is recode with syntax shown in
the following box.

recode (

dblock=..., definition of block mode
VName[fmt]=expression, recode variable VName

... optionally repeated
);

VName must be the name of an already existing variable. The values
of this variable are changed according to the expression given on the
right-hand side. As an option, a new print format can be given in square
brackets. Storage size and labels cannot be changed. Also optionally, one
can use the dblock parameter with syntax

dblock = name of a variable,

to turn on block mode. If the recode expression contains type 2 operators,
they are then evaluated separately for each block. The recode command
automatically turns off a temporary case selection (see 2.8) that might
be active when the command is executed.

The recode command should be distinguished from the recode op-
erator that allows to use matrices for recoding variable, see 5.2.6.2.
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2.5 Dummy Variables

Individual dummy variables can easily be defined by using the [.] oper-
ator. For instance, Y = X[3] would define a dummy variable Y taking
the value 1 if X has value 3, and zero otherwise. For a complete expla-
nation of the [.] operator, see 5.2.5.5. If one has to create a long series
of dummy variables and possibly also interaction effects, it is sometimes
more comfortable to use the ndvar command with syntax shown in the
following box.

ndvar (

Y = dum(X), create dummy variables
L = dmul(A,B), create interaction effects
... optionally repeated

);

Two kinds of parameters can be used (repeatedly). First, the parameter

Y = dum(X),

can be used to create a set of dummy variables, based on the values of the
variable X. X must be the name of an existing variable, Y must be a valid
variable name not already used. (The names X and Y are here only used
to illustrate the command; they can be substituted by any other valid
variable names.) Given this parameter, TDA creates a separate dummy
variable for each nonnegative value of X. If X has some negative values,
an additional dummy variable, YM, is created taking value 1 whenever X
has a negative value. For example, if X has values 1, 4, 17, and -1, the
command creates four dummy variables: Y1, Y4, Y17, and YM. In addition,
the command automatically creates a namelist, named Y, containing all
dummy variables corresponding to nonnegative values of X.

Second, one can use the parameter

L = dmul(A,B),

to create interaction effects. A and B can be variables or, more general,
namelists. L must be a valid variable name not already used. This pa-
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rameter then creates a set of dummy variables for all possible interaction
effects between the variables (in) A and (in) B. For example, assume that
A = {A1,A2,A3} and B = {B1,B2}. The interaction effects will be

L = {A1&B1, A1&B2, A2&B1, A2&B2, A3&B1, A3&B2 }

In addition, a namelist containing the dummy variables representing the
interaction effects will be created. The names of the dummy variables
will be A1 B1, and so on. The parameter can be used several times to
create higher-order interaction effects. For example, LL = dmul(L,C)
would create all interaction effects between the variables in the nameslists
L and C. Of course, creating higher-order interaction effects soon exhausts
the maximal length of variable names. Automatically created dummy
variables always have storage size 0, that is, only a single bit is used to
store their values.

The ndvar command automatically turns off a temporary case selec-
tion that might be active when the command is executed.



2.6 string variables 1

2.6 String Variables

TDA’s data matrix may contain both numerical and string variables.
String variables can become part of the data matrix in one of the follow-
ing ways:

a) String variables may be imported from SPSS or Stata files.

b) String variables may be present in a TDA data archive.

c) String variables can be defined when reading a standard (ASCII)
data file with the str operator (see below).

As has been explained in 2.1, string variables always have a fixed length.
This is the absolute value of the storage size which, for string variables,
is always a negative integer. There is no specific print format for string
variables. The strings are always written with the fixed length.

The str Operator. String variables can be defined inside the nvar
command in the following way:

VName = str(n,m),

where n and m are integers. This requires that a data file has been spec-
ified with the dfile parameter of the nvar command. Values of the
string variables are then the strings from column n up to, and including,
column m of the data file. There is no limitation to the length of the
strings.

One should note that using data files that contain strings as well as
numerical entries may result in confusion when the data file is taken as
having a free format. The reason is that the counting of numerical entries
in the data file records, necessary in order to interpret the c1,c2,...
references for numerical entries, may become indeterminate. In order to
establish determinate references to numerical entries one should use the
ffmt parameter for fixed format. However, to allow also for a free format
interpretation of data files, TDA proceeds as follows. Given the record of
a data file, TDA first extracts all strings that are defined with the str
operator. Then, before references to numerical variables are evaluated,
the strings are replaced by blank columns.
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Box 1 Data file d2.dat

1 abc ef 2 ab

2 xyz 3 ac

2 ijklm 4 bc

Box 2 Command file d6.cf

nvar( resulting output file

dfile = d2.dat, ---------------------

X1 = c1, 1 2 abc ef a b

X2 = c2, 2 3 xyz a c

S1 = str(2,8), 2 4 ijklm b c

S2 = str(12,12),

S3 = str(13,13),

);

pdata = d6;

Using String Variables. Almost all TDA commands require numer-
ical variables. In fact, the only command that currently can use string
variables is pdata; and this command simply writes the strings into an
output file. In order to avoid a check for string variables in all other
commands, we employ the following convention: whenever a command
expects a numerical variable and is given, instead, a string variable, the
value of the string variable is taken to be zero.

Operators for String Variables. There are, however, a few operators
that can be used to create numerical variables from string variables. The
available operators are described in 5.2.5.9 and 5.2.6.8.

Example 1 To illustrate string variables, command file d6.cf (Box 2)
uses the data file d2.dat shown in Box 1. The data file contains numer-
ical entries and strings. The nvar command defines first two numerical
variables, X1 and X2, by referring to data file entries c1 and c2. (Remem-
ber that strings are replaced by blank characters before such references
are evaluated.) Then follow three string variables. The resulting output
file created by the pdata command is shown in the same box.
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2.7 Namelists

The word namelist is used to denote a comma-separated list of variable
names. Namelists can be defined with the nlist command. The syntax
is

nlist (LName = V1,V2,...);

where LName is the name used to refer to the list of variables given
on the right-hand side. Then, in most TDA commands, one can use the
short name of the namelist instead of writing the complete list of variable
names. The syntax for the names of namelists is the same as for variables.
Up to 50 namelists can be defined. However, only a single namelist can
be defined with each nlist command. The data1 command shows the
currently defined nameslists (if any).

Namelists can be deleted in the same way as variables with the
clearnl command, see 2.3. Note also that namelists can be combined
with variable names. For example, if Y and Z are names of variables and
NList is the name of a namelist, it would be possible to request a linear
regression with the command

lsreg = Y,NList,Z;

The dependent variable would be Y and the set of independent variables
would consist of the variables in NList plus Z.

It is possible to define a new namelist using already defined namelists.
For example,

nlist (NList1 = Y,NList,Z);

would define another namelist consisting of Y, followed by the variable
names in NList, and then Z. The ordering of variable names is kept.
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2.8 Temporary Case Selection

TDA’s internal data matrix always has a fixed number of cases (rows)
that is determined when the data matrix is created for the first time.
Therefore, the number of cases actually contained in the data matrix
cannot be changed afterwards. As default, all TDA procedures which
require data use all cases in the currently defined data matrix. However,
one can request a temporary case selection by using the command

tsel = expression;

TDA then creates an indicator variable by evaluating expression for all
cases in the current data matrix, and all subsequent procedures will only
use those cases from the data matrix where expression has a nonzero
value. A request for temporary case selection remains active until one of
the following conditions occur:

• A new tsel command substitutes the previous one.

• The current case selection is explicitly turned off with the command

tsel = off;

• It follows a command that automatically turns off any active tempo-
rary case selection (nvar, ndvar, recode).

The tsel command implies deallocation of any data structures which
depend on case selection. In particular, data structures for episode, se-
quence and relational data will be deallocated if there is a request for
a new temporary case selection. The tsel command also implies a re-
evaluation of case weights, if defined, see 6.1.2.

Case Selection with a Matrix Expression

The usage of tsel described above requires a standard (scalar) expres-
sion on the right-hand side. It is possible, however, to use the tsel
command in the following way:

tsel = matrix expression;
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It is required that the matrix expression (or simply a matrix), say S,
has dimensions NOCDM × 1 where NOCDM is the number of cases in the
data matrix. (This is available from the nocdm operator, see 5.2.5.1.)
The command then selects all those rows i from the current data matrix
where the value of S(i) is not equal to zero.



2.9 writing data files 1

2.9 Writing Data Files

Data contained in the internal data matrix can be written into an output
file. The command is pdata, the syntax is shown in Box 1. All parameters
are optional. Without any parameters, the command is simply

pdata = fname;

where fname is the name of an output file. TDA will then write the data
for all variables contained in the current data matrix into this output file.
If a temporary case selection is active (see 2.8), only the selected cases
will be used. For writing the data, the program uses the print format
associated with each variable. By default, following each numerical entry,
a blank character is inserted allowing to use the data file as a free format
input file.

1. To select a subset of variables one can use the parameter

keep = varlist,

where varlist is a list of variable names separated by commas. Only
the variables specified in varlist will then be written into the output
file. Alternatively, one can use the parameter

drop = varlist,

Then, only variables which are not specified in varlist will be written
into the output file.

2. By default, the ordering of the records in the output file will be equal
to the ordering of the rows in the data matrix. Alternatively, one can use
the sort parameter to sort the data matrix before variables are written
into the output file. The syntax is

sort = S1,S2,...,

where S1,S2,... are names of variables. The data matrix is then sorted
in ascending order first with respect to S1, then with respect to S2, and
so on. Note that string variables cannot be used for sorting. Of course,
one can first create a numerical variable that sorts the strings with the
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Box 1 Syntax for pdata command

pdata (

keep=..., keep specified variables
drop=..., drop specified variables
sort=..., sort according to specified variables
noc=..., write only first noc cases
nn = n1,n2, use only rows n1 – n2

transp, transpose data matrix
nc = n, create a new record after each n variables
nq = n, concatenate n records, def. 1
ap = 1, append data to output file, def. ap = 0

l0 = ..., controls printing of numerical values, def. 0
0 : leading blanks remain empty
1 : fills leading blanks with zeros

sepc = ..., separation character, def. blank
sepc=none : no separation character
sepc=c : use c as separation character

prn =..., option for writing single variables, def. prn = 0

1 : write a variable as triangle matrix
2 : write a variable as square matrix

dtda=..., create a TDA description file
dspss=..., create an SPSS description file

) = fname;

help of the strsp operator, and then use this variable to sort the output
file.

3. By default, all cases contained in the data matrix are written into
the output file. When using the parameter

noc = n,

only the first n data matrix rows are written into the output file. Alter-
natively, one can use the parameter

nn = n1, n2,

Then, only data matrix rows i = n1, . . . , n2 are written.

4. As an option one can use the parameter transp to request that the
data matrix is transposed before variables are written into the output
file.
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Box 2 Command file d5.cf

nvar( output file

dfile = d1.dat, -----------

X1 = c1, 1.0 2.0

X2 = c2, 1.1 3.0

X3 = c3, 2.0 3.0

X4 = c4, 2.2 4.0

fmt = 4.1, 3.0 4.0

); -1.0 -1.0

pdata ( 4.0 5.0

keep = X1,X3,X2,X4, 4.4 6.0

nc = 2,

) = d5;

5. When creating a data file with the pdata command it is possible to
replace each data matrix row by several records in the output data file.
The parameter is

nc = n,

where n is an integer, n ≥ 1. Then a newline character is inserted after
each n values written into the output file, see Example 1.

6. Alternatively, one can use the nq parameter. If nq = n, then each
consecutive set of n rows of the data matrix is written as a single record
into the output file.

7. By default, values of variables are separated by one blank character in
the output file. This may be changed with the sepc parameter. Also, by
default, numerical entries are right justified and leading columns remain
empty. The l0=1 parameter can be used to request that leading columns
are filled with zeros.

8. By default, the pdata commands creates a new output file. An already
existing file with the same name is overwritten without warning. When
using the ap=1 parameter (default is ap=0), the data is appended to an
already existing file.

9. The dtda parameter can be used to request an additional output file
containing a TDA description of the data file. The syntax is

dtda = name of an output file,

The output file contains an nvar command that can be used to read the
data file in a subsequent call of TDA. In a similar way, one can use the
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parameter

dspss = name of an output file,

to request an additional output file that can be used to read the data
file with SPSS or, after some editing, with SAS. Note that the dtda and
dspss parameters are ignored when using the transp option.

10. The prn parameter can be used when writing a single variable into
an output file. If prn=1, the variable is written as a triangle matrix, if
prn=2, it is written as a square matrix. This option is mainly used to
change the format of relational data which, in TDA, are assumed to be
given as a single column vector (variable) but in other programs are
often required in the format of an adjacency matrix (or part of it).

Example 1 Command file d5.cf, shown in Box 2, illustrates the nc
parameter. The command file uses data file d1.dat (see 2.2). We want
an output file where each data matrix row is replaced by two data file
records. The first record shall contain variables X1 and X3, the second
record X2 and X4. We therefore use the keep command to change the
order of variables, and then use nc=2 to create two records for each data
matrix row.
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2.10 Data Archives

In empirical research, in particular when working with longitudinal data,
one often has to handle very large data sets. Given this situation, it
would be nice if the data could be stored and directly accessed in a com-
pressed way. This chapter describes how this can be done with TDA,
based on Rahul Dhesi’s program ZOO. This is a general purpose archive
program to generate and manage an arbitrary set of files into a com-
pressed archive. Files can be added, deleted, and updated; also some
options to repair damaged archives are available.

ZOO is similar to other archive programs, for instance PKZIP, ARC,
and LHARC. To be used with TDA, we have chosen ZOO because it
is highly portable, already running on many different computer plat-
forms, and is freely available. (Rahul Dhesi, who owns the copyright of
ZOO, has made his program publicly available without any license fee.
So it is possible to distribute his program together with TDA as an
additional data management utility.) Moreover, ZOO incorporates very
efficient compression algorithms achieving 80 – 90 percent compression
rates with typical data sets used in empirical research.

Of course, to be useful one not only needs a way to create compressed
archives but, in addition, have direct and selective access to the data
stored in the archive without the need of prior extraction of all involved
data files. This capability has been build into TDA. So one can use ZOO

to build and manage data archives and then use TDA to access the
compressed data. Details are given in the following sections.

2.10.1 Creating Data Archives explains how to create a compressed
data archive to be used with TDA.

2.10.2 Variable Description Files explains how to create a description
of the variables contained in a data archive.

2.10.3 Archive Description Files explains how to create a description
of data archives.

2.10.4 Data Archive Commands summarizes the steps required to cre-
ate a data archive and explains how to use such archives with
TDA.
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2.10.1 Creating Data Archives

Creating a data archive is done with ZOO. Like TDA, ZOO is a command-
driven program. Quite a large number of commands can be used to
control the program; a full description can be found in the program’s
manual that is always distributed along with ZOO. Here we only explain
some basic commands.

Generally, the syntax for using ZOO is

zoo commands [archive name] [file1 file2 ...]

archive name is the name of the file to be processed by ZOO as an
archive. Usually, an archive name has the extension .zoo; this is the
default, assumed by ZOO if a file name without an extension is given.
commands is a string of letters interpreted by ZOO as a command, or a
set of commands. The letters are case sensitive. The following examples
will explain some basic options.

zoo h displays a short list of commands to be used with
ZOO on the system’s standard output. Using an
upper case H, instead of h, gives an extended de-
scription.

zoo l exam.zoo lists the contents of the archive exam.zoo. As al-
ready noted, the name of the archive can be given
without an extension: zoo l exam.

zoo ah exam fname adds the file fname to the archive exam using a
high compression mode.

zoo x exam fname extracts the file fname from the archive exam.zoo.
If no file name is given (zoo x exam) all files con-
tained in the archive are extracted.

zoo D exam fname deletes the file fname from the archive exam.zoo.
In fact, the file is not deleted but kept as an earlier
version in the archive. To definitively delete the
file, the archive must be re-packed.

zoo P exam rebuilds the archive exam.zoo with all background
files actually deleted. The original archive is saved
as exam.bak.
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Box 1 Example data files.

adat.1 adat.2 adat.3 adat.p

---------- ----------- --------- -------

1 -1.01 90 1 1 1.01 -1 90 9001 1 1 90

6 -1.06 95 2 6 1.06 -2 91 9003 3 2 90

2 -1.02 90 3 2 1.02 -3 95 9008 8 3 91

7 -1.07 95 4 7 -4 97 9009 9 4 91

3 -1.03 91 5 3 1.03 -5 5 91

8 -1.08 95 6 8 1.08 * 6 95

4 -1.04 91 744 1.04-77 7 95

9 -1.09 97 8 9 -8 8 95

5 -1.10 91 9 97

Box 2 Table of contents for archive exam.zoo

Archive examz.zoo:

Length CF Size Now Date Time

-------- --- -------- --------- --------

108 48% 56 3 Nov 55 20:35:44+457279 adat.1

96 33% 64 3 Nov 55 20:35:44+457279 adat.2

40 20% 32 3 Nov 55 20:35:44+457279 adat.3

45 27% 33 3 Nov 55 20:35:44+457279 adat.p

-------- --- -------- --------- --------

289 36% 185 4 files

As an example, used also below to explain TDA’s commands to work
with ZOO archives, we will take the four data files shown in Box 1. The
ZOO archive will be called examz.zoo; it is generated with the command

zoo ah examz.zoo adat.*

Looking at the result with

zoo l examz

shows a table of contents (Box 2). Any kind of files can be put into a ZOO

archive. However, our main interest is in data files containing variables
which can be accessed selectively. Consequently, to be useful with TDA,
all data files in an archive should have a record structure.

A record structure can be given in two different ways. First, records
can be defined by a fixed record length. It is assumed, then, that all
records in a file have the same length to be defined in the archive de-
scription file (see below). Second, the records in a file may have variable
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length. In this case, the end of each record must be given explicitly by
an end-of-record character.

End-of-record (newline) characters are not standardized across dif-
ferent platforms. On UNIX machines it is a single line-feed (0a, hex-
adecimal); on Macintosh computers it is a single carriage return (0d,
hexadecimal); and DOS uses two characters: carriage return and line-
feed. All three possibilities may be used for files with variable length
records contained in an archive. However, when the program writes an
end-of-record (newline) character it is always the specific one for the
machine where the program is running.

One should note that TDA only supports archives with data files
containing variables in a fixed-field format. This restriction is reflected
by the requirement that for all variables their offset as well as their field
length must be explicitly specified (see 2.10.2). This requirement also
applies to variable length records. In this case, if a variable is defined
with an offset out of the actual length of a record, the record is filled up
with blank characters resulting in missing values for these variables.
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2.10.2 Variable Description Files

In order to access variables contained in the archive’s data files, these
variables have to be described. Otherwise it would be impossible to rec-
ognize that a file actually contains data organized as variables. TDA is
told about variables by means of a variable description file.

A variable description file is a standard ASCII text file. Each line of
this file describes a variable, or is a comment line if its first non-blank
character is a # character. A line describing a variable consists of five
fields, the last one is optional. Fields are taken to be in free format,
separated by at least one blank character. However, the first field must
begin in the first column of a record.

1. The first field is the name of the variable. The number of characters of
a variable’s name is not fixed. It is proposed, however, that a maximum
of 16 characters is used. The characters can be upper and lower case
letters, digits, and the underline character. The first character must be a
letter. Note that variable names are case sensitive. If retrieving variables
from a compressed data archives, the variable names must be exactly
the same as defined in the variable description file.

2. The second field must be a numerical entry and is interpreted as the
ID number of the data file where the variable is to be found. It must be
the same number as assigned to the data file in the archive description
file (see 2.10.3).

3. The third field is again numerical and is interpreted as an offset in the
data file record were the value of the variable begins. Counting begins
with zero as the first column in a data file record.

4. The fourth field is also numerical and, for numerical variables, may
be given as n or n.m with n and m integers. n must be greater than zero
and is interpreted as the field width for the values of the variable. The
syntax n.m should be used to provide a print format for floating point
values; see the description of the arcv command in 2.10.4.

Data archives may contain string variables. These are identified by a
single negative integer in the fourth field of the variable description file.
The absolute value of this entry is then taken as the length of the string
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Box 1 Variable description file for archive examz.zoo

# examz.var variable description file for examz.zoo

A1 1 0 2 first variable of dat.1

This is some additional information

about the first variable.

A2 1 3 5.2 second variable of dat.1

A3 1 9 2 third variable of dat.1

B1 2 0 1 first variable of dat.2

B2 2 1 2 second variable of dat.2

B3 2 4 4.2 third variable of dat.2

B4 2 8 3 fourth variable of dat.2

C1 3 0 2 first variable of dat.3

C2 3 3 4 second variable of dat.3

C3 3 7 2 third variable of dat.3

Additional information may be given as value labels

(1) = label ...

(3) = label ...

(8) = label ...

(9) = missing value

P1 4 0 1 first variable of dat.p

P2 4 1 3 second variable of dat.p

variable.

5. The last field is optional and can be an arbitrary string of characters
that describes the variable as a variable label. Different from the other
items, this field may contain blank characters. If it is present it starts
with the first non-blank character after the fourth field up to the end of
the current line.

TDA has no provision to use value labels in its printouts. However, such
information may be provided in a variable description file simply for
informational purposes. To do so, the following convention is adopted.
Whenever a non-comment line in a variable description file begins in
the first column of a record it is taken as the description of a variable
as described above. All non-comment lines beginning with at least one
blank character are taken as additional information about the preceding
variable. This additional information is not interpreted by TDA but is
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shown when variable descriptions are printed and the arcdic command
is given.

A variable description file, examz.var, for the example data archive
examz.zoo is shown in Box 1. One should note that a single variable de-
scription file is used to describe all variables in an archive. It is required,
therefore, that variable names are unique across all data files. On the
other hand, it is not required that all variables, actually contained in an
archive, are explicitly described. Of course, only variables described in
the variable description file can be used by TDA. The ordering of the
variable descriptions is not important.

Having created a variable description file, it must be added to the
archive. For our example archive, we can do this with the command

zoo ah examz examz.var
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2.10.3 Archive Description Files

A data archive contains one or more data files and a single variable
description file. In addition, TDA needs some information about the
contents of the archive. This information is contained in an archive de-
scription file. This is again a standard ASCII text file, similar to a TDA

command file. Empty lines, or lines where the first non-blank character
is a # character, are treated as comments and ignored. All other lines
are interpreted by TDA.

The first line that is not a comment is always interpreted as the name
of an archive, possibly headed by a path where to find it. All other non-
comment lines are interpreted as descriptions of files contained in the
archive. It is not necessary to describe all files contained in the archive;
however, only files described in the archive description file are recognized
by TDA. The maximum number of files that can be described for a single
archive is set to 200 in the standard compilation procedure for TDA.

For each file, six pieces of information must be present, given in six
fields separated by one or more blank characters:

1. The first field is the ID number of the data file described in this line
of the archive description file. It must be a non-negative integer number,
unique for each of the files. The ordering is not important. This number
is taken as the ID number of the data file, and it must be the same
number as used for attaching variable names to data files.

2. The second field is the name of the file. It must be the same name
as used in the creation of the ZOO archive and should conform to the
operating system’s requirements for file names.

3. The third field is a numerical entry and is interpreted as the type of
the file. Currently, only two types are distinguished: If the value is 1 the
file is assumed to be a data file. If the value is 2 the file is taken to be the
variable description file of the archive (see 2.10.2). Each archive descrip-
tion file must contain exactly one description of a variable description
file.

4. The fourth field is a numerical entry and is interpreted as the record
length of the file. It must be a non-negative integer. If its value is greater
than zero it is assumed that the file consists of records of equal length
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Box 1 Archive description file for archive examz.zoo

# examz.des

# archive description file for examz.zoo

examz.zoo

# N Name Type RecLen Records NVar

1 adat.1 1 0 9 3

2 adat.2 1 12 8 4

3 adat.3 1 10 4 3

4 adat.p 1 5 9 2

9 examz.var 2 0 29 0

given by this value. (If the records have one or more end-of-line charac-
ters they should be included in the record length.) If the value is zero, it
is assumed that the file has variable length records. In addition, it is then
assumed that each record is terminated by an end-of-line character. Nor-
mally, data files will have fixed length records, while variable description
files will have variable length records. However, also data files may have
variable length records, if only the variables that are described in the
variable description file can be found at fixed positions in the records.

5. The fifth field is a numerical entry and is interpreted as the number
of records of the file.

6. The sixth field is a numerical entry and is interpreted as the num-
ber of variables contained in the file. Currently, this value is used for
informational purposes only. In the case of a variable description file this
entry should be set to zero.

Box 1 shows as an archive description file, examz.des, for the archive
examz.zoo. The first non-comment line contains the name and option-
ally the path of the ZOO archive. The following lines describe the files
contained in the archive. The ordering is not important. In this exam-
ple, there are four data files of type 1, and one variable description file of
type 2. The data files are defined with a fixed record length, the variable
description file has variable length records.

Notice that the definition of record length always includes any end-of-
record characters. This may result in differences between DOS and UNIX

systems. The above example was created on a UNIX system where only
one character is used for the end of a record in a text file. However, ZOO
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data archives are portable across different computer platforms without
any modifications;1 and also the same archive description files can be
used.

1Of course, ZOO archives must be transferred as binary files between different com-
puters.
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2.10.4 Data Archive Commands

We begin with a short summary of the steps required to create a com-
pressed data archive. It is assume that there is a set of ASCII data files
with a fixed format record structure.

1. Create a ZOO archive containing the data files. This is done directly
with the ZOO program. Note that one should always use ZOO’s ah option
to add files in the high compression mode.

2. Choose ID numbers for all data files in the archive and create a
variable description file describing all variables in the archive. (If the data
files are available as SPSS portable files, this can be done automatically
with the rspss command, see 2.11.2.) Check the file with the arcvc
command and be sure that it does not contain errors. Then add the
variable description file to the archive using again the ah option for high
compression mode.

3. Create an archive description file, check the archive with

tda arcd=... arcc

and check the output. If TDA does not find any errors, the archive can
be used for data retrieval.

Having created a data archive, it can be used with TDA to retrieve data.
The basic command is nvar as described in 2.2. One simply uses the nvar
command and specifies the required archive variable using the syntax:

VName = A:AVNAME,

where AVNAME is a variable name contained in the archive’s variable de-
scription file and VName is a corresponding variable name to be used by
TDA. It would also be possible to use the extended syntax

VName <s>[pfmt](label) = A:AVNAME,

but TDA automatically tries to find an optimal storage size and print
format for archive variables, based on information in the variable de-
scription file. However, TDA is only able to retrieve archive variables if
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given the name of an archive description file. The command is1

arcd = name of an archive description file;

Given this command, TDA reads the archive description file and tries to
open the archive for subsequent reading. Having successfully opened an
archive, the connection remains valid until it is explicitly turned off with
the command

arcd = off;

or until another archive is opened with a new arcd command. This allows
to use several different archives in a single command file. It also allows
to assess the same archive with a series of nvar commands. This is, in
fact, necessary because each separate nvar command can only retrieve
variables from a single archive data file. It is required to explicitly match
variables contained in different archive data files.

In addition to the basic arcd command to open a data archive, there are
three commands to support working with archives.

1. The arcc command, without any parameters, can be used to check
whether TDA can successfully read the files in an archive. Given this
command, TDA tries to read all files in an archive and compares the
results with the information in the corresponding archive description file.
A message about any discrepancies is given in the standard output. In
addition, the command checks whether all variable names in the variable
description file are unique. To illustrate, we check our example archive
with

tda arcd=examz.des arcc

The result is shown in Box 1.

2. To check a variable description file one can use the command

arcvc (df=fname) = name of an variable description file;

TDA then reads the variable description file and checks for correct syntax
and unique variable names. The result is shown in the standard output.
For example, the command

tda arcvc=examz.var

1If the arcd command is used without any arguments, it provides information about
the currently defined data archive (if any).
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Box 1 Output from arcc command.

> arcd=examz.des

---------------------------------------------------------

Reading archive description file: examz.des

ZOO data archive: examz.zoo

Checking definition of files in archive.

FN Type RLen Records NVar Size M Name

------------------------------------------------

1 1 0 9 3 108 2 adat.1

2 1 12 8 4 96 2 adat.2

3 1 10 4 3 40 2 adat.3

4 1 5 9 2 45 2 adat.p

9 2 0 29 0 911 2 examz.var

> arcc

---------------------------------------------------------

Archive check. Reading files defined in: examz.des

File: 1 adat.1 records: 9

File: 2 adat.2 records: 8

File: 3 adat.3 records: 4

File: 4 adat.p records: 9

File: 9 examz.var records: 29

No errors found.

should show that the variable description file for our example archive is
correct and that all variable names are unique. The optional parameter
df=fname, with fname the name of an output file, can be used to create
a variable description file with unique variable names. If the input file
uses variable names more than once, these names are made unique by
appending the corresponding logical file number. Note that this proce-
dure assumes that variable names corresponding to the same logical file
number in the input file are already unique. This is not checked, but
might be checked by using the arcvc command a second time with the
output file created by the df parameter.

3. The command

arcv (fn=f,arcdic) = fname;

can be used to get information about the variables contained in a data
archive. All parameters are optional. If used without parameters, the
command prints a list of all variables contained in the data archive into
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Box 2 Output from arcv(fn=adat.2) command

# arcd = examz.des;

# nvar(

# B1 <1>[2.0] = A:B1 , # [adat.2] first variable of dat.2

# B2 <1>[2.0] = A:B2 , # [adat.2] second variable of dat.2

# B3 <4>[5.2] = A:B3 , # [adat.2] third variable of dat.2

# B4 <2>[3.0] = A:B4 , # [adat.2] fourth variable of dat.2

# );

the standard output. The printout follows the syntax of the nvar com-
mand and can be used as a command file for retrieving variables from the
archive. If the name of an output file, fname, is given on the right-hand
side, this file is used instead of the standard output. The fn parameter
can be used to specify data archive files. It can be used more than once.
If used, only variables contained in the specified data file(s) are written.
The arcdic parameter can be used to request that also value label in-
formation (if present in the archive’s variable description file) is written
into the output file. As an illustration, the result of

tda arcd=examz.des arcv(fn=adat.2)

is shown in Box 2.
Creating a storage size and a print format is based on the format

information in the variable description file. If the format information is
given by a single integer, n, it is assumed that the variable takes only
integer values. Also if the format is given as n.m and m = 0. Otherwise,
it is assumed that the variable has floating point values.

In both cases, calculation of a storage size is based on n∗ = max{n, 2}.
In the case of integers, the storage size is 2 if 2 ≤ n∗ ≤ 4 and otherwise
5. For floating point numbers the storage size is 4 if n∗ ≤ 7 and oth-
erwise it is 8. The print format is w.m with w = n∗ for integers and
w = max{n∗,m + 3} for floating point numbers. Note that the nvar
command needs the afmt parameter to enable these conventions. If the
nvar command is used without the afmt parameter, archive variables
are treated like all other variables.
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2.11 Special Format Data Files

This chapter contains the following sections.

2.11.1 TDA System Files explains how to use system files for TDA’s
internal data matrix.

2.11.2 SPSS Files explains how to read and write SPSS portable and
sav files.

2.11.3 Stata Files explains how to read and write Stata files.
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2.11.1 TDA System Files

TDA system files are used to save the current data matrix in a file, or to
restore the data matrix from such a file. Since a system file stores data
in a machine-dependent binary format, reading the data from a system
file is much faster than creating an internal data matrix from external
data or archive files. The command to save the data matrix in a system
file is

wsys = name of an output file;

The right-hand side is optional. The default system file name is tda.sys.
Given this command, TDA write the contents of the currently defined
data matrix into the output file; any currently active temporary case
selection is ignored. String variables and type 5 variables are not written.
Also information about case weights, if defined, is not written into the
system file.

To restore a data matrix from a system file, the command is

rsys = name of a system file;

Again, the file name is optional and the default name is tda.sys. Given
this command, TDA tries to restore a data matrix from the specified
input file. A list of variables read from the system file is written into
the standard output. Note that this command can only be used if a
data matrix does not already exist. Otherwise, one should first execute
a clear command (see 2.3).

A TDA system file always begins with some plain ASCII records, then
follow the data in a machine-dependent binary format. The structure is
as follows:

1. The first record contains an identification string: TDA System File
(n), with n the version number, followed by the date and time when the
file was created.

2. Then follows the number of cases and variables, and a description of
all variables in plain ASCII.

3. Finally, for each variable there is a single binary record containing
the data.
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2.11.2 SPSS Files

This section describes commands that can be used to read and write
SPSS portable and sav files.

2.11.2.1 SPSS Portable Files describes commands for reading and writ-
ing SPSS portable files.

2.11.2.2 SPSS Sav Files describes commands for reading and writing
SPSS (for Windows) sav files.
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2.11.2.1 SPSS Portable Files

There are two commands, rspss and wspss, to read and write SPSS

portable files. The SPSS Base System Syntax Reference Guide (1992, p.
234) gives the following explanation: “A portable data file is a data file
created by SPSS and used to transport data between different types of
computers and operating systems [. . . ] or between SPSS, SPSS/PC+, or
other software using the same portable file format. Like an SPSS data file,
a portable file contains all of the data and dictionary information stored
in the working data file from which it was created.” Implementation in
TDA is based on: SPSS for Unix. The PPF Portable File Format, Release
4.0 , published by SPSS Inc. in April 1990.

Reading SPSS portable files. The command is rspss with syntax
shown in Box 1. It is expected that the name of an SPSS portable file
is given on the right-hand side; all other parameters are optional. TDA

then tries to create a data matrix based on the contents of the SPSS file
or, if the df parameter is used to give the name of an output file, the
data are directly written into this output file without creating an internal
data matrix. Note that, in both cases, the command is only executed if
a data matrix does not already exist. Note also that one can use dfa,
instead of df, in order to append the data to an already existing files.

1. The input file is expected to be a plain ASCII file consisting of records
each having 80 characters (bytes) plus end-of-record characters (a single
line-feed (UNIX) or a carriage return – line-feed sequence (DOS). If a
record contains less than 80 characters it is filled with blank characters.

If the input file does not contain end-of-record characters, one can
use the len parameter with syntax

len = n,

where n is one of the integers 80, 81, or 82. TDA then assumes that each
record consists of exactly n characters (bytes).

2. Basic information about variables in an SPSS portable file is given by
the variable’s name and, optionally, by variable and value labels. TDA

uses the same variable names as found in the SPSS file. If present, also
the variable labels are used. Values labels are ignored.
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Box 1 Syntax of rspss and wspss commands

rspss (

len=..., record length, def. 80
noc=..., maximum number of cases
msys=..., system missing value code, def. -5
fmt=..., new print format
df=..., write data directly to output file
dvar()=..., create/update variable description file
arcd()=..., create/update archive description file

) = file name;

wspss (

keep=..., keep variables
drop=..., drop variables
sort=..., sort cases

) = file name;

3. Since SPSS portable files do not contain explicit information about
the number of data records and the storage format of the variables, TDA

reads the data in the input file two times. In a first run, it tries to deter-
mine the number of data records and the storage requirements for each
variable. Memory allocation for the data is based on this information.
Each variable gets the minimum storage size to save its values as found
in the input file. Floating point values are always stored in double pre-
cision, i.e. with storage size 8. Storage size for string variables always
equals the (negative value of the) length of the string variable.

4. TDA ignores any information on print formats that might be present
in the SPSS portable file and tries to calculate appropriate print formats
based on each variable’s range of values. However, TDA’s default be-
havior in creating print formats will not always give sensible results for
floating point numbers,1 and one can therefore use the fmt parameter
to explicitly specify a print format for floating point values.

5. TDA recognizes so-called system missing values that may be present
in the data portion of an SPSS portable file (indicated by an asterisk).
By default, these missings are substituted by the numerical value -5 (or

1TDA uses the maximum length of the integral part of the floating point number
and then provides for 6 digits after the decimal point, based on an F format.
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by blanks if it is a string variable). The missing value code for numerical
variables can be changed with the msys parameter. Note that TDA ig-
nores any definitions of user-defined missing values since these definitions
to not alter the data portion of an SPSS portable file.

6. By default, TDA creates an internal data matrix, or an output file
defined with the df parameter, for all data records found in the input
file. Optionally, one can use the noc parameter to define an upper limit
of cases.

7. The dvar parameter can be used to create a variable description file
for the variables found in the SPSS input file. The syntax is

dvar (argument1,argument2, ...) = output file name,

For each variable in the SPSS input file, the output file will contain one
record describing the variable according to the conventions for variable
description files for TDA data archives.2 The optional arguments are as
follows:

a) The argument

fn = file number,

can be used to specify a file number that is used in the variable
description file; the default file number is 1.

b) The argument

p = n,

where n is a positive integer. Each string variable will then be par-
titioned into substrings of n characters length, and corresponding
variable definitions will be added to the variable description file.
The additional variables are of type string.

c) The argument

pn = n,

where n is a positive integer. Same as p = n, but the new variables
will be defined as numerical variables.

2If a file with the same name already exists, it is overwritten without warning. To
append the variable descriptions to the end of an already existing file, one can use
dvara instead of dvar.
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d) The argument

p(VNAME) = n,

where n is a positive integer and VNAME is the name of a variable.
Then, if VNAME is the name of a string variable, this variable will be
partitioned into substrings of n characters length, and correspond-
ing variable definitions will be added to the variable description
file. The additional variables are of type string.

e) The argument

pn(VNAME) = n,

where n is a positive integer. Same as p(VNAME) = n, but the new
variables will be defined as numerical variables.

Note that the p and pn arguments are incompatible. The p(VNAME) and
pn(VNAME) arguments are compatible and can be used several times.

8. The arcd option has the syntax

arcd(argument1,argument2) = file name,

and can be used to create, or update, an archive description file. The
optional arguments are:

zoo = file name,

This file name is then used in the archive description file for the ZOO

archive.

vdf = file name,

This file name is then used in the archive description file for the variable
description file. The file number for this file is always 999.

Note that the arcd option is only recognized if the rspss command
contains both a df and a dvar parameter. In order to get valid infor-
mation about the number of records in the variable description file, the
name used with the vdf parameter should be the same as the name used
for the dvar parameter. Also note that for the calculation of physical
record lengths that is required for the archive description file, it is as-
sumed that there is a 1-byte EOL character when running under UNIX,
and a 2-byte EOL character when running under DOS and MS Windows.
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Writing SPSS portable files. The command for writing SPSS portable
files is wspss with syntax shown in Box 1. All parameters, except an
output file name on the right-hand side, are optional. Without additional
parameters, TDA tries to create an SPSS portable file containing all
currently defined variables.

1. To select a subset of variables for the output file one can use the
parameter

keep = varlist,

with varlist a list of variables separated by commas. Then only these
variables are written into the output file. Alternatively, one can use the
parameter

drop = varlist,

Then all variables except variables specified in varlist are used.

2. By default, cases are not sorted before writing data into the output
file. As an option, one can use the parameter

sort = V1,V2,...,

to sort the data matrix first w.r.t. V1, then w.r.t. V2, and so on, in
ascending order.

3. Except for string variables, to define print formats for the SPSS

portable file, TDA always uses an F format. A free format is translated
to 10.4, an E format is translated to 12.4.
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2.11.2.2 SPSS Sav Files

There are two commands, rspss1 and wspss1, to read and write SPSS

sav files that have been created by, or can be used with, SPSS for Win-
dows running on an Intel (reversed byte order) platform. The syntax of
these commands is shown in the following box.

rspss1 (

noc=..., maximum number of cases, def. all
msys=..., system missing value code, def. -5
df=..., write data directly to output file
dvar=..., create file with variable descriptions

) = file name;

wspss1 (

keep=..., keep variables
drop=..., drop variables
sort=..., sort cases

) = file name;

1. Except for the file name on the right-hand side, all parameters are
optional.

2. The rspss1 command can only be used when a data matrix does not
already exist. By default, the command creates a new data matrix.
If the df parameter (or dfa to append data) is used, the data are
written directly to an output file and a data matrix is not created.

3. The dvar parameter can be used to request an additional output
file that contains a description of variables (variable labels and, if
present, also value labels) as found in the input file. Note however,
that this will not be a variable description file in the sense of TDA’s
data archives.

4. The rspss1 command assumes that the SPSS sav file was created by
SPSS for Windows on an Intel platform, meaning that binary values
are stored in reversed byte order. Correspondingly, the binary files
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created by the wspss1 file are only appropriate for this architecture.

5. The keep, drop, and sort parameters in the wspss1 command expect
comma-separated lists of variables. String variables cannot be used
for sorting.
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2.11.3 Stata Files

There are two commands to read and write Stata files (versions 4.0 and
6.0). Implementation is based on the description of the .dta file format
in the documentations of Stata releases 4.0 and 6.0.

Reading Stata files. The command for reading Stata files is rstata
with syntax shown in Box 1. On the right-hand side the name of a Stata
data file must be given. All other parameters are optional. By default,
TDA tries to create a data matrix based on the information in the input
file. Alternatively, the df parameter can be used to define the name of an
output file. The data read from the Stata file are then written directly
into that output file without creating an internal data matrix. Note that
in both cases the command is not executed if a data matrix already
exists.

1. When reading Stata files, TDA should be able to correctly recognize
whether the data are stored according to a HiLo or LoHi byte ordering.

2. If the first character of a Stata variable name does not conform to
the TDA conventions for variable names (see 2.1), it is preceded by an
underline character, otherwise it is always converted to an upper case
letter.

3. Translation of Stata variable types to TDA variables types is as fol-
lows:

1. Stata variables of type b (byte) are stored with storage size 1.

2. Stata variables of type i (short integer) are stored with storage
size 2.

3. Stata variables of type l (long integer) are stored with storage
size 5.

4. Stata variables of type f (single precision floating point) are
stored with storage size 4.

5. Stata variables of type d (double precision floating point) are
stored with storage size 8.
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Box 1 Syntax of rstata and wstata commands

rstata (

noc=..., maximum number of cases, def. all
msys=..., system missing value code, def. -5
df=..., write data directly to output file
dvar()=..., create/update variable description file
arcd()=..., create/update archive description file

) = fname;

wstata (

keep=..., keep variables
drop=..., drop variables
sort=..., sort cases

ptyp=..., type of output file, def. 6
4 : for Stata release 4
6 : for Stata release 6

) = fname;

6. Stata string variables will result in corresponding TDA string
variables.

4. The print format for numerical variables is based on the information
in the Stata file. Note, however, that g-type formats are translated to
f -type formats.

5. A Stata input file may contain missing value codes. These are sub-
stituted by the numerical value -5. Another missing value code can be
specified with the msys parameter.

6. By default, TDA creates an internal data matrix for all data records
found in the input file or. Using the df parameter, all records are written
into the specified output file without creating an internal data matrix.
Optionally, one can use the noc parameter to define an upper limit of
cases.

7. The dvar parameter can be used to create a variable description file
for the variables found in the Stata input file. The syntax is

dvar (optional arguments) = output file name,

For a description of the optional arguments see 2.11.2.1. Also note that
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one can use dvara to append information to an already existing file. Note
that the rstata command only tries to find value label information if
the noc parameter is not used. This is due to the fact that, in a Stata
file, value label information is always at the end of the file.

8. The arcd parameter can be used to create an archive description file.
For an explanation of this option see 2.11.2.1.

Writing Stata files. The command for writing Stata files is wstata
with syntax shown in Box 1. All parameters, except an output file name
on the right-hand side, are optional. Without additional parameters,
TDA tries to create a Stata file containing all currently defined variables.
1. By default, the wstata command creates a Stata file for release 6.0.

The ptyp parameter can be used to create a file for release 4.0.

2. To select a subset of variables for the output file one can use the
parameter

keep = varlist,

with varlist a list of variables separated by commas. Then only
these variables are written into the output file. Alternatively, one
can use the parameter

drop = varlist,

Then all variables, except those specified in varlist, are used.

3. By default, cases are not sorted before writing data into the output
file. One can use the parameter

sort = varlist,

to sort the data matrix, based on the variables contained in varlist
(from left to right), in ascending order. Note that string variables
cannot be used for sorting.
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2.12 Data File Utilities

This chapter describes commands which are sometimes helpful to inves-
tigate and manipulate (data) files. The sections are as follows.

2.12.1 Characters in a File explains the ccnt command that can be
used to get a frequency distribution of the characters in a file.

2.12.2 Records in a File explains the lcnt command that can be used
to get a frequency distribution of the lengths of records in a file.

2.12.3 Binary Contents of a File explains the dump command that can
be used to see into the binary contents of a file.

2.12.4 Splitting Files into Parts explains the dsplit command that
can be used to split a file into parts.

2.12.5 External Sorting explains the esort command that can be
used to sort big data files.

2.12.6 External Merging explains the emerge command that can be
used to merge big data files.

2.12.7 Selection of Records explains the eselect command that can
be used to select records from big data files.

2.12.8 Dropping Selected Columns explains the eskip command that
can be used to drop selected columns from big data files.
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2.12.1 Characters in a File

The ccnt command can be used to get a frequency distribution of the
characters contained in a file. The syntax is

ccnt = fname;

where fname is the name of a file. The resulting frequency distribution
is written into the standard output. The characters in the file are shown
in their hexadecimal representation and, if possible, as visible ASCII

characters.
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2.12.2 Records in a File

The lcnt command can be used to get a frequency distribution of the
lengths of records in a file. The syntax is

lcnt (noc=...) = fname;

where fname is the name of a data file. It is assumed that this file has
end-of-record characters: single line-feed characters (UNIX) or carriage-
return line-feed sequences (DOS and DOS-like platforms). The end-of-
record characters are not included in counting the record length.

The noc parameter is optional and can be used to set an upper limit
for the number of cases, default is noc=1000. The maximum record length
is 20000 characters.
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2.12.3 Binary Contents of a File

The dump command can be used to show the binary contents of a file.
Each character is shown in its hexadecimal representation and, if possi-
ble, as a visible ASCII character. The syntax is

dump (nc=...,s=...) = fname;

where fname is the name of a file. Parameters are optional. By default,
the command begins with the first character in the input file (s = 0).
Alternatively, it begins with an offset given by the s parameter. The nc
parameter can be used to limit the number of characters; by default, all
characters of the input file are used.
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2.12.4 Splitting Files into Parts

The dsplit command can be used to split a file into parts. The syntax
of this command is

dsplit (len=...) = fname;

where fname is the name of a file. The size of the parts can be defined
with the parameter len, default is len=1000. The file specified by fname
is then split into parts of n bytes (of course, the last part could be less
than n bytes if the size of fname is not a multiple of n). The parts are
named:

fname.a, fname.b, fname.c, and so on.

Note that on DOS-like platforms, fname should not already contain a
period (.) because file names may only contain a single point.
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2.12.5 External Sorting

The esort command can be used to sort big data files that do not fit
into main memory. The syntax is shown in the following box.

esort (

df=..., name of output file (required)
sk=..., up to five sort keys
noc=..., number of records in temp. file, def. 1000
len=..., maximal record length, def. 1000

) = input file;

The command expects the name of a standard ASCII data file on its
right-hand side. This file must have valid end-of-record characters. The
maximal record length can be specified with the len parameter. Also
required is the name of an output file to be given with the df parameter.
Finally, at least one sort key must be defined with the sk parameter.
The syntax is

sk = i1, j1, i2, j2, . . . ,

where the right-hand side is a sequence of up to five pairs of column
numbers. Each pair specifies one sort key. The first sort key is taken to
be the field from column i1 up to, and including, column j1; and so on.
If there are two or more sort keys they are used hierarchically from left
to right.

The command works as follows.

1. The command reads up to noc records from the input file and
creates a corresponding array of sort keys and pointers to the data
file records. This array is then sorted in ascending order and the
sorted records are written into a temporary output file.

2. Step 1 is repeated until no more records can be read from the input
file.

3. Finally, the temporarary files are simultaneously read and merged
in order to create a new sorted output file.
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One should note that the maximal number of temporary files is 100,
but the actually available number may be less due to limitations of the
operating system. One should also note that names of temporary files
are created by adding “.i” to the name of the input file (i = 0, 1, 2, . . .).
Therefore, when working on a DOS-like platform, the name of the input
file should not already contain a period.
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2.12.6 External Merging

The emerge command can be used to merge big data files that do not
fit into main memory. The syntax is shown in the following box.

emerge (

df=..., name of output file (required)
mf=..., list of merge files
len=..., maximal record length, def. 1000
m=..., missing value character, def. blank
sepc=..., separation character, def. blank

) = input file;

The command expects the name of a standard ASCII data file on its
right-hand side. This file must have valid end-of-record characters. The
maximal record length can be specified with the len parameter. Also
required is the name of an output file to be given with the df parameter.
Finally, at least one more file to be merged with the input file must be
specified with the mf parameter. The syntax is

mf = fname1 [i1, j1, i, j],
= fname2 [i2, j2, i, j],
= fname3 [i3, j3, i, j], · · · ,

Up to 50 file names can be specified on the right-hand side. (Note, how-
ever, that this maximum may be less due to limitations of the operating
system.) Like the main input file, these files must be plain ASCII files
with valid end-of-record characters and record length not exceeding len.
In addition, for each of these files one has to specify two fields. The
first two numbers, ik and jk, must specify, respectively, the first and last
columns of a field in the records of the corresponding file to be merged
(i.e., fnamek). The second two numbers, i and j, must specify a field in
the main input file. While the (ik, jk) fields can be different for each file,
there can only be a single field in the main input file. Furthermore, all
fields must have the same length.

The command expects that all input files are already sorted with

d021206.tex June 14, 1998



2.12.6 external merging 2

respect to the specified fields. In fact, the command sequentially reads
records from the main input file and, at the same time, reads records
from all other input files. In case of identical fields records from the
additional input files are added to the main record, otherwise it is filled
with missing value characters.

By default, missing records are substituted by blank characters. Op-
tionally, one can use the m parameter to specify one of the digits (0, 1, . . . , 9).
Also by default, records from the input files are separated by a single
blank character. Optionally, one can specifiy an alternative separation
character with the sepc parameter, or suppress any separation character
with “sepc=none”.
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2.12.7 Selection of Records

The eselect command can be used to select records from a big data
file based on keys provided by another file. The syntax is shown in the
following box.

eselect (

df=..., name of output file (required)
if=..., additional input file
sk=..., specification of keys
noc=..., max number of keys, def. 1000
opt=..., if 1 (def.) write all records

if 2 supress identical records
len=..., maximal record length, def. 1000

) = input file;

The command expects the name of a standard ASCII data file on its
right-hand side. This file must have valid end-of-record characters. The
maximal record length can be specified with the len parameter. Also
required is the name of an output file to be given with the df parameter.

In addition, the command expects another input file to be specified
with the if parameter. Again, this must be a standard ASCII file with
valid end-of-record characters and record length not exceeding len. The
parameter

sk = i1, i2, j1, j2

must be used to specify two fields. i1 and i2 specify, respectively, a field
beginning in column i1 and ending in column i2 in the records of the
main input file. j1 and j2 specify a corresponding field in the records of
the additional input file defined with the if parameter. Both fields must
have the same length. The maximal number of fields (keys) read from
the additional input file can be specified with the noc paramater.

The command works as follows. It reads up to noc keys from the ad-
ditional input file defined with the if parameter. These keys are then
sorted. Finally, the command reads the records from the main input file
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and whenever a matching key is found, this record is written to the out-
put file. By default, all matching records are written into the output file.
If the opt=2 parameter is given each key is used only once.
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2.12.8 Dropping Selected Columns

The eskip command can be used to drop selected columns from a big
file. The syntax is shown in the following box.

eselect (

df=..., name of output file (required)
sk=..., up to five fields
len=..., maximal record length, def. 1000

) = input file;

The command expects the name of a standard ASCII data file on its
right-hand side. This file must have valid end-of-record characters. The
maximal record length can be specified with the len parameter. Also
required is the name of an output file to be given with the df parameter.

In addition, the command expects a specification of up to five fields
with the parameter

sk = i1, j1, i2, j2, . . . ,

The kth field begins in column ik and ends in column jk. The command
sequentially reads the records from the input file and write those columns
into the output file that do not fall in any of the column ranges defined
with the sk parameter.
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3. Data Structures

TDA supports several different data structures, each based on a specific
interpretation of the internal data matrix. Some of these data structures
must be explicitly specified in order to allow subsequent commands to
recognize the data structure. This part of the manual describes which
data structures are available and, if necessary, explains commands that
must be used to specify these data structures.

3.1 Cross-sectional Data

3.2 Panel Data

3.3 Episode Data

3.4 Sequence Data

3.6 Graphs and Relations
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3.1 Cross-sectional Data

We shall use the term cross-sectional data in a broad sense, meaning a
data structure that simply consists of a set of variables without explicitly
recognizing any additional hierarchical or temporal structure. Thus, a
cross-sectional data structure directly corresponds to a rectangular data
matrix,

Case X1 X2 · · · Xm

1 x11 x12 x1m

2 x21 x22 x2m

...
...

...
...

n xn1 xn2 xnm

containing m variables for n cases. Therefore, in order to interpret TDA’s
internal matrix as a set of cross-sectional data, it is not necessary to use
any further specification. One can directly refer to the variables in the
internal data matrix.
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3.2 Panel Data

We speak of panel data if we have a set of variables for several points
in time. A variable may then be denoted by Xjt where j = 1, . . . ,m
identifies the variable and t = 1, . . . , T the point in time. (Of course,
instead of thinking of different points in time, the index t can refer to
any other kind of grouping.) The value of Xjt for the ith individual will
be denoted by xijt.

There are two possibilities to interpret a rectangular data matrix as
a set of panel data. The data for each individual can be given in a single
row, or in a sequence of T rows.

Horizontal Data Organization. In this case we assume that there is
a single row for each individual. The data structures looks as follows.

Case X11 · · · Xm1 · · · X1T · · · XmT

1 x111 x1m1 · · · x11T x1mT

2 x211 x2m1 · · · x21T x2mT

...
...

...
...

...
n xn11 xnm1 · · · xn1T xnmT

This is TDA’s default data structure for panel data. It has the advantage
that variables that do not vary across time need only be stored once.
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Vertical Data Organization. Alternatively, one can assume that the
data for each individual are given in a block of T data matrix rows. The
data structure is then:

Case Wave X1 X2 · · · Xm

1 1 x111 x121 x1m1

1 2 x112 x122 x1m2

...
...

...
...

...
1 T x11T x12T x1mT

2 1 x211 x221 x2m1

2 2 x212 x222 x2m2

...
...

...
...

...
2 T x21T x22T x2mT

...
...

...
...

...
n 1 xn11 xn21 xnm1

n 2 xn12 xn22 xnm2

...
...

...
...

...
n T xn1T xn2T xnmT

If the data structure is balanced, meaning that we have data (possibly
missing values) for all individuals for each point in time, it should be
possible to create a vertically organized data structure from a horizontal
data structure, and vice versa, by using the nc and nq options in TDA’s
pdata command, see 2.9.
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3.3 Episode Data

The basic concepts for defining event-history data are a time axis, T ,
and a discrete state space, Y. One possibility to represent event-history
data is by an ordered set of state variables: Y (t) (t ∈ T ). If the time
axis is discrete, we can simply think of a sequence of state variables,
Y (t), for t = 0, 1, 2, 3, . . . This representation of event-history data is
called sequence data and will be further discussed in 3.4. An alternative
way to represent event-history data uses the concept of episodes, also
called spells, and we then speak of episode or spell data. This chapter
introduces the concept of episode data as used in TDA. The subsections
are as follows.

3.3.1 Episode Data Concepts

3.3.2 Defining Episode Data

3.3.3 An Example Data Set

3.3.4 Writing Episode Data

3.3.5 Merging Episode Data
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3.3.1 Episode Data Concepts

An episode, or spell, is the duration an individual stays in a specific
state. The episode begins at the time of entry into that state, and it
ends when a new state is entered. Of course, the definition of episodes
depends on what is regarded as states; and this, in turn, depends on the
substantive issue in question. As implied by the term event-history data,
we always assume a discrete state space.

We speak of episode data if there is a sample of i = 1, . . . , N episodes.
Thinking in terms of individuals, there might be just one episode for
each individual, or each individual might contribute a varying number
of episodes to the data set. Accordingly, one sometimes distinguishes
between single and multi-episode data. Of course, also multi-episode data
where each individual contributes a varying number episodes can be
viewed as just a sample of individual episodes. This view will be taken
until the end of this section where a few more remarks about multi-
episode data will be given.

Each of the episodes can be described formally by an expression like

(oi, di, si, ti, xi(t)) i = 1, . . . , N (1)

si and ti are the starting and ending times, respectively. Since measure-
ment is always discrete one has to adopt a convention about coding these
variables. The basic convention for TDA is that starting and ending times
are coded such that ti − si is the duration of the episode.

oi is the origin state, the state held during the episode until the end-
ing time, and di is the destination state defined as the state reached at
the ending time of the episode. xi(t) is a vector of covariates connected
with the episode and possibly depending on the process time, t. To sim-
plify notation, we generally use the convention that covariates are given
by row vectors and parameters (coefficients) are given by column vectors.

One more piece of information could be added to the description of
episodes given in (1): case weights. It would be straightforward, then,
to use such weights in all formulas based on a sample of episode data.
To simplify the notation we will not write the formulas in this text
with weights. However, if case weights have been defined with the cwt
command, these case weights will be used in all methods based on episode
data.
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In all applications the sets of origin and destination states are finite.
It is assumed throughout this text that they are coded by non-negative
integers, including zero. The set of possible origin states is called O.
Then, for each j ∈ O, there is a set of different destination states called
Dj . Accordingly, with this terminology, it is assumed that k 6= j if j ∈ O
and k ∈ Dj . Clearly, if an episode is right censored there is no transition
to a destination state different from the origin state. The set of all pos-
sible destination states, for episodes with origin j ∈ O, ending with an
event or are censored, is Dj ∪ {j}.

In addition, we generally use the following notation. Each pair (j, k)
with j ∈ O and k ∈ Dj is called a transition. Nj is the set of all episodes
with origin state j; Ejk is the set of all episodes with a transition from
origin state j to a different destination state k ∈ Dj ; Zj is the set of all
censored episodes with origin state j; and Zjk is the set of all episodes
with origin state j and with a destination state not equal to k.

The Time Axis. As with any longitudinal data it is important how the
time axis is defined and the relevant dates are measured. We distinguish
three different aspects of this problem.

• One needs a time axis that is suitable for the substantive application.
This, of course, depends on the kind of events that one intends to model.
In sociological applications, this will normally be a discrete time axis, for
instance days. The important point is that all events that are normally
investigated in sociological research have some inherent duration, for
instance a birth or becoming married.

• In order to formulate a formal (statistical) model we then need a
mathematical representation of time. Here we have two choices; we can
use a discrete or a continuous time axis. In our view, there are no prin-
cipal arguments to prefer one over the other. It is often convenient to
use a continuous time axis, and in fact, most transition rate models dis-
cussed in 6.17 use a continuous time axis to mathematically represent
the substantive process.

• It remains the question of how dates of events have been measured
and are available in a given set of episode data. This information is, of
course, always given in discrete time units. For instance, in sociological
and demographic research, dates are normally given by the month when
an event happened. The problem then is how to relate these empirical
dates to the mathematical time axis that has been used to define the
model.
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No specific problem arises if the mathematical time axis is discrete with
the same time units as used for the empirical dates. Otherwise, there
are two different possibilities. One can simply assume that the empirical
dates can be exactly mapped to the mathematical time axis; or one can
represent the empirical dates by time intervals on the mathematical time
axis. Current applications of event-history methods almost always use
the method of simply identifying empirical dates with some time points
on the mathematical time axis.

If empirical dates are measured very imprecisely, the second ap-
proach, based on mapping these dates to time intervals on the math-
ematical time axis, would be preferable. This would then appropriately
reflect the fact that if dates are measured very imprecisely, we only know
that the event happened in some time interval. This is sometimes called
interval censored dates. Of course, there is no clear-cut demarcation line
between precisely measured and interval censored dates. In any case, sta-
tistical methods for interval censored data are currently not supported
by TDA.

Right Censored Data. If event histories could be observed completely,
each individual will eventually reach an absorbing state. However, each
sample of episode data is based on a limited observation period. Most
probably, it will contain some episodes without an observed transition
to a new destination state. These episodes are called right censored .

Since almost all episode data sets contain at least some right censored
episodes, this must be taken into account by all methods appropriate
for such data. In order to do this one needs some information about the
process that generated the censoring. One can distinguish, at least, three
different types of censoring (Lawless [1982, p. 31]).

• Type I Censoring. This is a special type of censoring arising in exper-
iments where the test is for the duration in some state. When there is
a fixed time period during which a set of individuals, or other units of
analysis, is exposed to some risk of leaving the initial state, and if this
fixed time period is the same for all units, then the resulting censoring
is called type I censoring.

• Type II Censoring. This type of censoring again arises in experiments
where the test is for the duration in some state. But now there is not
a fixed time period for observation, but the experiment is stopped after
an event has occurred for a fixed fraction of all units.

• Random Censoring. This third type of censoring is more general and
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not restricted to experiments. It is used to describe situations where the
finite observation period for a sample of episode data, which generates
the resulting censoring, is statistically independent from the durations
that are to be studied.

In sociological research, based mainly on survey data and follow-up stud-
ies, random censoring can be assumed in most cases. Fortunately, in
practice, it is not necessary to deal separately with all different types
of censoring. There is only one really important assumption: that the
process generating the censoring works independently from the process
that generates the transitions one wishes to investigate. All methods to
analyze episode data, currently implemented in TDA, are based on this
assumption.

Left Censored and Truncated Data. An Episode is called left cen-
sored if we do not know its starting time. This is a more complicated sit-
uation because there is simply no substitute for the missing information.
Sometimes it will be possible to assume a time interval for the starting
time of a left censored episode. If this would be possible, left censored
episodes could be treated as a special case of interval censored episodes.
But this is currently not supported by TDA and we consequently assume
that there is an approximately exact starting time for all episodes to be
used with TDA.

A quite different situation arises if the observation of episodes is left
truncated , meaning that the episode is not observed from its beginning,
but we are able to find out its starting time retrospectively. Most statis-
tical methods offered by TDA can also be used with left truncated data
as will be explained when describing the methods.

Basic Statistical Concepts. We now introduce some statistical con-
cepts for representing episode data defined on a continuous time axis.
Analogous concepts for a discrete time axis will be defined in 6.17.6.1.

Assuming that the episodes are defined on a process time axis where
each episode begins at time zero, and assuming that there is only a single
destination state, a sample of episodes can be completely represented by
a non-negative stochastic variable T . The distribution of such a variable
can be described by a density function f(t), or by a distribution function
F (t), with the simple relation

Pr (T ≤ t) = F (t) =
∫ t

0

f(τ) dτ
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The use of well-behaved distributions, i.e. F (t) → 1 for t → ∞, implies
that all episodes end at some point in time with an event. But obviously,
this is not always true. For instance, if we are interested in the distri-
bution of durations, starting with birth and ending with first marriage,
then one has to provide for the possibility that some people will never
get married. An appropriate way to model such situations is to allow for
two or more alternative destination states. In this example, one possible
destination state is to become married; and an alternative destination
state is to die before becoming married.1

Two more concepts are often used. First the concept of a survivor
function, generally denoted by G(t). It gives the probability of not to
have an event until the point in time t, so the definition is

G(t) = Pr (T > t) = 1− F (t)

Another important concept, called the hazard or transition rate, is de-
fined by

r(t) = lim
∆t→0

Pr (t ≤ T < t + ∆t | T ≥ t)
∆t

(2)

The numerator of this expression is the conditional probability of having
an event in a small time interval from t to t + ∆t, conditional on having
no event until t. Then this conditional probability is measured per unit
of time and the limit is taken. Consequently, the transition rate describes
the instantaneous rate, or sometimes called the risk , of having an event
at time t.

As is easily seen, the transition rate can be expressed by the density
and the survivor function of the duration variable T .

r(t) =
f(t)
G(t)

(3)

Therefore, all four concepts are mathematically equivalent. The density
function, the distribution function, the survivor function, and the tran-
sition rate can equally well be used to describe the duration of episodes.

1Another approach is to use so-called mover-stayer models, based on the assumption
that there is an unknown, but estimable proportion of individuals who will never
experience a transition into the destination state. Whether this is a sensible assump-
tion depends on the application. For instance in life course research, the assumption
conflicts with the basic view that life courses are contingent developmental processes.
In our example, this would mean that the risk of becoming married remains until
death.
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Furthermore, from (3) one gets the important equation

G(t) = exp (−H(t)) = exp
{
−
∫ t

0

r(τ) dτ

}
(4)

with

H(t) =
∫ t

0

r(τ) dτ

called the cumulative hazard or transition rate.

Alternative Destination States. So far we only considered transitions
from a single origin state into a single destination state. Duration was
defined as staying in the origin state until a transition to the destination
state occurred, and if none occurred during the observation period, the
episode was regarded as right censored. However, there may be more
than one transition of interest represented in a sample of transition data.
There may be more than one origin state, and, for each origin state, there
may be more than one destination state.

The possibility of more than one origin state can be dealt with by
conditioning all descriptions and modeling on a given origin state. This
is the standard approach: all analyses are done conditional on being in
a given origin state. For instance, one may be interested in the duration
of poverty spells; descriptions of these durations are then given only for
persons who entered into a state of poverty.

Somewhat more involved is the treatment of situations where a given
origin state can be followed by one of several possible destination states.
We then have to treat the destination state variable as stochastic. Con-
ditional on a given origin state j, we can conceptualize such a situation
by a two-dimensional stochastic variable (Tj , Dj). The variable Tj gives
the duration in the origin state j until any event occurs, or until the
episode becomes right censored, and Dj ∈ Oj ∪{j} gives the destination
state reached at Tj , i.e. at the end of the episode, conditional on the
origin state j.

The goal then is to describe this two-dimensional variable.2 We can
first look at the marginal duration variable Tj , i.e. the duration in the

2Cf. for the following concepts Blossfeld et al. [1986, p. 59], and Lancaster [1990, p. 99].
A discussion of the competing risks problem in the biometrical context is given by
Gail [1975]. However, we should clearly distinguish between the biometrical concept
of competing risks and situations with alternative destination states. In the classical
competing risks case, there is only a single destination state (death of an individual,
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origin state j until any event occurs. The distribution of this variable
may be described by overall survivor and density functions, and by an
overall transition rate

Gj(t) = Pr (Tj > t)

fj(t) = − d

dt
Gj(t)

rj(t) =
fj(t)
Gj(t)

With these concepts we get a description for the duration as if we had
collapsed all different destination states into only one. But, in fact, we are
interested in the different risks associated with the different destination
states. So the concepts must be distinguished accordingly.

This is most easily done using the transition rate.3 In generalizing
(2) the transition rate from the given origin state j to destination state
k ∈ Dj is defined as

rjk(t) = lim
∆t→0

Pr (t ≤ Tj < t + ∆t, Dj = k | Tj ≥ t)
∆t

(5)

This gives the risk, or the conditional probability if we look at a small
time interval ∆t, that a transition from the given origin state j to the
destination state k takes place at t, or in the time interval [t, t + ∆t),
given that no event occurred until time t.

Because we always assume that the destination states are mutually
exclusive, the overall transition rate rj(t), from the given origin state j
to any destination state, can be expressed as

rj(t) =
∑

k∈Dj

rjk(t)

Using the general equality (4) it follows that

Gj(t) = exp
{
−
∫ t

0

rj(τ) dτ

}
=
∏

k∈Dj

exp
{
−
∫ t

0

rjk(τ) dτ

}

or failure of a machine), but two or more risk factors can lead to this event. In typical
sociological applications the situation is quite different: individuals can leave a given
origin state into one of several possible destination states.
3In the case of two or more destination states, the transition or hazard rate is often
called a transition intensity. However, it should not cause undue confusion to use the
same term transition rate in all cases.
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This shows that the overall survivor function Gj(t) may be written as a
product of pseudosurvivor functions defined as

G̃jk(t) = exp
{
−
∫ t

0

rjk(τ) dτ

}
They are called this way because there is no direct survivor function
interpretation of these functions. They are, however, quite useful when
deriving likelihood expressions for transition rate models.

To get concepts for a direct interpretation of destination-specific tran-
sition rates we continue with a definition of transition-specific distribu-
tion functions F̃jk(t), giving the probability that a transition to destina-
tion state k, from the given origin state j, takes place until t.

F̃jk(t) = Pr (Tj ≤ t, Dj = k) (6)

Although the meaning of this concept is obvious it is not a proper dis-
tribution function in the normal sense, since we have

F̃jk(∞) = πjk

where πjk is the probability of reaching, at any point of time, the destina-
tion state k, given the origin state j; and if there is more than one possible
destination state this probability is clearly less then one. Therefore, (6)
is sometimes called a subdistribution function, e.g. by Kalbfleisch and
Prentice [1980, p. 167]. The same is to be said if we look at the density
functions

f̃jk(t) =
d

dt
F̃jk(t)

This, again, is not a proper density function, because it does not integrate
to unity, and so it is sometimes called a subdensity function. However,
we have

f̃jk(t) = lim
∆t→0

Pr (t ≤ Tj < t + ∆t,Dj = k)
∆t

(7)

and so it is easy to adjust our definitions to become

Fjk(t) =
F̃jk(t)
πjk

(8)

fjk(t) =
f̃jk(t)
πjk

(9)
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Now Fjk(t) and fjk(t) may be regarded as concepts describing distribu-
tions in the usual sense.4 The range of this distributions may be thought
of as the set of all individuals who leave the given origin state for a
specific destination state. And the overall distribution Fj(t) may be re-
garded as a mixture of these destination-specific distributions, with the
πjk as weights:

Fj(t) =
∑

k∈Dj

F̃jk(t) =
∑

k∈Dj

πjk Fjk(t) (10)

It seems not sensible to define destination-specific survivor functions
since this would imply a “conditioning on the future”. It is quite possible,
however, to express destination-specific transition rates by the overall
survivor function and destination-specific densities:

rjk(t) =
f̃jk(t)
Gj(t)

= πjk
fjk(t)
Gj(t)

(11)

The first part follows from (5) and (7), the second part follows from (9).
The focus of modeling can finally be described as follows: Estimation

and evaluation of models for stochastic variables (Tj , Dj) that measure
the duration of being in an origin state j until a transition to a des-
tination state Dj occurs. This is done conditionally on a given origin
state.

Multi-episode data. The term multi-episode data is normally used to
denote a situation where each individual contributes a varying number of
episodes to a given episode data set. There is then a set, U , of individuals,
and for each individual u ∈ U , there is a series of Mu episodes (Mu ≥ 1).
This results in a set of N episodes,

N =
∑
u∈U

Mu

A formal representation can be given similar to the single episode case.
One only has to add, for each single episode, two more pieces of infor-
mation: an identification number of the individual to which the episode
belongs, and the serial number of the episode. A complete description of
a sample of multi-episode data is then given by

(ui,mi, oi, di, si, ti, xi) i = 1, . . . , N (12)

4We assume that the probabilities πjk add to unity. This assumption can be met by
defining a complete destination state space.
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where ui is the identification number of the individual, or any other unit
of analysis, the ith episode belongs to; and mi is the serial number of
the episode. All other variables are defined as in the single episode case.
oi is the origin state, di is the destination state, si is the starting time,
ti is the ending time, and xi is a vector of covariates associated with the
episode.

Compared with the single episode case, there are now a few more
consistency requirements. It is not only required that the duration of
each episode is greater than zero. In addition, there is an ordering of the
episodes for each individual, given by the set of serial numbers for the
episodes. In particular, it is required that the starting time of an episode
is not less than the ending time of a previous episode.

As already mentioned, a set of multi-episode data can also be viewed
as a set of single episodes, simply disregarding the connection between
episodes and individuals. Of course, statistical models for episode data
should then take into account that episodes contributed by the same
individual are probably not independent. However, this requirement is
conditional on covariates and it is possible, therefore, to model multi-
episode data by adding, for each episode, covariates representing relevant
aspects of its past history.

While TDA is able to recognize the distinction between single and
multi-episode data, transition rate modeling is normally not done with
multi-episode data. Instead, one uses the just mentioned approach. The
data set is treated as a set of single episodes, and covariates are added to
control for serial dependence across time. In fact, the concept of multi-
episode data is only necessary when the analytical focus is not on tran-
sitions, but on describing individual event histories over a longer period
of time. However, episode data structures are not well suited for this
purpose. The concept of sequence data provides a useful alternative, see
3.4.
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3.3.2 Defining Episode Data

The basic command for defining an episode data structure is edef with
syntax shown in Box 1. The first four parameters are required.1 The
parameter

org = expression,

must be used to define an origin state for the episodes. expression
can be a numerical constant, for instance, org=0 would define a zero
origin state for all episodes; or can refer to a data matrix variable, for
instance org=ORG would define the origin state by referring to variable
ORG. Also more complicated expression are possible but, in general, it
is more efficient to define variables outside the edef command. In the
same way, one has to use

des = expression,

to define a destination state,

ts = expression,

to define a starting time, and

tf = expression,

to define the ending time of the episodes. Note that origin and desti-
nation states must be nonnegative integers; also all starting times must
be nonnegative, and each episode must have a strictly positive duration,
always calculated as tf - ts.

Given these parameters in the edef command, TDA creates an episode
data structure based on the currently selected cases of the data matrix.
This data structure remains active until it is replaced by a new edef com-
mand, the tsel command is used for a new temporary case selection, or
the clear command is used to remove a variable required to maintain
the episode data structure. If TDA has successfully created an episode

1If the edef command is used without any parameters it provides information about
the currently defined episode data (if any).
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Box 1 Syntax for edef command

edef (

org=..., origin state
des=..., destination state
ts=..., starting time
tf=..., ending time
id=..., ID number
sn=..., spell number
maxtran=..., maximum number of transitions, def. 100
VName=..., definition of type 5 variables
... can be repeated
split=..., variables for episode splitting

);

data structure, it shows a table with information about all transitions in
the standard output.

Except for org, des, ts and tf, all other parameters in the edef
command are optional.

1. The maxtran parameter can be used to change the maximum number
of transitions, default is maxtran=100.

2. The id and sn parameters can be used to define multi-episode data.
The syntax is

id = expression,

to define an ID number for the episodes, and

sn = expression,

to define spell numbers. TDA then assumes that the episodes in the data
matrix are ordered with respect to the ID variable. Spell numbers must
be nonnegative integers and should be in ascending order.

3. The split parameter can be used to define variables for episode
splitting. If used, it must be the last parameter in the edef command.
The syntax is

split = varlist,

where varlist is a list of variables separated by commas. Type 5 vari-
ables (see below) cannot be used for episode splitting. Splitting is done as
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follows. Let (oi, di, si, ti) denote the ith episode and Si the corresponding
value of one of the variables specified in varlist. Then, if si < Si < ti,
the episode is split into two parts: (oi, oi, si, Si) and (oi, di, Si, ti). This
is done recursively for all variables in varlist. Note that episode split-
ting does not change the internal data matrix. Episode splitting is only
performed when (and while) procedures request episode data. In fact,
currently only three commands recognize episode splitting: the epdat
command for writing episode data into an output file and the rate and
frml commands for estimating transition rate models. If the split pa-
rameter was used in the edef command, these procedures simply get
splits whenever they request a new episode.

4. The edef command can also be used to create temporary (type 5)
variables based on the episode data structure. The syntax is

VName <s>[pfmt] = expression,

and is identical to the syntax used for defining variables with the nvar
command (see 2.2). VName is the variable name, <s> is an optional storage
size, default is 4, and [pfmt] is an optional print format. In addition to
all standard operators, expression may also contain the episode data
operators, org, des, ts, tf, and sn, described in 5.2.8. These operators
provide the corresponding values for the current episode, or split, and
can be used to create time-varying variables based on episode splitting.
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3.3.3 An Example Data Set

To illustrate episode data we use an example data set taken from the
German Life History Study (GLHS) collected at the Max Planck Institut
für Bildungsforschung in Berlin. The same data set is used in Blossfeld
and Rohwer [1995]. We thank Karl Ulrich Mayer and Hans Peter Bloss-
feld who kindly provided this data set.

The GLHS provides retrospective information about the life histories
of men and women from the birth cohorts 1929–31, 1939–41, and 1949–
51, collected in the years 1981–1983 (Mayer and Brückner, 1989). Our
example data set contains 600 job episodes from 201 randomly selected
respondents. Each record in this file represents an employment episode,
and the consecutive jobs of a respondent’s career are stored successively
in the file. For some individuals there is only a single job episode, whereas
for others there is a sequence of two or more jobs.

The data file, rrdat.1, contains 12 variables that are described briefly
in Box 2. Column refers to the position of the variable in the data file,
which is free format, meaning that the numerical entries are separated
by a blank character.

ID identifies the individuals in the data set. Because the data file contains
information about 201 individuals, there are 201 different ID numbers.
The numbers are arbitrarily chosen and are not contiguous.

NOJ gives the serial number of the job episode, always beginning with
job number 1. For instance, if an individual in our data set has had
three jobs, the data file contains three records for this individual with
job number 1, 2, and 3, respectively. Note that only job episodes
are included in this data file. If an individual has experienced an
interruption between two consecutive jobs, the difference between the
ending time of a job and the starting time of the next job may be
greater than 1.

TS is the starting time of the job episode, in century months. (A century
month is the number of months from the beginning of the century;
1 = January 1900.) The date given in this variable records the first
month in a new job.

TF is the ending time of the job episode, in century months. The date
given in this variable records the last month in the job.

SEX records the sex of the individual, coded 1 for men and 2 for women.
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Box 2 Variables in data file rrdat.1

Variable Column Description

-----------------------------------------------------

ID C1 ID of individual

NOJ C2 Serial number of the job

TS C3 Starting time of the job

TF C4 Ending time of the job

SEX C5 Sex (1 men, 2 women)

TI C6 Date of interview

TB C7 Date of birth

TE C8 Date of entry into the labor market

TM C9 Date of marriage (0 if no marriage)

PRES C10 Prestige score of job i

PRES1 C11 Prestige score of job i + 1

EDU C12 Highest educational attainment

Box 3 First records of data file rrdat.1

ID NOJ TS TF SEX TI TB TE TM PRES PRES1 EDU

--------------------------------------------------------

1 1 555 982 1 982 351 555 679 34 -1 17

2 1 593 638 2 982 357 593 762 22 46 10

2 2 639 672 2 982 357 593 762 46 46 10

2 3 673 892 2 982 357 593 762 46 -1 10

3 1 688 699 2 982 473 688 870 41 41 11

3 2 700 729 2 982 473 688 870 41 44 11

3 3 730 741 2 982 473 688 870 44 44 11

3 4 742 816 2 982 473 688 870 44 44 11

3 5 817 828 2 982 473 688 870 44 -1 11

TI is the date of the interview, in century months. Using this information,
one can decide whether an episode is right censored or not. If the
ending time of an episode (TF) is less than the interview date, the
episode ended with an event, otherwise the episode is right censored.

TB records the birth date of the individual, in century months. Therefore,
TS minus TB is the age, in months, at the beginning of a job episode.

TE records the date of first entry into the labor market, in century months.

TM records whether/when an individual has married. If the value of this
variable is positive, it gives the date of marriage (in century months).
For still unmarried individuals at the time of the interview, the vari-
able is coded 0.

PRES records the prestige score of the current job, that is, the job episode
in the current record of the data file.
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Box 4 Command file ed1.cf (single episode data)

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

# define additional variables

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1,

DUR [3.0] = TF - TS + 1,

);

edef( # define single episode data

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

PRES1 records the prestige score of the consecutive job, if there is a next job,
otherwise a missing value (-1) is coded.

EDU records the highest educational attainment before entry into the labor
market. Lower secondary school qualification (Hauptschule) without
vocational training is equivalent to 9 years, middle school qualifica-
tion (Mittlere Reife) is equivalent to 10 years, lower secondary school
qualification with vocational training is equivalent to 11 years, middle
school qualification with vocational training is equivalent to 12 years.
Abitur is equivalent to 13 years, a professional college qualification
is equivalent to 17 years, and a university degree is equivalent to 19
years.
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Box 5 Output from ed1.cf command (single episode data)

> edef(...)

-----------------------------------------------------------------

Creating new single episode data. Max number of transitions: 100.

Definition: org=0, des=DES, ts=0, tf=DUR

Mean

SN Org Des Episodes Weighted Duration TS Min TF Max Excl

--------------------------------------------------------------------

1 0 0 142 142.00 128.18 0.00 428.00 -

1 0 1 458 458.00 49.30 0.00 350.00 -

Sum 600 600.00

Number of episodes: 600

Successfully created new episode data.

Box 3 shows the first nine records of data file rrdat.1. Note that all
dates are coded in century months. Thus, 1 means January 1900, 2 means
February 1900, 13 means January 1901, and so on. In general:

YEAR = floor((DATE− 1) / 12) + 1900
MONTH = (DATE− 1) % 12 + 1

where DATE is given in century months, and MONTH and YEAR refer to
calendar time. The floor operator provides the largest integer less than,
or equal to, its argument, and “%” is the modulus operator .1 For instance,
the first individual (ID = 1) has a single job episode. The starting time
is given as century month 555, corresponding to March 1946, and the
ending time is 982 = October 1981. Because this is equal to the interview
month, the episode is right censored.

Example 1 Command file ed1.cf in Box 4 illustrates how to use the
example data file rrdat.1 to define single episode data. The standard
output from the edef command is shown in Box 5. 458 episodes end
in an event, transition from 0 to 1, the mean duration is 128 months;
142 episodes are right censored. Of course, mean duration for censored
episodes is no reasonable estimate but might provide useful information
about the data. Since we have not used the cwt command to define
case weights, the number of episodes with and without weights are the
same. The column labelled TSMin shows the minimum starting time, the

1Given two integer numbers, n and m, n % m is the remainder after dividing n by
m. For instance: 13% 12 = 1.
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Box 6 Command file ed2.cf (alternative destination states)

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

# define additional variables

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

# three alternative destination states

DES [1.0] = if eq(TF,TI) then 0

else if gt(PRESN/PRES - 1,0.2) then 1

else if lt(PRESN/PRES - 1,0.0) then 3 else 2,

DUR [3.0] = TF - TS + 1,

);

edef( # define single episode data

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

column labelled TSMax shows the maximum ending time for the corre-
sponding episodes. The final column, labelled Excl, is only used when
all episodes, for a given origin state, are right censored. There are then
no transitions and these episodes will not be used for model estimation.

Command file ed1.cf will be the starting point for many examples
in the rest of this part of the User’s Manual. We simply add further
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Box 7 Output from ed2.cf command (alternative destination states)

> edef(...)

-----------------------------------------------------------------

Creating new single episode data. Max number of transitions: 100.

Definition: org=0, des=DES, ts=0, tf=DUR

Mean

SN Org Des Episodes Weighted Duration TS Min TF Max Excl

-------------------------------------------------------------------

1 0 0 142 142.00 128.18 0.00 428.00 -

1 0 1 84 84.00 45.05 0.00 326.00 -

1 0 2 219 219.00 45.91 0.00 350.00 -

1 0 3 155 155.00 56.40 0.00 332.00 -

Sum 600 600.00

commands using the episode data defined with the edef command.

Example 2 Command file ed2.cf in Box 6 illustrate the definition of
single episode data with alternative destination states. The command
file is almost identical with ed1.cf, only the definition of destination
states (variable DES) has been changed. We now distinguish three differ-
ent destination states depending on the kind of occupational move.

Part of the standard output from ed2.cf is shown in Box 7. 84
episodes end in an upward move, 155 in a downward move, and 219
do not change the prestige level. The number of right censored episodes
has, of course, not changed.

This command file file will often be used in later sections to illustrate
statistical methods for episodes with alternative destination states.

Example 3 To illustrate the definition of multi-episode data, we use
command file ed3.cf (not shown). It is almost identical with ed1.cf,
only the parameters id=ID and sn=SN have been added to the edef
command. Part of the standard output is shown in Box 8. The result
is typical for multi-episode data. All 201 individual have a first episode,
somewhat less have also a second episode, only few have more than three
or four episodes. In this example, there are up to 9 episodes, but only a
single individual has, in fact, these 9 episodes. Consequently, this way of
partitioning episode data is not well suited for statistical analysis. While
it would be possible, in principle, to estimate different models for each
spell number, this is practically not possible with most multi-episode
data sets; there are simply not enough data for higher spell numbers.
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Box 8 Part of standard output from ed3.cf (multi-episode data)

> edef(...)

----------------------------------------------------------------

Creating new multi-episode data. Max number of transitions: 100.

Definition: id=ID, sn=SN, org=0, des=DES, ts=0, tf=DUR

Mean

SN Org Des Episodes Weighted Duration TS Min TF Max Excl

-------------------------------------------------------------------

1 0 0 16 16.00 233.44 0.00 428.00 -

1 0 1 185 185.00 52.73 0.00 326.00 -

Sum 201 201.00

-------------------------------------------------------------------

2 0 0 36 36.00 150.17 0.00 407.00 -

2 0 1 126 126.00 52.30 0.00 350.00 -

Sum 162 162.00

-------------------------------------------------------------------

3 0 0 38 38.00 121.74 0.00 329.00 -

3 0 1 69 69.00 50.36 0.00 332.00 -

Sum 107 107.00

-------------------------------------------------------------------

4 0 0 24 24.00 85.33 0.00 340.00 -

4 0 1 38 38.00 37.71 0.00 146.00 -

Sum 62 62.00

-------------------------------------------------------------------

5 0 0 9 9.00 110.22 0.00 328.00 -

5 0 1 23 23.00 22.61 0.00 70.00 -

Sum 32 32.00

-------------------------------------------------------------------

6 0 0 8 8.00 45.75 0.00 127.00 -

6 0 1 12 12.00 43.75 0.00 112.00 -

Sum 20 20.00

-------------------------------------------------------------------

7 0 0 7 7.00 114.14 0.00 295.00 -

7 0 1 4 4.00 52.75 0.00 96.00 -

Sum 11 11.00

-------------------------------------------------------------------

8 0 0 3 3.00 65.00 0.00 172.00 -

8 0 1 1 1.00 72.00 0.00 72.00 -

Sum 4 4.00

-------------------------------------------------------------------

9 0 0 1 1.00 34.00 0.00 34.00 *

---------------------------------------------------------------------

Sum 600 600.00
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3.3.4 Writing Episode Data

Having defined episode data, they can be written into an output file. This
is particularly useful for episode splitting. The command is epdat with
syntax shown in Box 1. All parameters, except the output file name
on the right-hand side, are optional. The epdat command writes the
currently defined episode data into the specified output file; the ap=1
parameter can be used to append the data to the end of an already
existing file. The maximum number of cases can be controlled with the
noc parameter. As default, the following variables are written:
1. The ID number or, for single episode data, simply the case number,

print format: 6.0;

2. The spell number; always 1 for single episode data;
print format 3.0;

3. The number of splits; always 1 if without episode splitting;
print format 3.0;

4. The current split number; always 1 if without episode splitting;
print format 3.0;

5. The origin stae; print format 3.0;

6. The destination state; print format 3.0;

7. The starting time;

8. The ending time. The default print format for the starting and ending
time variables is 6.2 but may be changed with the fmt parameter).

To add further variables to the output file, one can use the parameter

v = varlist,

where varlist is a list of variables separated by commas. These can be
any variables contained in the current data matrix. In particular, one can
use type 5 variables defined inside the currently active edef command.

As a further option, one can use the dtda parameter to request an
additional output file containing a description of the output data file.
This description follows the TDA syntax for reading data files and can
directly be used as a command file.
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Box 1 Syntax for epdat command

epdat (

noc=..., maximum number of cases
fmt=..., print format for ts and tf, def. 6.2
v=..., list of additional variables
ap=1, append new data to end of output file
dtda=..., TDA description of output file

) = fname;

Box 2 Episode data file ed1.dat

ID SN ORG DES TS TF S1 S2

-------------------------

1 1 1 2 0 10 11 20

1 2 2 3 10 12 11 20

1 3 3 3 12 30 11 20

2 1 2 1 0 20 15 8

2 2 1 1 20 35 15 8

Example 1 To illustrate the epdat command we use the example data
ed1.dat, shown in Box 2. There are two covariates that will be used
for episode splitting. The command file, ed4.cf, is shown in Box 3. It
first reads the data with an nvar command and then defines a single
episode data structure. The episodes are split with variables S1 and
S2. In addition, the edef command defines two time varying dummy
variables, SD1 and SD2. They switch from 0 to 1 as soon as the process
time reaches the dates given in S1 and S2, respectively.

The resulting output file, d, is shown in Box 4. (The header, shown in
this box, is not written into the output file.) How the program performs
episode splitting should be obvious from this example. For instance, the
fourth episode is split two times, first based on S2 = 8, then with S1 =
15. Also the definition of the time-dependent dummy variables should
be easily understandable. For instance, SD1 goes from 0 to 1 as soon as
S1 becomes greater than, or equal, to the starting time of the current
split.
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Box 3 Command file ed4.cf

nvar(

dfile = ed1.dat, # data file

ID [1.0] = c1, # identification number

SN [1.0] = c2, # spell number

ORG [1.0] = c3, # origin state

DES [1.0] = c4, # destination state

TS [2.0] = c5, # starting time

TF [2.0] = c6, # ending time

S1 [2.0] = c7, # first covariate

S2 [2.0] = c8, # second covariate

);

edef(

ts = TS, # starting time

tf = TF, # ending time

org = ORG, # origin state

des = DES, # destination state

SD1 = le(S1,ts), # time-dependent dummy

SD2 = le(S2,ts), # time-dependent dummy

split = S1,S2, # episode splitting

# must be the last parameter

);

epdat( # write data to d

v = S1,SD1,S2,SD2,

dtda = t,

) = d;

Box 4 Output file, d, created by command file ed4.cf

ID SN NSP SPN ORG DES TS TF S1 SD1 S2 SD2

--------------------------------------------------

1 1 1 1 1 2 0.00 10.00 11 0 20 0

2 1 2 1 2 2 10.00 11.00 11 0 20 0

2 1 2 2 2 3 11.00 12.00 11 1 20 0

3 1 2 1 3 3 12.00 20.00 11 1 20 0

3 1 2 2 3 3 20.00 30.00 11 1 20 1

4 1 3 1 2 2 0.00 8.00 15 0 8 0

4 1 3 2 2 2 8.00 15.00 15 0 8 1

4 1 3 3 2 1 15.00 20.00 15 1 8 1

5 1 1 1 1 1 20.00 35.00 15 1 8 1
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3.3.5 Merging Episode Data

The ejoin command can be used to process one or two episode data
files. In any case, if episodes are overlapping, they are split in such a way
that overlapping parts get appropriate levels. If there are two episode
data files, they are merged into one episode data file. The syntax of the
command is shown in the following box.

ejoin (

if1=..., name of first input file
if2=..., name of second input file
max=..., max block size, def. 1000
nw=..., max number of levels, def. 1
len=..., max record length, def. 1000
noc=..., read maximal noc records, def. all
fmt0=..., print format for basic variables
fmt1=..., print format for covariates, file 1
fmt2=..., print format for covariates, file 2

) = output file;

Input files must be free-format files with at least 6 numerical entries in
each record as follows:

1. Case Id used to identify blocks,

2. Number of records (spells) in current block,

3. Record (spell) number in current block,

4. Starting time of spell,

5. Ending time of spell,

6. State (must be a non-negative integer).

Any additional entries are treated as covariates. The number of entries
is determined from the first data record in each file.
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Note that it is assumed that the input data files are sorted first with
respect to the Id variable and, inside each block, with respect to the
starting times of the spells.

Each record of the output file will contain the following entries.

1. Case Id,

2. Number of records (spells) in current block,

3. Record (spell) number in current block,

4. Level number (0,1,2,. . . ),

5. Starting time of spell,

6. Ending time of spell,

7. State taken from file 1

8. State taken from file 2 (only if there are two input files).

The print format for these entries can be specified with the fmt0 param-
eter. Following these first 7 or 8 entries will be written any covariates
that may be present in file 1; the print format for these entries can be
controlled with the fmt2 parameter. Finally follow any covariates from
file 2 if there are any; the print format can be controlled with the fmt2
parameter. If the number of entries in the format parameters is less than
required the last one is repeated.

Example 1 To illustrate the ejoin command we use the two episode
data files shown in Box 1. Both files contain overlapping episodes. The
ejoin command shown in the same box merges these data files into a
single one as shown in Box 2.
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Box 1 Two episode data files and a command file (ej1.cf)

ej1.dat ej2.dat

------------------------------- --------------------------

ID NS SN TS TF S X1 X2 ID NS SN TS TF S Y1

------------------------------- --------------------------

1 2 1 0 2 1 1.1 11.1 1 2 1 1 4 3 5.5

1 2 2 1 5 2 2.2 22.2 1 2 2 3 6 4 6.6

2 4 1 3 6 3 3.3 33.3

2 4 2 4 5 4 4.4 44.4

2 4 3 5 8 5 5.5 55.5

2 4 4 9 10 6 6.6 66.6

ejoin(

if1 = ej1.dat,

if2 = ej2.dat,

nw = 3,

fmt0 = 4,

fmt1 = 8.4,

fmt2 = 8.4,

) = ej1.d;

Box 2 Output file created by ej1.cf

ID NS SN LEV TS TS S1 S2 X1 X2 Y1

----------------------------------------------------------------

1 8 1 0 0 1 1 -3 1.1000 11.1000 -3.0000

1 8 2 0 1 2 1 3 1.1000 11.1000 5.5000

1 8 2 1 1 2 2 -3 2.2000 22.2000 -3.0000

1 8 3 0 2 3 2 3 2.2000 22.2000 5.5000

1 8 4 0 3 4 2 3 2.2000 22.2000 5.5000

1 8 4 1 3 4 -3 4 -3.0000 -3.0000 6.6000

1 8 5 0 4 5 2 4 2.2000 22.2000 6.6000

1 8 6 0 5 6 -3 4 -3.0000 -3.0000 6.6000

2 8 1 0 3 4 3 -3 3.3000 33.3000 -3.0000

2 8 2 0 4 5 3 -3 3.3000 33.3000 -3.0000

2 8 2 1 4 5 4 -3 4.4000 44.4000 -3.0000

2 8 3 0 5 6 3 -3 3.3000 33.3000 -3.0000

2 8 3 1 5 6 5 -3 5.5000 55.5000 -3.0000

2 8 4 0 6 8 5 -3 5.5000 55.5000 -3.0000

2 8 5 0 8 9 -3 -3 -3.0000 -3.0000 -3.0000

2 8 6 0 9 10 6 -3 6.6000 66.6000 -3.0000
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3.4 Sequence Data

This chapter introduces the concept of sequence data as used in TDA.
The subsections are as follows.

3.4.1 Sequence Data Concepts

3.4.2 Defining Sequence Data

3.4.3 Writing Sequence Data

3.4.4 Deriving Sequences from Episode Data

3.4.5 State Indicator Matrices

3.4.6 Random Sequences
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3.4.1 Sequence Data Concepts

Sequence data will be defined with respect to a nonnegative discrete time
axis T = {0, 1, 2, . . .} to stress that we are mainly interested in sequences
evolving in time. Of course, in some applications as, for instance, in the
analysis of DNA sequences, such an intrinsic relationship to time need
not be assumed. However, for most applications in the social sciences,
we use sequence data as a representation of event-history data which, by
definition, evolve in time.

We also assume a finite (discrete) state space, say Y, and use the
convention that nonnegative integers represent valid states and negative
integers represent non-valid (undefined or missing) states. Note that valid
states are restricted to the range 0 – 32000. Given a finite length of the
time axis, say T , an individual sequence can then be defined as

y0, y1, y2, . . . , yT

where yt is a valid or an undefined state at time t.
In most applications, there is not just one single sequence but a sam-

ple of sequences. We refer to the sample members as individuals but, of
course, any other unit of analysis (which can be identified across time)
is possible. Indexing the sample members by i = 1, . . . , N , we then have
a sample of sequences

yi = (yi0, yi1, . . . , yiT ) i = 1, . . . , N

In the following, this will be called a sequence data structure. Finally, we
have to consider that, for many applications, there can be two or more
different sequences for each unit of analysis. We may have data showing
how individuals develop in two or more state spaces simultaneously. Or
each unit consists of two or more individuals, and we have one or more
sequences for each of these individuals. We have then to consider two
ore more sequence data structures simultaneously. Using k = 1, . . . ,K
to index the sequence data structures, we have

yik = (yik,0, yik,1, . . . , yik,T ) i = 1, . . . , N, k = 1, . . . ,K

yik denotes the kth sequence for the ith individual. This will be called a
K-dimensional sequence data structure. In addition, we use Yk to denote
the state space for the kth sequence data structure, and Y = Y1∪· · ·∪YK .
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As said above, we assume that sequences are defined on a nonnegative
discrete time axis (t = 0, 1, 2, . . .). This can be a calendar time axis or
a process time axis. In both cases, the time axis begins with t = 0. The
difference is that a calendar time axis does not have a natural origin and,
consequently, fixing an origin t = 0 is simply a convention for providing
time points. On the other hand, the origin of a process time axis has a
substantive meaning; t = 0 then represents the date of an event providing
the entry point of the process.

Example 1 To illustrate, assume we have some monthly measured
data on employment status, say 1 = employed, 0 = unemployed, ob-
served for the five-year period 1990 – 1994. We can then define a cal-
endar time axis using the convention 1 = January 1990, 2 = February
1990, and so on. We might have observed two individuals with sequences

1 1 1 0 0 1 1 1 1 ...
-1 -1 1 1 0 0 0 1 0 ...

In this example, the two sequences are represented on a calendar time
axis. The second individual is only observed beginning in March 1990, so
there are two month with missing states. Of course, there may be more
missing values throughout and at the end of the sequences.

Alternatively, to represent the data on a process time axis, one has
first to decide on an appropriate origin. In this example, this could be
the entry into the first (observed) unemployment spell. The sequences
for the two individuals would then look as follows:

0 0 1 1 1 1 ...
0 0 0 1 0 ...

The definition of sequence data for TDA (see 3.4.2) is independent of
the distinction between calendar and process time. The distinction is
important, however, when applying statistical procedures.
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3.4.2 Defining Sequence Data

Sequences can be defined as a sequence of states or, alternatively, by a
sequence of events. TDA supports both methods. The basic command
is seqdef with syntax shown in Box 1. The command requires a list of
variables to be given on the right-hand side. All other parameters are
optional.

1. The sn parameter can be used to specify the number of the sequence
data structure: sn = k, where k = 1, . . . , 100. There can be up to 100
simultaneously defined sequence data structures, default is sn=1.

2. The rc parameter can be used for recoding the states of sequences.
This option will be explained below.

3. The m parameter can be used to specify the type of input data. There
are two possibilities. First, if m=1 (default), it is assumed that there is a
separate variable for each time point. Given that the list of variables on
the right-hand side is

seqdef(...) = Y0, Y1, . . . , YT;

it is assumed that variable Yt contains the states for time point t. The
sequence data structure will consist of N sequences, one sequence for
each case (row) in the currently active data matrix, and each sequence
is defined for the time axis t = 0, 1, . . . , T . Alternatively, if m=2, it is
assumed that the sequence data structure is defined by a sequence of
events, specified by an even number of variables in the following way:

seqdef(...) = Y1, T1, . . . , Yq, Tq;

It is assumed, then, that the ith sequence begins at T1i in state Y1i

and ends at Tqi in state Yqi. The time variables T1, . . . , Tq must contain
integer values, and it is required that

T1i ≥ 0 and Tt,i > Tt−1,i (t = 2, . . . , q)

If the requirement is not met, TDA will print an error message. For
t < T1,i and t > Tq,i, states are undefined and get the missing value code
-1.
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Box 1 Syntax for seqdef command

seqdef (

sn=..., number of sequence data structure, def. 1
m=..., type of input data, def. 1
rc=..., option for recoding states

) = varlist;

The time axis. Associated with each sequence data structure is a time
axis. For the kth sequence data structure, the time axis begins at Tmin

k

and ends at Tmax
k . The definition depends on the sequence data type. If

m=1 and there are state variables Y0, Y1, . . . , YT , then

Tmin
k = 0 and Tmax

k = T

If m=2 and the variables used to define the sequence data structure are
Y1, T1, . . . , Yq, Tq, then

Tmin
k = min {T1i | i = 1, . . . , N} , Tmax

k = max {Tqi | i = 1, . . . , N}

If there are two or more sequence data structures, the range of their
common time axis is defined by

Tmin = min
k
{Tmin

k } and Tmax = max
k
{Tmin

k }

If an individual sequence is undefined for one of the time points, it will
get the missing value code -1.

Removing sequence data structures. A sequence data structure
defined with the seqdef commands remains defined until one of the
following conditions occurs:

• A new data structure with the same number is defined by using the
seqdef command again;

• A variable required to maintain the data structure is deleted with
the clear command. Note that all currently defined sequences will be
deleted if at least one required variable is removed with clear.

• The sequence data structure is explicitly deleted with the seqdel
command. This command can be used in two different ways. Using the
command

seqdel;
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Box 2 Sequence data file seq.d1

ID Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

---------------------------

1 7 3 3 1 3 3 7 7

2 3 3 7 1 1 -1 -1 3

3 -1 3 3 -1 1 1 1 1

4 1 1 3 3 3 3 -1 -1

5 7 3 3 1 3 3 7 7

without any arguments deletes all currently defined sequence data struc-
tures. Alternatively,

seqdel = k;

only deletes the sequence data structure k. If this data structure does not
exist, the command is ignored. To get information about the currently
defined sequence data structures, one can use the command

seq;

without any arguments. This displays a short table containing some basic
information about all currently defined sequence data structures.

Example 1 To illustrate the specification of sequence data we use the
data file seq.d1 shown in Box 2. There are fives sequences, the common
sequence length is eight time points. Assuming that the variables are
available in TDA’s internal data matrix, one can use the command

seqdef = Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7;

or alternatively

seqdef = Y0,,Y7;

to define a sequence data structure with default number 1. Complete
command files are shown in Box 3.

Part of TDA’s standard output when using one of these command files
is shown in Box 4. For each sequence data structure, the output shows
its number, the type (1 = defined by state variables, 2 = defined by a
series of events), the number of (state) variables, the range of the time
axis, the number of different states, and finally a list of state numbers.
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Box 3 Command file seq1.cf using seq.d1

first version a shorter version

--------------- -------------------

nvar( nvar(

dfile = seq.d1, dfile = seq.d1,

ID = c1, ID = c1,

Y0 = c2, Y{0,7} = c2,

Y1 = c3, );

Y2 = c4, seqdef = Y0,,Y7;

Y3 = c5,

Y4 = c6,

Y5 = c7,

Y6 = c8,

Y7 = c9,

);

seqdef = Y0,,Y7;

Box 4 Part of standard output from command file seq1.cf

Creating a new sequence data structure.

Sequence structure number: 1

Sequence type: 1

Currently defined sequences:

Sequence State Time axis Number

Structure Type Variables Minimum Maximum of States States

--------------------------------------------------------------

1 1 8 0 7 3 1 3 7

Range of common time axis: 0 to 7.

Box 5 Sequence data file seq.d2

data file corresponding sequences

--------------------- -------------------------

ID Y1 T1 Y2 T2 Y3 T3 0 1 2 3 4 5 6 7 8

--------------------- -------------------------

1 1 0 1 3 -1 4 1 1 1 1 -1 -1 -1 -1 -1

2 1 0 2 5 2 6 1 1 1 1 1 2 2 -1 -1

3 2 0 2 6 1 7 2 2 2 2 2 2 2 1 -1

4 1 0 2 6 -1 7 1 1 1 1 1 1 2 -1 -1

5 1 4 2 6 3 8 -1 -1 -1 -1 1 1 2 2 3
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Box 6 Part of standard output using seq.d2

Creating a new sequence data structure.

Sequence structure number: 1

Sequence type: 2

Currently defined sequences:

Sequence State Time axis Number

Structure Type Variables Minimum Maximum of States States

--------------------------------------------------------------

1 2 3 0 8 3 1 2 3

Range of common time axis: 0 to 8.

Box 7 Structure of a sequence data matrix

Sequence data Sequence data Time-independent

structure 1 structure 2 ... covariates

-----------------------------------------------------

1 | | | | |

| | | | |

N | | | | |

-----------------------------------------------------

Example 2 To illustrate the definition of sequence data based on events,
we use the data file seq.d2 shown in Box 5. The box also shows the
corresponding sequences. Again, data are for five cases. There are six
variables representing three events. To use this data file for a definition
of sequence data, the command should be

seqdef(m=2) = Y1,T1,Y2,T2,Y3,T3;

(A complete command file is provided as seq2.cf.) Part of TDA’s stan-
dard output is shown in Box 6.

The data matrix. Sequence data are defined by using variables which
are available in TDA’s internal data matrix. A sequence data structure
simply consists of pointers to the internal data matrix; there is no sep-
arate copy of the data. In general, for each sequence data structure,
the number of sequences equals the number of cases (individuals) in the
data matrix. If one wishes to define two ore more sequences for each
individual, the whole information for each individual must be contained
in a single data matrix row. Box 7 illustrates the data matrix structure.



3.4.2 defining sequence data 6

Box 8 Sequence data file seq.d3

ID Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 S1 T1 S2 T2 S3 T3

--------------------------- -----------------

1 7 3 3 1 3 3 7 7 1 0 1 3 -1 4

2 3 3 7 1 1 -1 -1 3 1 0 2 5 2 6

3 -1 3 3 -1 1 1 1 1 2 0 2 6 1 7

4 1 1 3 3 3 3 -1 -1 1 0 2 6 -1 7

5 7 3 3 1 3 3 7 7 1 4 2 6 3 8

Box 9 Command file seq3.cf

nvar(

dfile = seq.d3,

ID = c1,

Y{0,7} = c2,

S1 = c10,

T1 = c11,

S2 = c12,

T2 = c13,

S3 = c14,

T3 = c15,

);

seqdef = Y0,,Y7; # first sequence data structure

seqdef( # second sequence data structure

sn = 2,

m = 2,

) = S1,T1,S2,T2,S3,T3;

Note that some procedures allow to use time-independent covariates in
addition to sequence data which, by their nature, are time-varying. The
time-independent covariates can simply be specified by referring to some
data matrix variables as indicated in Box 7.

Example 3 To illustrate the definition of two parallel sequence data
structures, we combine seq.d1 and seq.d2 into a single data file, seq.d3,
as shown in Box 8. Box 9 shows the command file, seq3.cf. The nvar
command creates the data matrix corresponding to the data file, seq.d3.
The first seqdef command uses variables Y0,...,Y7 to define the first
sequence data structure. This command uses the default parameter val-
ues sn=1 and m=1. Then follows a second seqdef command to define
a second sequence data structure (sn=2) based on a sequence of events
(m=2). TDA’s standard output from the two seqdef commands is shown
in Box 10.
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Box 10 Part of standard output from seq3.cf

> seqdef=Y0,,Y7

---------------------------------------

Creating a new sequence data structure.

Sequence structure number: 1

Sequence type: 1

Currently defined sequences:

Sequence State Time axis Number

Structure Type Variables Minimum Maximum of States States

--------------------------------------------------------------

1 1 8 0 7 3 1 3 7

Range of common time axis: 0 to 7.

> seqdef(sn=2,m=2,)=S1,T1,S2,T2,S3,T3

---------------------------------------

Creating a new sequence data structure.

Sequence structure number: 2

Sequence type: 2

Currently defined sequences:

Sequence State Time axis Number

Structure Type Variables Minimum Maximum of States States

--------------------------------------------------------------

1 1 8 0 7 3 1 3 7

2 2 3 0 8 3 1 2 3

Range of common time axis: 0 to 8.

Recoding the state space. By default, values of state variables are
used without modification. Nonnegative values represent valid states,
and negative values represent undefined states (missing values). The
range for valid states is 0 – 32000.

When defining a new sequence data structure with the seqdef com-
mand, the rc parameter can be used to recode the values of the state
variables. The syntax is

rc = k1[j11, j12, . . .], k2[j21, j22, . . .], . . .,

Then, if one of the state variables has one of the values j11, j12, . . ., it
gets the new value k1, if it has one of the values j21, j22, . . ., it gets the
new value k2, and so on. Some of the integers in square brackets can be
negative to allow a recoding of missing values. It is required, however,
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Box 11 Command file seq4.cf

nvar(

dfile = seq.d1,

ID = c1,

Y{0,7} = c2,

);

seqdef(

rc = 9[-1],5[7,3],

) = Y0,,Y7;

seqpd = d;

Box 12 Part of output from command file seq4.cf

Creating a new sequence data structure.

Sequence structure number: 1

Sequence type: 1

Currently defined sequences:

Sequence State Time axis Number

Structure Type Variables Minimum Maximum of States States

-------------------------------------------------------------

1 1 8 0 7 3 1 5[3,7] 9[-1]

Range of common time axis: 0 to 7.

Output file d

----------------------------

ID Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

1 5 5 5 1 5 5 5 5

2 5 5 5 1 1 9 9 5

3 9 5 5 9 1 1 1 1

4 1 1 5 5 5 5 9 9

5 5 5 5 1 5 5 5 5

for all values j used inside the square brackets, that

−9 ≤ j ≤ smax

where smax denotes the highest state number in the original sequence
data. It is possible, therefore, only to recode missing values in the range
−1, . . . ,−9.

Example 4 To illustrate the recode option, we use data file seq.d1
(Box 2) and command file seq4.cf, shown in Box 11. As defined with
the rc parameter, state -1 is changed into 9, and states 3 and 7 are
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changed into 5. Part of the standard output, and the data file d created
with the seqpd command (see section 3.4.3, is shown in Box 12.

Using episode data. Although episode data and sequence data have
a quite different data structure, the seqdef command allows to directly
use single episode data for defining sequence data. Assume there are
variables ORG, DES, TS, and TF, which can be used to define single episode
data with the edef command (see 3.3.2). The same variables can then
be used to define sequence data with the command

seqdef (m=2) = ORG,TS,DES,TF;

Of course, this is no longer possible if the data matrix contains episode
splits or multi-episode data. In general, working with sequence data re-
quires that all information about an individual’s event history is con-
tained in a single row of the data matrix. However, a command to trans-
form multi-episode data into sequence data will be described in 3.4.4.
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3.4.3 Writing Sequence Data

Given a specification of sequence data, they can be written into an output
file. The command is seqpd with syntax shown in Box 1. Except for the
output file on the right-hand side, all parameters are optional.

1. The m parameter can be used to select a structure for the output file.
There are four options.
1. If m=1 (default), the output file will contain a single record for each

case in the data matrix, and the sequences will be concatenated hor-
izontally. The first entry in each record is the case number. See the
first example in Box 2.

2. If m=2, the output file contains a separate record for each sequence
data structure. The first entry in each record will contain the case
number, the second entry provides the sequence number. See the
second example in Box 2.

3. If m=3, the output file contains a separate record for each case and
time point. The first entry in each record gives the case number, the
second entry contains the time point. Then follow the states for all
currently defined sequences. This is equivalent to an episode data
file where episodes are split on the basis of time points. See the first
example in Box 3.

4. If m=4, the output file will be an episode data file based on the first
currently defined sequence data structure. See the second example in
Box 3.

2. The sel parameter can be used to select cases. The syntax is

sel = expression,

Then, only data matrix cases where the result of evaluating expression
is not equal to zero will be used for the output data file.

3. The v parameter with syntax v=varlist can be used to write vari-
ables into the output file. Values of the variables specified in varlist
will be written at the end of each output file record. The print format
for these variables will be the same as used in their definition. The print
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Box 1 Syntax for seqpd command

seqpd (

m=..., structure of output file, def. 1
sel=..., expression for case selection
v=..., add variables ... to output file
dtda=..., request TDA description file

) = fname;

Box 2 Illustration of seqpd command

Command: seqpd (m=1) = d.1;

first sequence second sequence

ID 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

-- -------------------------- -------------------------

1 7 3 3 1 3 3 7 7 -1 1 1 1 1 -1 -1 -1 -1 -1

2 3 3 7 1 1 -1 -1 3 -1 1 1 1 1 1 2 2 -1 -1

3 -1 3 3 -1 1 1 1 1 -1 2 2 2 2 2 2 2 1 -1

4 1 1 3 3 3 3 -1 -1 -1 1 1 1 1 1 1 2 -1 -1

5 7 3 3 1 3 3 7 7 -1 -1 -1 -1 -1 1 1 2 2 3

Command: seqpd (m=2) = d.2;

ID SN 0 1 2 3 4 5 6 7 8

-- -- --------------------------

1 1 7 3 3 1 3 3 7 7 -1

1 2 1 1 1 1 -1 -1 -1 -1 -1

2 1 3 3 7 1 1 -1 -1 3 -1

2 2 1 1 1 1 1 2 2 -1 -1

3 1 -1 3 3 -1 1 1 1 1 -1

3 2 2 2 2 2 2 2 2 1 -1

4 1 1 1 3 3 3 3 -1 -1 -1

4 2 1 1 1 1 1 1 2 -1 -1

5 1 7 3 3 1 3 3 7 7 -1

5 2 -1 -1 -1 -1 1 1 2 2 3

format for the case number is always 6.0; time points are written in a
4.0 format; and the print format for state variables is 2.0.

4. The dtda parameter with syntax

dtda = name of an output file,

can be used to request an additional output file that will contain a TDA
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Box 3 Illustration of seqpd command

seqpd(m=3) = d.3 seqpd(m=4) = d.4

---------------- ---------------------

ID T S1 S2 ID SN ORG DES TS TF

------------- ---------------------

1 0 7 1 1 1 7 3 0 1

1 1 3 1 1 2 3 1 1 3

1 2 3 1 1 3 1 3 3 4

1 3 1 1 1 4 3 7 4 6

1 4 3 -1 1 5 7 -1 6 8

1 5 3 -1 2 1 3 7 0 2

1 6 7 -1 2 2 7 1 2 3

1 7 7 -1 2 3 1 -1 3 5

1 8 -1 -1 2 4 -1 3 5 7

2 0 3 1 2 5 3 -1 7 8

2 1 3 1 3 1 -1 3 0 1

2 2 7 1 3 2 3 -1 1 3

2 3 1 1 3 3 -1 1 3 4

2 4 1 1 3 4 1 -1 4 8

2 5 -1 2 4 1 1 3 0 2

2 6 -1 2 4 2 3 -1 2 6

2 7 3 -1 4 3 -1 -1 6 8

2 8 -1 -1 5 1 7 3 0 1

3 0 -1 2 5 2 3 1 1 3

3 1 3 2 5 3 1 3 3 4

3 2 3 2 5 4 3 7 4 6

3 3 -1 2 5 5 7 -1 6 8

3 4 1 2

3 5 1 2

3 6 1 2

3 7 1 1

3 8 -1 -1

4 0 1 1

....

4 5 3 1

4 6 -1 2

4 7 -1 -1

4 8 -1 -1

5 0 7 -1

5 1 3 -1

5 2 3 -1

5 3 1 -1

5 4 3 1

5 5 3 1

5 6 7 2

5 7 7 2

5 8 -1 3
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description of the data file created with the seqpd command. This ad-
ditional output file can then be used as a command file to read the data
file.

Example 1 To illustrate the seqpd command, we use the data file
seq.d3 (see section 3.4.2). The command file seq5.cf (not shown) is
basically identical with seq3.cf (see 3.4.2). We have added four seqpd
commands, corresponding to the options m=1,2,3,4. The output files
created by these print commands are shown in boxes 2 and 3.
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3.4.4 Deriving Sequences from Episode Data

As mentioned in 3.4.2, single episode data can be used directly to define
sequence data. In general, if given an arbitrary multi-episode data file,
this is not possible and one needs a procedure to transform episode into
sequence data. One such procedure is provided by the seqpe command.
The syntax is shown in the following box. All parameters, except v, are
required.

seqpe (

id=..., ID variable
org=..., variable for origin state
des=..., variable for destination state
ts=..., variable for starting time
tf=..., variable for ending time
tp=..., definition of time points
v=..., add variables ... to output file

) = fname;

1. On the right-hand side of the command, one has to give the name of
an output file.

2. The parameters id=, org=, des=, ts=, and tf= must be used to pro-
vide variables containing the ID number, origin state, destination state,
starting time and ending time, respectively. These variables define the
multi-episode data.

3. The tp parameter must be used to provide a sequence of time points.
The syntax is

tp = t1, t2, . . . , tn or tp = t1 (d) t2

or a mixture of both expressions. Assuming d > 0, the second expression
is expanded into the sequence t1 + id (i = 0, 1, 2, . . .), as long as the
result is less than or equal to t2.

The output file created by the seqpe command contains one record
for each individual (identified by the ID variable). Each record begins
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Box 1 Command file seq6.cf

nvar(

dfile = d.4, # data file created with seq5.cf

noc = 22,

CASE <5>[6.0] = c1 , # case number

SN <2>[2.0] = c2 , # spell number

ORG <5>[2.0] = c3 , # origin state

DES <5>[2.0] = c4 , # destination state

TS <5>[4.0] = c5 , # starting time

TF <5>[4.0] = c6 , # ending time

);

seqpe( # create sequence data

id = CASE,

org = ORG,

des = DES,

ts = TS,

tf = TF,

tp = 0(1)7,

) = d;

Box 2 Output file (d) create by command file seq6.cf

ID 0 1 2 3 4 5 6 7

-- -----------------------

1 7 3 3 1 3 3 7 7

2 3 3 7 1 1 -1 -1 3

3 -1 3 3 -1 1 1 1 1

4 1 1 3 3 3 3 -1 -1

5 7 3 3 1 3 3 7 7

with a case number (always written in 6.0 format). Then follows a se-
quence of states, the length being equal to the number of time points
defined with the tp parameter. For each time point t, the algorithm
checks whether t falls into one of the episodes, that is, TS ≤ t < TF. If
successful, the current state of the individual is taken from the variable
specified with the org parameter, otherwise it is a missing value code
(-1). States are written in a 2.0 print format.

4. The v parameter can be used to specify a list of variables, printed at
the end of each record using their associated print formats. Note that
the values of these variables are taken from the first record for each set
of episodes belonging to the same individual.

Example 1 To illustrate the seqpe command, we use the example
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episode data file d.4, shown in Box 3.4.3-3. Remember that this file was
created from the first part of sequence data file seq.d3. So we can use
the seqpe command to transform this episode data file back into the
original sequence data file (actually seq.d1, see 3.4.2). The command
file is seq6.cf (Box 1). The nvar command reads the variables from the
data file d.4. The seqpe command creates the output file d containing
the sequences. It is shown in Box 2 and identical with the sequence data
file seq.d1 (see 3.4.2).
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3.4.5 State Indicator Matrices

It might happen that one wants to reorganize a sequence data structure
into what has been called a state indicator matrix, for instance, to apply
the method of correspondence analysis or some other projection method
(see the discussion in Heijden [1987]). The idea is to represent the state of
an individual at a specific time point t by a series of q dummy variables,
where q is the number of different states. Then, if the individual is in
state j at this point in time, the jth dummy variable gets the value one.

To create state indicator matrices, TDA provides the command seqsi
with syntax shown in Box 1. The command uses the first of the currently
defined sequence data structures to create a state indicator matrix and
then writes this matrix into the output file specified on the right-hand
side of the command. The tp parameter must be used to provide a
sequence of time points (for a description of the syntax, see 6.5.1); all
other parameters are optional.

1. The m parameter can be used to select sequences. If m=1 (default), the
command uses all sequences. If m=2, the command uses only sequences
having a valid state for all time points defined with the tp parameter.

2. The v parameter can be used to specify a list of variables. These
variables will be added to the records written into the output file.

3. The dtda parameter can be used to request a second output file
containing an nvar command to read the data file created with the
seqsi command.

The structure of the output file records is as follows:

• The first entry is the case number, written in 6.0 format.
• Then follow j = 1, . . . , q entries for the first time point; q is the

number of different states in the sequence data structure. Entry j is
1 if the sequence is in the jth state at this point in time, otherwise
zero. (Note that the states of a sequence are sorted in ascending order
and then mapped to internal state numbers: 0,1,2,. . . ; the q entries
for each point in time correspond to these internal state numbers.)

• For each additional time point specified with the tp parameter there
will be again q entries created in an analogous way.
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Box 1 Syntax for seqsi command

seqsi (

tp=..., definition of time points
m=..., option for case selection, def. 1
v=..., add variables ... to output file
dtda=..., request TDA description file

) = fname;

Box 2 Illustration of seqsi command, based on seq.d1

Command: seqsi(m=1,t=1(1)5,v=ID) = si.d1;

Output file: si.d1

1 3 7 1 3 7 1 3 7 1 3 7 1 3 7

----- ----- ----- ----- -----

Case t=1 t=2 t=3 t=4 t=5 ID

---- ----- ----- ----- ----- ----- --

1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1

2 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 2

3 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 3

4 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 4

5 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 5

Command: seqsi(m=2,t=1(1)5,v=ID) = si.d2;

Output file: si.d2

1 3 7 1 3 7 1 3 7 1 3 7 1 3 7

----- ----- ----- ----- -----

Case t=1 t=2 t=3 t=4 t=5 ID

---- ----- ----- ----- ----- ----- --

1 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 1

4 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 4

5 0 1 0 0 1 0 1 0 0 0 1 0 0 1 0 5

• Finally, any variables specified with the v parameter are written at
the end of the current record.

Example 1 To illustrate the seqsi command, we use the data file
seq.d1 (see 3.4.2) with q = 3 states. Box 2 shows the seqsi commands
(contained in command file seq7.cf) and the resulting output files, for
a time axis 1, . . . , 5 and for both options. With m=1, the output file
contains five records; with m=2 there are only three records containing
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those sequences which have valid states for all time points. Note the
mapping of states to the columns of the output file.
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3.4.6 Random Sequences

When experimenting with sequence data, it is sometimes convenient to
use random sequences, that is, sequences filled randomly with state num-
bers. To create such random sequences, TDA provides the command
seqrd with syntax shown in the following box.

seqrd (

ns=..., number of states, def. 2
len=..., length of sequences, def. 1
noc=..., number of sequences, def. 1000

) = fname;

The right-hand side must provide the name of an output file. The pa-
rameters can be used to specify the number of different states (ns), the
number of sequences (noc), and the length of the sequences (len). To
create the random states, TDA uses the formula

floor (r · ns) + 1

where ns is the number of different states, and r is a random number
which is equally distributed in the (0, 1) interval. For example, the com-
mand

seqrd (ns=3,noc=100,len=10) = rs.dat;

would generate an output file, rs.dat, containing 100 sequences each
consisting of 10 states randomly selected from {1, 2, 3}.
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3.6 Graphs and Relations

This chapter explains data structures for graphs and relations. It con-
tains the following sections.

3.6.1 Terminology

3.6.2 Graph Data Structures

3.6.3 Creating Relational Data

3.6.4 Relational Data Files

3.6.5 Plotting Graphs

3.6.6 Trees
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3.6.1 Terminology

A simple graph consists of a set of nodes, N , and a set of edges, E . It
will be assumed that the node set is a finite set of positive integers. Two
nodes i, j ∈ E are said to be connected if there is an edge (i, j) ∈ E .
The edge set may contain edges (i, i), for i ∈ N ; these edges will be
called loops. (In our terminology, we allow simple graphs to have loops.
The main distinction is then between simple graphs and multigraphs,
see below. If it is required that a simple graph does not contain loops
this will be explicitly mentioned.)

In an unvalued graph we only consider whether there is an edge
connecting two nodes. Alternatively, each edge may have an associated
value which will then be denoted by v(i, j). We shall adopt the conven-
tion that only non-negative real numbers are valid values. Consequently,
if v(i, j) ≥ 0, there is an edge connecting nodes i and j having the value
v(i, j). On the other hand, if v(i, j) < 0, this will mean that there is
no edge connecting i and j. (If procedures require valid edges to have
positive values this will be explicitly mentioned when describing these
procedures.) To represent unvalued and valued graphs we use the nota-
tion (N , E) and (N , E , v), respectively.

A graph is called undirected if we do not distinguish between the
edges (i, j) and (j, i). In a valued graph this will imply that v(i, j) =
v(j, i). We then simply speak of a connection between nodes i and j.
Alternatively, we may also consider directed graphs where we distinguish
between (i, j), an edge from i to j, and (j, i), an edge from j to i.

Figure 1 illustrates a simple undirected and unvalued graph consist-
ing of four nodes. There are two edges connecting, respectively, nodes 1
and 2, and 1 and 3. Node 4 is not connected to any other node and is
called an isolated node.

In a simple graph there is only one kind of edges represented by a
single edge set E . More generally, we can consider several kind of edges
simultaneously. This will be called a multigraph. A multigraph consisting
of m simple unvalued graphs will be denoted by

(N , E1, E2, . . . , Em)

Correspondingly, the notation

(N , E1, E2, . . . , Em, v1, v2, . . . , vm)
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1 2

3 4

Figure 1 Simple undirected and unvalued graph
consisting of four nodes and two edges.

will be used to represent a multigraph consisting of m valued simple
graphs.

A multigraph allows different interpretations. One interpretation as-
sumes that each edge set represents a different kind of connection be-
tween the nodes but that all connections hold simultaneously. Another
interpretation views a multigraph as a temporal sequence of simple
graphs.

There is a close connection between graphs and relations. Consider
a binary relation

r : N ×N −→ R

defined on a node set N . We can interpret this relation as representing
a graph by using the convention

(i, j) ∈ E ⇐⇒ r(i, j) ≥ 0

This will suffice for an unvalued graph. Of course, we can also think
of r(i, j) as representing the value of the edge (i, j). The graph will be
undirected if the relation is symmetrical.
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3.6.2 Graph Data Structures

Almost all TDA commands that use relational data (graphs) require a
previous definition of a relational data structure with the gdd command.
The syntax of this command is shown in Box 1.1

1. The command requires a list of variables containing information about
node numbers and edges. These variables must be available in a previ-
ously defined TDA data matrix (defined with the nvar command). What
kind of variables are required depends on the option selected with the
opt parameter. Each of these options will be explained below in turn.

2. Node numbers can be any positive integers. When creating a gdd
data structure, TDA maps the external node numbers, as provided by
the user, to internal node numbers being a set of contiguous integer
numbers, 1, 2, . . . , N , where N is the number of nodes of the graph.

3. As will be explained below, the gdd command can be used to define
multigraphs consisting of several single graphs. Most TDA commands
that use relational data provide an optional parameter, gn (graph num-
ber), to select a single graph from the currently defined multigraph. By
default, gn = 1, that is, the command uses the first graph.

4. The user can specify a graph type with the gt parameter. The options
are as follows:

1. gt=1 specifies an undirected unvalued graph: an edge from i to j
is assumed to exist if the input data contain an edge from i to j
or an edge from j to i.

2. gt=2 specifies an undirected valued graph. To make this interpre-
tation unique in cases where the input data contain both, an edge
(i, j) and an edge (j, i), there are three options: (a) If gt(1)=2, the
value of the undirected edge (i, j) is the minimum of v(i, j) and
v(j, i). This is the default interpretation and equal to gt = 2. (b)
If gt(2)=2, the value of the undirected edge (i, j) is the maximum

1If the gdd command is used without any arguments it provides information about
the currently defined relational data (if any).
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Box 1 Syntax of gdd command

gdd (

opt=..., option, def. 1
1 = edge list
2 = pointer to adjacency matrix
3 = lower triangle
4 = upper triangle
5 = lower triangle, including diagonal
6 = upper triangle, including diagonal
7 = full adjacency matrix

gt=..., graph type
1 = undirected, unvalued
2 = undirected, valued
3 = directed, unvalued
4 = directed, valued

perm=..., if perm=1 the gdd data structure is
permanently saved, def. perm=0

) = varlist;

of v(i, j) and v(j, i). (c) If gt(3)=2, the value of the undirected
edge (i, j) is the sum of v(i, j) and v(j, i).

3. gt=3 specifies a directed unvalued graph.

4. gt=1 specifies a directed valued graph.

If the gdd data structure consists of a multigraph all of its single graphs
get an identical graph type as specified with the �gt parameter.

5. A relational data structure defined with the gdd command remains
available for subsequent commands until one of the following conditions
occurs:

1. The data structure is explicitly removed with

gdd = off;

2. The gdd command is used again to define a new gdd data structure.

3. At least one of the variables used in the currently defined gdd data
structure is no longer available (only if perm=0).
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4. A new case selection is defined with a tsel command (only if
perm=0).

6. A standard relational data structure defined with the gdd command
uses the data in TDA’s internal data matrix and therefore does not need
to store the data again. This saves memory and suffices for most appli-
cations. A problem only occurs if one wants to combine a relational data
structure with additional variables which characterize its nodes. The best
approach would then be to use an additional data file that contains the
information (variables) characterizing the nodes of the graph. However,
one would then need to set up a new data matrix and this in turn would
destroy the previously defined relational data structure.

TDA therefore allows to save a relational data structure permanently,
independent of the current data matrix. This can be requested with
the perm=1 parameter. The gdd command then creates a copy of the
data that are necessary to maintain the relational data structure. Con-
sequently, a relational data structure defined with the perm=1 option
remains defined also if the current data matrix is modified, or substi-
tuted by another data matrix. The data structure will only be destroyed
if this is explicitly requested with a gdd=off command, or if the gdd
command is used again to define a new relational data structure.

Note, however, that the perm parameter can only be used with option
1 (edge list). Otherwise, the command will print a warnings message and
the data structure will not be permanently saved.

Option 1: Edge list. For sparse graphs, the most efficient form of
data storage is an edge list. If the input data have this form, one can use
option 1 with syntax

gdd = I, J, V1, V2, . . . , Vm;

where the right-hand side specifies a list of variable names that must be
available in the current data matrix. The variables I and J must contain
positive integers and will be used to construct the node set of the graph.
The node set will consist of all values found in the variables I or J .

Each of the following variables, V1, . . . , Vm specifies the edges of one
graph. Altogether, the command allows to specify a multigraph consist-
ing of m simple graphs. There is no specific limit for the number of
graphs, m. The interpretation is as follows. If Vk is one of the variables
on the right-hand side and Vki denotes its ith value, then
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10 0

5 13

1 7 3

4 9

Figure 1 Directed valued graph consisting of five
nodes and four edges, see example 1. The plot was
created with command file gd2.cf.

1. if Vki ≥ 0 there will an edge connecting nodes Ii and Ji having the
(optional) value Vki, and

2. if Vki < 0 there will be no edge connecting nodes Ii and Ji.

Note that this conventions allows to specify isolated nodes by giving an
edge a negative value. By default, when using option 1, the graph type
is 4, i.e., the graph is interpreted as directed and valued.

Example 1 To illustrate, assume we are given the following data:

I J V

1 7 10
3 7 0
1 4 5
4 7 13
9 9 −1

The node set will be N = {1, 3, 4, 7, 9}. There are four edges, node 9
will be an isolated node. In this example, all four interpretations that
can be selected with the gt parameter are possible. Figure 1 shows the
resulting graph if interpreted as directed and valued (gt=4).

Example 2 To illustrate a multigraph we use the data in Box 2. The
command

gdd = I,J,V1,V2;

will create edge lists for both simple graphs. Figure 2 (created with
command file gd3.cf) provides a graphical illustration.
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Box 2 Data file gd1.dat

I J V1 V2

--------------

1 5 3 -1

1 7 5 -1

7 1 6 15

11 12 13 -1

9 9 -1 -1

5 1 -1 4

8 7 -1 0

12 11 -1 14

8 8 2 -1

3

5

6
2

13

4
15

0

14

1 7 8

5 11 12 9

Figure 2 Multigraph consisting of two simple graphs,
defined by the edge list shown in Box 2.

Option 2: Pointer to adjacency matrix. If the graph is relatively
dense it can be more efficient, and economical, to use pointers to its
adjacency matrix. The syntax is again

gdd = I, J, V1, V2, . . . , Vm;

and is interpreted in the same way as already explained for option 1. The
difference is only in the internal data interpretation. If opt = 2, TDA

uses a single n × n array of pointers to the edge values of the graphs
that are contained in the multigraph, n being the maximal number of
nodes in the graphs. Of course, there are two drawbacks. If n is large, it
might not be possible to store the matrix of pointers with the available
memory. Also, some algorithms (in particular, those using some version
of a depth-first search) will work less efficient compared with an edge-list
data structure. As with option 1, the default graph type interpretation
for option 2 is gt=4 (directed and valued).
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Option 3: Lower triangle. Option 3 assumes that the lower triangle
of the adjacency matrix is available for input. The syntax is

gdd = V1, V2, . . . , Vm;

It is assumed, then, that each variable Vk, contains the values of the
lower triangle of the adjacency matrix for the corresponding graph. To
explain the mapping, let Ak = (ak,ij) denote the adjacency matrix of
the graph corresponding to Vk. Then, for i > j, it is assumed that

ak,ij = Vk,l where l =
(i− 1)(i− 2)

2
+ j

for l = 1, . . . , NOC, where NOC is the number of cases in the current data
matrix. Note that graphs defined with option 3 are always undirected.
By default, gt=2, meaning that the graph is interpreted as undirected
and valued.

Option 4: Upper triangle. The syntax for option 4 is the same as
explained for option 3. The only difference is that the values of Vk are
interpreted as entries of the upper triangle of the kth adjacency matrix.
Assuming that the graph contains n nodes, and j > i, the following
mapping is used:

ak,ij = Vk,l where l = (i− 1) n− i(i− 1)
2

+ j − i

Again, by default, gt=2, that is, the graphs are interpreted as undirected
and valued.

Option 5: Lower triangle, including diagonal. The option assumes
that Vk contains values for the lower triangle of an adjacency matrix, but
includes values of the main diagonal. The syntax is the same as explained
for option 3. Assuming that j ≤ i, the mapping is:

ak,ij = Vk,l where l =
i(i− 1)

2
+ j

By default, gt=2, that is, the graphs are interpreted as undirected and
valued.

Option 6: Upper triangle, including diagonal. The option assumes
that Vk contains values for the upper triangle of an adjacency matrix, but
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includes values of the main diagonal. The syntax is the same as explained
for option 3. If the number of nodes is n, and j ≥ i, the mapping is:

ak,ij = Vk,l where l = (i− 1)n− (i− 1)(i− 2)
2

+ j − i + 1

By default, gt=2, that is, the graphs are interpreted as undirected and
valued.

Option 7: Complete adjacency matrix. Finally, if opt = 7, it is
assumed that Vk contains n2 values for the complete adjacency matrix,
assuming a graph with n nodes. The mapping is

ak,ij = Vk,l where l = (i− 1)n + j

Contrary to options 3 – 6, this option can be used to specify directed
graphs. By default, gt=4, that is, the graphs are interpreted as directed
and valued.

Remark 1 Options 3 – 7 are mainly provided for easy input of prox-
imity data which are most often available as (symmetric) adjacency ma-
trices. No additional data structure will be created if one of these options
is selected. The data are directly retrieved from the internal data matrix
using the respective mapping described above.

Remark 2 Relational data given by an edge list can be transformed
into different versions of an adjacency matrix, and vice versa, by using
the gdp command described in Section 3.6.4.1.
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3.6.3 Creating Relational Data

This section is intended to describe commands to create relational data
having some specified properties. For the moment, there is only a single
subsection describing the gcd command.

3.6.3.1 Simple Test Data describes the gcd command that can be
used to create graphs with specified numbers of nodes and
edges.

d030603.tex December 12, 1998
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3.6.3.1 Simple Test Data

The gcd command can be used to create data files containing unvalued
graphs with a specified number of nodes and edges. The syntax is shown
in the following box.

gcd (

opt=..., option, def. 1
1 = complete graph, without loops
2 = complete graph, including loops
3 = randomly select m edges

n=..., number of nodes, def. 10
m=..., number of edges, def. 1
nfmt=..., integer print format, def. 4

) = fname;

Except for the name of an output file to be given on the right-hand side,
all parameters are optional. The data are written to the output file in
form of an edge list. Each record contains values of three variables, I,
J , and V . The first two variables contain the node numbers, the third
variable, V , has value 1 or -1. If Vi = 1, there is an edge from Ii to Ji;
otherwise there is no edge.

Option 1. creates a complete graph having n nodes as specified with
the n parameter. The graph will not contain loops.

Option 2. creates a complete graph having n nodes and includes loops.

Option 3. creates a graph having n nodes and m edges, randomly
selected from the set of all edges.

d03060301.tex December 12, 1998
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3.6.4 Relational Data Files

This section describes commands intended to support working with re-
lational data. There are two subsections.

3.6.4.1 Writing Relational Data Files describes the gdp command that
can be used to write the data from a relational data structure
into an output file.

3.6.4.2 Creating Adjacency Matrices describes the mdefg command
that can be used to create a TDA matrix that contains the
adjacency matrix of a graph.
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3.6.4.1 Writing Relational Data Files

Given a relational data structure, all or part of the data can be writ-
ten into an output file. The command is gdp with syntax shown in the
following box.

gdp (

opt=..., option, def. 1
1 = edge list
2 = lower triangle of adjacency matrix
3 = same as 2 but including the diagonal
4 = complete adjacency matrix
5 = adjacency matrix written as a square
matrix

gn=..., graph number (for options 5 and 6), def. 1
sc=..., substitute for missing edges, def. -1
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4
if=..., input file containing node numbers

) = fname;

Except for the name of an output file on the right-hand side, all pa-
rameters are optional. One out of six options can be selected to specify
the structure of the output file. By default, for options 1 – 4, the gdp
command writes the edge values for all graphs contained in the currently
defined multigraph. Optionally, one can use the gn parameter to select a
specific graph number. Option 5 writes the adjacency matrix as a square
matrix, plus two leading columns that contain, respectively, the internal
and external node numbers. By default, this option uses the first graph
number if not otherwise specified with the gn parameter.

By default, when writing data for a single graph, missing edges are
omitted. Of course, they need to be included when writing multigraph
data. By default, then, missing edges get the value -1. Alternative values
can be specified with the sc parameter.

As a further option one can specify the name of an input file with the
if parameter. The gdp command tries to interpret the first numerical
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entry in each record as a node number. The command then only writes
data for the subgraph induced by the node numbers found in the input
file.

One should note that the contents of the output file will depend on
the graph type specified in the gdd command when defining the relational
data structure.
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3.6.4.2 Creating Adjacency Matrices

Given a relational data structure, one can use the mdefg command to
create a TDA matrix containing a graph’s adjacency matrix. The syntax
is shown in the following box.

mdefg (

gn=..., graph number, def. 1
sc=..., substitute for missing edges, def. -1

) = matrix name;

Except for the name of a matrix to be given on the right-hand side all
parameters are optional. By default, the command uses the first graph
from the current relational data structure. The sc parameter can be used
to substitute specific values for missing edges.

d03060402.tex February 10, 1999
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3.6.5 Drawing Graphs

There is no easy way to plot arbitrary graphs. TDA therefore does not try
to offer a command that automatically plots an arbitrary graph. Instead,
there is a command, plg, that partially supports plots of graphs based
on TDA’s environment for creating PostScript plots.

The command requires that the user has defined a PostScript output
file with the psfile command and set up a coordinate system with
the psetup command (see 4.1). The plg command then allows to place
nodes and edges into this coordinate system. For each node one needs a
separate node parameter, for each edge a separate edge parameter. The
maximum number of nodes can be specified with the nmax parameter,
default is 100 nodes. There is no limit for the number of edges.

1. Nodes must be specified as

node(...) = x,y,

where x and y give the coordinates of the node’s center point. All other
sub-parameters are optional as explained in Box 1. Here are some addi-
tional explanations.
1. Without additional parameters, the node parameter plots a circle

at the (x, y) position. The diameter can be specified with the rd
parameter, default is 4 mm.

2. The gt parameter can be used to select a different display of nodes.
gt=2 selects a square with diameter defined by rd. gt=4 selects a
rectangle. Height and widths can be specified with rd=h,w. Default
is h = 4 and w = 8 (mm). gt=3 also displays a rectangle but adds
two semi-circles.

3. Each node can be given a node number with the n parameter. These
node numbers are used when an edge parameter requires to connect
two nodes. Note that there are no default node numbers.

4. Whether a label is written into the node’s display depends on the
fs, str, and n parameters. If the font size, fs, is zero, nothing is
displayed. Otherwise, if some string is specified with the str param-
eter, this string is written. (Note that a string must be put in double
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Box 1 Syntax of plg command

plg (

nmax=..., maximal number of nodes, def. 100

node( place node at (x,y)

n=..., external node number, must be integer
gt=..., type of display, def. 1

1 = circle
2 = square
3 = rectangle plus semi-circles
4 = simple rectangle

str=..., optional text if not node number
gt=..., type of display, def. 1
rd=..., size of display in mm, def. 4 mm
lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm
gs=..., gray scale value, def. 1 (white)
fs=..., font size

) = x,y,

edge( connect nodes i and j

ic=..., optional edge value
fs=..., font size for edge value
lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm
a=..., size of optional arrow head
rd=..., radius for arcs, in mm
dir=..., location of loop

) = i,j,

);

quotation marks to preserve blank characters.) If the str parameter
is not used, but a node number is specified with the n parameter,
this node number is written as an integer.

5. The node’s display may be grey-scaled with the gs parameter. Pos-
sible values are in the range from 0 (black) to 1 (white).

2. Edges must be specified as

edge(...) = i,j,
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Box 2 Command file for drawing a graph

psfile = gd3.ps; PostScript output file

psetup( coordinate system

pxa = 0,9,

pya = 0,4,

pxlen = 80,

pylen = 40,

);

plg(

node(n= 1,gs=0.8) = 3,3, plot nodes

node(n= 7,gs=0.8) = 6,3,

node(n= 8,gs=0.8) = 8,3,

node(n= 5,gs=0.8) = 1,1,

node(n=11,gs=0.8) = 3,1,

node(n=12,gs=0.8) = 6,1,

node(n= 9,gs=0.8) = 8,1,

edge(rd=3,ic=3,a=1.5,1.0) = 1,5, plot edges

edge(ic=5,a=1.5,1.0) = 1,7,

edge(rd=3, ic=6,a=1.5,1.0) = 7,1,

edge(ic=2,a=1.5,1.0) = 8,8,

edge(ic=13,a=1.5,1.0) = 11,12,

edge(lt=5,ic=4,a=1.5,1.0) = 5,1,

edge(lt=5,rd=-3,ic=15,a=1.5,1.0) = 7,1,

edge(lt=5,ic=0,a=1.5,1.0) = 8,7,

edge(lt=5,rd=3, ic=14,a=1.5,1.0) = 12,11,

);

where i and j give the numbers of nodes to be connected. Note that only
nodes that have a node number specified with the n parameter can be
connected. (Of course, one can use any of TDA’s plot commands to add
plot objects.) All other sub-parameters are optional, see Box 1.

1. Without additional parameters, the edge parameter connects the two
nodes specified by i and j by a straight line. Line type and width
can be specified with the lt and lw parameters, respectively.

2. If i = j, the edge parameter plots a loop. This will be a circle. Its
diameter can be specified with the rd parameter, default is 1.5 times
the size of the corresponding node. As an additional option, one can
use the dir parameter to select a place for the loop. There are four
possible values, dir=0,1,2,3, corresponding to four possible corners.

3. Optionally, two nodes can be connected by a combination of straight
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lines and arcs. This can be requested with the rd parameter. A pos-
itive value specifies the radius of an arc in clockwise direction, a
negative value does the same in counter-clockwise direction.

4. An edge may end in an arrow. This can be requested with the pa-
rameter

a = l,w,

where, respectively, l is the length and w is the width of the arrow
head in mm.

5. Finally, one can use the ic parameter to specify an edge value (integer
or floating point). This value is then written over the edge using the
font size defined by the fs parameter.

Example 1 To illustrate the plg command, Box 2 shows the command
file, gd3.cf, that was used to create the plot shown in Figure 3.6.2-2.
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3.6.6 Trees

An important special case of graphs is called trees, defined as connected
graphs without cycles. (In this section we always assume undirected
graphs.) Alternatively, a tree can be characterized by one of the following
equivalent conditions (see Barthélemy and Guénoche [1991, p. 4]):

1. The graph is connected and the number of nodes equals the number
of edges plus 1.

2. The graph has no cycles and the number of nodes equals the num-
ber of edges plus 1.

3. Any two nodes of the graph are connected by exactly one path.

4. The graph is connected and removing any one of its edges results
in an unconnected graph.

As any other graph, a tree can be valued or unvalued. There are two
kinds of nodes: nodes having degree one are called leaves, and nodes
having degree greater than one are called interior nodes.

A tree is said to be rooted , if one of its nodes is specified as the root
of the tree. Since any node of a tree can be selected as a root, each tree
can be represented by several different rooted trees.

Selecting a root for a tree allows to define a partial order relation
on the set of nodes. Let G = (N , E , r) denote a rooted tree, r ∈ N
being the root. For i, j ∈ N , we can then define: i ≤ j, if j lies on the
path connecting i and r. This defines a partial order relation which is
reflexive, antisymmetric, and transitive (see Barthélemy and Guénoche
[1991, p. 5]). In addition, we can define i < j, if i ≤ j and i 6= j.

Using this order relation, one can introduce the following terminology.
If i < j, j is called the predecessor of i, and i is called the successor of
j. This terminology views the tree as originating in its root. Note that
each node, except the root, has exactly one predecessor, but may have
any number (or zero) of successors.

Example 1 The right part of Box 1 shows data for a valued tree with
13 nodes in the form of an edge list. There are 12 edges connecting nodes
EI and EJ with values given by EV. The right part of the box contains
a tree data structure that will be explained below. Figure 1 shows a
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Box 1 Edge list (left) and tree data structure (right). (Data file gd4.dat)

EI EJ EV i EI EJ EV PR SU F

----------- -------------------------------

6 2 1.0 1 6 2 1.5 8 10 6

6 4 1.5 2 6 4 1.0 6 0 4

7 3 2.0 3 7 3 2.0 7 0 5

7 5 2.5 4 7 5 1.5 6 0 0

8 1 1.5 5 8 1 2.5 7 0 13

8 6 1.0 6 8 6 1.0 8 2 0

9 7 3.0 7 9 7 3.0 9 3 8

9 8 1.2 8 9 8 1.2 9 1 0

1 10 1.6 9 10 1 0.0 0 7 0

1 11 2.0 10 11 1 1.6 1 0 11

1 12 3.0 11 12 1 2.0 1 0 12

7 13 4.0 12 13 7 3.0 1 0 0

13 0 0 4.0 7 0 0

1

2

3

4

56 78 9

10
11

12

13

Figure 1 Axial representation of the tree data shown
in Box 1.

graphical display of this tree. How to create such plots will be explained
below.

Tree Data Structure

Data input for trees is the same as for any other graph, i.e., by an edge list
which is then used by TDA to create a gdd data structure. If a procedure
expects a tree, it is checked whether the currently defined graph is in
fact a tree. If not, the procedure returns with an error message.
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For internal representation of rooted trees, TDA follows a proposal of
Barthélemy and Guénoche [1991, pp. 5–9] and uses, additionally, a spe-
cific data structure that keeps track of the ordering between the nodes,
induced by specifying a root node. To explain this data structure, we
use the example data in Box 1. The left part of the box shows the input
data as an edge list. The right part of the box shows the corresponding
tree data structure based on selecting node 9 as a root.

1. The first column (i) counts the nodes.

2. The next two columns, labeled EI and EJ represent the edges of the
tree. With n nodes, the tree has n − 1 edges and the last row will be
empty.

3. The column labeled EV contains values of the edges; if the tree is
unvalued, all edges will be valued by 1. Note that EV[i] corresponds to
the edge connecting i and PR[i], that is, the predecessor of i.

4. The column labeled PR contains the predecessor of each node; except
the root node where PR contains 0.

5. The column labeled SU contains zero if the corresponding node does
not have a successor, otherwise it contains the number of one arbitrarily
selected successor.

6. The column labeled FR allows to find all successors of a node. Given
node i, the successors of i are given by

SU[i], FR[SU[i]], FR[FR[SU[i]]], ...

until the result becomes zero. For instance, node 8 has predecessor 9.
One of its successors is given by SU[8] = 1, another one by FR[1] = 6.
Since FR[6] = 0 there are no more successors of node 8.

The command ptree, with syntax shown in Box 2, can be used to print
a tree data structure into a file. By default, the command selects an
arbitrary node to become the root of the tree. Alternatively, one can
specify a root number with the rt parameter.

Example 2 To illustrate, we use the ptree command to create the
data shown in Box 1. Having already build a gdd data structure based
on the edge list in the data file gd4.dat, the command is

ptree (rt = 9) = d;

In this example we have selected node 9 to become the root of the tree.
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Box 2 Syntax of ptree command

ptree (

gn=..., graph number, def. 1
rt=..., root of the tree, def. any
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

Box 3 Syntax of pltree command

pltree (

gn=..., graph number, def. 1
gt=..., type of graph (1 or 2), def. 2
rt=..., number of root node, def. any
pl=..., type of plot (1,2,3), def. 3
lt=..., line type, def. 1
lw=..., line width in mm, def. 0.2
fs=..., font size in mm, def. 2
nc=..., label until node ...
ni=1, label only for leaves, def. 0

);

Graphical Display of Trees

Barthélemy and Guénoche [1991, pp. 23–31] have developed three differ-
ent methods for a graphical display of trees. These methods are quite
useful and have been implemented in TDA. The command is pltree with
syntax shown in Box 3.

The command requires a PostScript output file, defined with the
psfile command, and a valid coordinate system, defined with psetup
(see 4.1). Arbitrary coordinates are possible since the trees are auto-
matically scaled to fit into the given coordinate system.1 However, the
pltree command tries to make the physically plotted length of the edges
proportional to their values. One should use, therefore, the pxlen and
pylen parameters in the psetup command to specify a suitable physical
size of the plot.

1A simple choice would be to set pxa=0,1 and pya=0,1.
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Figure 2 Radial representation of the tree in Box 1.

1. The gn parameter can be used to select a graph number, default is
gn=1.

2. The gt parameter can be used to select an interpretation of the graph
data. Possible choices are gt=1 and gt=2, default is gt=2, that is, the
graph is interpreted as undirected and valued.

3. The lt, lw and fs parameters can be used to modify the line type,
line width, and font size, respectively.

4. The font size is only used to plot labels (node numbers). If fs=0,
labels are not plotted. Also, labels are only plotted for nodes i = 1, . . . , n
where n is an integer given with the nc parameter. (Note that these are
internal node numbers.) By default, nc=0, that is, labels are not plotted.
In addition, one can use the ni parameter. If ni=1, labels are only plotted
for leaves, not for interior nodes.

5. Three different types of tree drawing can be selected with the pl pa-
rameter. Radial drawing (pl=1), hierarchical drawing (pl=2), and axial
drawing (pl=3). Default is pl=3.

Radial drawing. The plot begins at the root of the tree, and then
all edges beginning at the root are spread around the root, and then,
recursively, the subtrees are plotted, and so on. Figure 1 illustrates this
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Figure 3 Hierarchical representation of the tree in Box 1.

type of tree plotting with the example data in Box 1.

Hierarchical drawing. The tree is plotted as a hierarchy beginning at
the root. Edges are plotted in the y direction of the coordinate system
with edge lengths reflecting their values. Figure 2 illustrates this type of
tree plotting with the example data in Box 1.

Axial drawing. The root, and as many nodes as possible, are plotted
on a line parallel to the x axis. Any remaining nodes and subtrees are
then plotted across the available space. Figure 3 illustrates this type
of tree plotting with the example data in Box 1. Note that this option
requires that the tree is rooted at a node with degree greater than 1. If
the procedure is not able to plot the tree for the requested root node it
returns with an error message and one should try another root.

Example 3 The example archive contains the command files gd15.cf,
gd15a.cf, and gd15b.cf, that have been used to create the plots shown
in this section.
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4. PostScript Plots

TDA’s plot functions are based on the PostScript language, a trade-
mark of Adobe Systems, Inc. This allows for graphics output which is
independent of a hardware-specific graphics environment. Creating plots
with TDA actually means creating an output file containing a PostScript
description of the plot. It will be possible then to send this output file to
a PostScript printer to get a hard copy of the plot. Using a PostScript
previewer, like GhostScript, it should also be possible to preview plots
on a terminal screen.

Moreover, many text processing packages are able to directly include
PostScript files. For instance, the documents describing TDA have been
written in LATEX, based on Donald Knuth’s TEX. Combined with Tomas
Rokicki’s DVIPS, a TEX to PostScript driver, one can directly include
PostScript files. In fact, almost all figures included in this manual have
been created with TDA. To support this possibility, TDA’s plot output
files follow the conventions for encapsulated PostScript (Version 3.0) as
described in Adobe’s PostScript Language Reference Manual [1990].

4.1 Preparing the Plot Environment explains how to set up the en-
vironment for subsequent plot commands.

4.2 Plotting the Coordinate Systems explains how to plot coordi-
nate systems.

4.3 Combining Plot Files shows how to combine separate plot files
into a single plot.

4.4 Plot Objects describes commands for a variety of plot objects.

This manual does not provide an introduction to the PostScript lan-
guage. Actually, it is not necessary to know very much about this graph-
ics language in order to create PostScript plots with TDA. On the other
hand, the available commands to control TDA’s PostScript output are
limited. To make changes, or to access features of PostScript not sup-
ported by TDA, one needs to edit the PostScript output files. This is easy
but requires, of course, some understanding of the PostScript language.

It is also not intended to give an introduction to computer graph-
ics; this might be found, for instance, in Mortensen [1989], Penna and
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Patterson [1986], and Watt [1989]. Useful references discussing the pos-
sibilities, and limitations, of using graphical displays in applied statistics
are Chambers et al. [1983], and Schnell [1994].
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4.1 Preparing the Plot Environment

Creating PostScript plots with TDA actually means to create a file con-
taining a PostScript description of the plot. This is done in three steps.

1. The first step is to create an output file for subsequent plot commands.
The command is

psfile = name of output file;

The file remains opened until the program terminates, the psfile com-
mand is used again to create a new PostScript output file, or the file is
explicitly closed with the command

psclose;

2. The second step is to set up a coordinate system and, optionally, to
modify the physical dimensions of the plot. The command is

psetup (parameter);

Parameters are shown in Box 1 and will be explained below. The pxa
and pya parameters are required to define a coordinate system. All other
parameters are options. Note that the psetup command can be used
several times with the same output file allowing several plots on the
same page.

3. In a third step one can add plot objects by using any of the plot
commands that will be described in 4.4.

Parameters for the psetup command. Having defined a PostScript
output file with the psfile command, the psetup command must be
used to specify a logical coordinate system for subsequent plot com-
mands. The required parameters are pxa and pya. The syntax is

pxa = x0, x1,

to specify [x0, x1] as the range of the x axis, and analogously for the y
axis. As default, TDA assumes linear axes. Optionally, one can specify a
logarithmic x axis with the parameter

pxa (log) = x0, x1,
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Box 1 Syntax for psetup command

psetup (

pxa=..., definition of x axis
pya=..., definition of y axis
pxlen=..., length of x axis in mm, def. pxlen=120
pylen=..., length of y axis in mm, def. pylen=80
psorg=..., PostScript coordinates of origin,

def psorg=150,460
psscal=..., scaling factors, def psscal=1,1
psrot=..., rotation, def. psrot=0

);

where x0 > 0, and in the same way for the y axis. All other parameters
of the psetup command are optional.

1. The pxlen and pylen parameters can be used to modify the physical
size of the plot. Default values are pxlen=120 (mm) and pylen=80 (mm).

2. The psorg parameter can be used to modify the place of the plot in
the PostScript coordinate system (see below). Default is psorg=150,460.

3. The psscal parameter can be used to scale a plot. The syntax is
psscal = sx, sy, with sx and sy the scaling factors for the x and y
axes, respectively. Default is psscal=1,1.

4. The psrot parameter can be used to rotate the plot in the PostScript
coordinate system. Syntax is psrot = α, where α is the angle (in de-
grees) for rotating the plot in counterclockwise direction. Default is
psrot=0.

Example 1 To give a first example, Box 2 shows the command file
plot1.cf that was used to create the plot shown in Figure 1. It begins
with defining the PostScript output file, plot1.ps. Then follows the
psetup command using the pxlen and pylen parameters to specify the
physical size of the plot, and the pxa and pya parameters to specify the
logical coordinate system. Then follow the plxa and plya commands to
plot the axes, and the plframe command to put a frame around the
plot. These commands will be explained in 4.2. Finally, there are four
plot objects (see 4.4). The plotf command plots the sin function and
the plotf1 command its first derivative. The two pltext commands
plot labels.
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Box 2 Command file plot1.cf

psfile = plot1.ps; output file

psetup(

pxlen = 90, # length of x axis in mm

pylen = 50, # length of y axis in mm

pxa = 0,6, # user coordinates on x axis

pya = -1,1, # user coordinates on y axis

);

plxa (sc=1,ic=10); plot x axis

plya (sc=1,ic=0); plot y axis

plframe; plot frame

plotf (rx=0(0.1)6) = sin(x);

plotf1(rx=0(0.1)6) = sin(x);

pltext(xy=2.7,0.6) = sine ;

pltext(xy=4.6,0.6) = cosine ;

0 1 2 3 4 5 6
-1

0

1

sine cosine

Figure 1 Example of a PostScript plot, created with command
file plot1.cf shown in Box 2.

PostScript Coordinate System. As mentioned, creating PostScript
plots requires the specification of a coordinate system. There are two
kinds of coordinates: logical and physical coordinates. All plot objects
are defined with respect to a system of logical coordinates, specified
with the pxa and pya parameters in the psetup command. A physical
coordinate system is used to map the logical coordinate system onto a
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Figure 2 PostScript coordinate system corresponding to a DIN A4
page, created with command file plot2.cf (not shown).
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two-dimensional space (a sheet of paper or the screen of a terminal).
The physical coordinate system of the PostScript language is defined

in points (1 inch = 72 points). TDA uses mm (millimeter) and calculates
with 1 mm = 2.835 points. On a standard DIN-A4 page the origin is at
the lower left corner. The x dimension has 595 points, the y dimension
has 842 points. Figure 2 illustrates this coordinate system; the plot was
created with command file plot2.cf which is contained in the TDA

example archive.

PostScript Bounding Box. TDA creates encapsulated PostScript files
as described in Adobe’s PostScript Language Reference Manual [1990].
This requires the whole plot to be encapsulated into a bounding box to
be defined in PostScript coordinates. This then allows the PostScript
output file to become part of other PostScript documents.

TDA tries to create a bounding box being sufficiently large to in-
clude all plot objects. There may occur situations, however, when this
cannot be done. For instance, if the whole plot is rotated with the psrot
command, the default bounding box is not adjusted in a proper way.
Another situation where the bounding box is not sufficiently large can
occur when the pltext command has been used to place text outside
the coordinate system. However, it is easy to adjust the bounding box
manually. Two different methods can be used. First, one can use the
plrec command to place rectangles (having zero size) at any desired
position which then becomes part of the bounding box. Alternatively,
one can directly change the PostScript coordinates of the bounding box
in the PostScript output file.
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4.2 Plotting Coordinate Systems

The pxa and pya parameters that are part of the psetup command (see
section 4.1) only define a logical coordinate system; they do not create
any graphical output. To plot axes of a coordinate system, one can use
the plxa and plya commands for the x and the y axis, respectively. Both
commands have the same syntax as shown in the following box.

plxa (

sc=..., distance of main tick marks
ic=..., number of sub-intervals
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
fs=..., font size for labels, def. 2 (mm)
fmt=..., print format for labels, def. 0.0
tl=..., length of tick marks, def. 1.8 (mm)
dir=..., direction of axis, def. 0

) = xa,ya,xb,yb;

1. All parameters are optional. Without any parameters, the command
plots simply the axis, without labels, beginning at the lower left corner of
the coordinate system. The lt and lw parameters can be used to control
the line type and line width, respectively. Default is lt=1 (solid line) and
lw=0.2 (mm).

2. To specify a different place for the axes, one can use the right-hand
side parameters. The axis is then plotted from (xa,ya) to (xb,yb) (log-
ical coordinates).

3. As default, the x and y axes are not labeled. To get numerical labels,
one has to define tick marks. This can be achieved with the optional sc
parameter. Given sc=d, this creates a series of main tick marks placed
at

xa + i d i = 0, 1, 2, . . .

until xb is reached. These main tick marks also get numerical labels. The
font size can be controlled with the fs parameter. The size is in mm;
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Box 1 Command file (plot3.cf)

psfile = plot3.ps; output file

psetup(

pxlen = 90, # length of x axis in mm

pylen = 50, # length of y axis in mm

pxa = -2,2, # user coordinates on x axis

pya = 0,1, # user coordinates on y axis

);

plxa (sc=1,ic=2); plot x axis

plya (sc=0.5,ic=0); plot y axis

plframe; plot frame

plxgrid = 0.5;

plygrid = -1,0,1;

plabel = "Linear Coordinate System";

pxlabel = "X axis";

pylabel(sc=3) = "Y axis"; shift 3 mm to right

default font size is fs=2 (mm). To suppress labels, one can use fs=0. The
print format for the labels can be controlled with the fmt parameter;
default is a free format. The tl parameter controls the length of the
main tick marks (in mm); default is tl=1.8 (mm).

4. In addition, one can request small tick marks with the ic parameter.
Given the parameter ic=n, each interval between two main tick marks
is subdivided into n subintervals.

5. Finally, one can use the dir parameter to control the direction of
the axes. If dir=0 (default), labels for the x axis are placed below, and
labels for the y axis are placed on the left-hand side of the axis. When
using the dir=1 parameter the tick marks and labels are plotted in the
opposite direction. Note that the plxa and plya commands can be used
more than once, see Example 2.

Additional Options. There are a few additional commands to control
the graphical display of the coordinate system. The Command

plframe (lt=,lw=,gs=);

can be used to plot a frame around the coordinate system. The param-
eters are optional. The lt and lw parameters can be used to control the
line type and line width, respectively. Default is always lt=1 (solid line)
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Box 2 Command file (plot4.cf)

psfile = plot4.ps; output file

psetup(

pxlen = 90,

pylen = 50,

pxa(log=1) = 1,1000,

pya(log=1) = 2,500,

);

plxa (sc=10,ic=10);

plya (sc=5,ic=0);

plframe;

plxgrid = 10,50,250;

plygrid = 10,100,1000;

plabel = "Logarithmic Coordinate System";

pxlabel = "X axis";

pylabel(sc=3) = "Y axis"; shift 3 mm to right

-2 -1 0 1 2
0

0.5

1
Linear Coordinate System

X axis

Y
 a

xi
s

Figure 1 Plot of plot3.ps, created by command file
plot3.cf shown in Box 1.

and lw=0.2 (mm). The parameter gs=x can be used to fill the rectangle
with a grey tone. x must be a real value in the range from 0 (black) to
1 (white).

The plxgrid and plygrid commands can be used to put a system
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Figure 2 Plot of plot4.ps, created by command file
plot4.cf shown in Box 2.

Box 3 Command file plot5.cf

psfile = plot5.ps; output file

psetup(

pxlen = 90,

pylen = 50,

pxa = -2,2,

pya = 0,1,

);

plxa (sc=1,ic=2); plot x axis

plya (sc=0.5,ic=0); plot y axis

plxa(sc=1,ic=5,dir=1) = -1,1,1,1; plot another x axis

plya(sc=0.5,ic=5,dir=1) = 2,0,2,1; plot another y axis

of grid lines onto the coordinate system. The syntax for the plxgrid
command is

plxgrid (lt=,lw=) = y1,y2,... ;

This places horizontal grid lines (parallel to the X axes) at the logical
Y coordinates y1,y2,... The default line type is lt=3 (dotted), and
the default line width is lw=0.05 (mm). The plygrid command has an
analogous syntax.
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Figure 3 Plot of plot5.ps, created by command file
plot5.cf shown in Box 3.

Three further commands can be used to plot labels. The command

plabel (sc=,fs=) = string ;

places string at the top of the coordinate system to provide a label for
the whole plot. The default font size is fs=3 (mm). The parameter sc
(default sc=0 mm) can be used to change the distance between the top of
the coordinate system and the label. string should be enclosed in (single
or double) quotation marks to maintain blank characters, and should
only contain characters from a single font (see 4.4.3). If one needs labels
containing characters from different fonts, one should use the pltext
command.

Analogously, one can use the commands pxlabel and pylabel to
define labels for the x and y axes, respectively. The syntax is identical
with the plabel command; default font size is fs=2.4 (mm).

Example 1 Command file plot3.cf, shown in Box 1, illustrates how
to plot a linear coordinate system. The resulting PostScript plot, writ-
ten into the output file plot3.ps, is shown in Figure 1. Command file
plot4.cf (Box 2) illustrates a logarithmic coordinate system; the result-
ing plot is shown in Figure 2.

Example 2 The plxa and plya commands can be used several times
to place different axes into the same plot. An example, plot5.cf, is
shown in Box 3. The resulting plot is Figure 3.
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Box 4 Command file plot6.cf

psfile = plot6.ps; output file

psetup(

psorg = 100,600, # set physical origin

pxlen = 50,

pylen = 40,

pxa = 0,6,

pya = -1,1,

);

plxa(sc=1);

plya(sc=1);

plotf(rx=0(0.1)6) = sin(x1); add a plot object

pltext(xy=4,0.2) = "Plot 1"; give a label

psetup( # define a new coordinate system

psorg = 270,600, # set physical origin

pxlen = 50,

pylen = 30,

pxa = 0,6,

pya = -1,1,

);

plxa(sc=1);

plya(sc=1);

plotf(rx=0(0.1)6) = sin(x1); add a plot object

pltext(xy=4,0.2) = "Plot 2"; give a label

0 1 2 3 4 5 6
-1

0

1

Plot 1

0 1 2 3 4 5 6
-1

0

1

Plot 2

Figure 4 Example of multiple coordinate systems in a single
PostScript file. The plot was created with command file plot6.cf

shown in Box 4.
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Multiple Coordinate Systems. The psetup command can be used
several times with the same PostScript output file to allow multiple co-
ordinate systems in a single plot. For properly placing the coordinate
systems, one should use the psorg parameter; for an orientation see Fig-
ure 4.1-2.

Example 3 Command file plot6.cf, shown in Box 4, provides an ex-
ample of using two coordinate systems for a single PostScript output file.
The first psetup command creates a coordinate system having its lower
left corner at PostScript coordinates (100,600). All subsequent plot com-
mands use this coordinate system, until a new one is created with the
second psetup command. The remaining plot commands use this second
coordinate system. Figure 4 shows the resulting plot. The relative size
and position of the two parts is determined by their physical size and
origins. Note that the origins, that is, the lower left corner of the physical
coordinate systems, must be specified with reference to the PostScript
coordinate system, see section 4.1.
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4.3 Combining Plot Files

The dplot command can be used to combine a set of PostScript files into
a single file. This command is independent of all other plot commands
and in particular does not require the psfile and psetup commands.
The syntax is shown in the following box.

dplot (

fn=..., list of input files
pxlen=..., x-size of output plot in mm, def. 120
pylen=..., y-size of output plot in mm, def. 80
psorg=..., origin of output plot, def. psorg=10,10

) = fname;

The right-hand side must provide the name of an output file, and the
fn parameter must be used to specify at least one set of PostScript files
previously created with TDA. These files are placed in one row of plots
in the output file. If used more than once (up to 50), each set of files is
placed into a separate row of plots.

The other parameters are optional. The pxlen and pylen parameters
can be used to modify the physical size of the resulting output plot. The
psorg parameter can be used to modify the origin of the output plot;
syntax is psorg=x,y where x and y are PostScript coordinates.
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Box 1 Command file plot7.cf

dplot(

pxlen = 100, # length of x axis in mm

pylen = 60, # length of y axis in mm

fn = plot3.ps, plot3.ps,

fn = plot4.ps, plot4.ps,

) = plot7.ps; # name of output file
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Figure 1 PostScript plot plot7.ps, created with command
file plot7.cf shown in Box 1.

Example 1 To illustrate the dplot command, Box 1 shows the com-
mand file plot7.cf. This command files combines four plots and writes
the result into the output file plot7.ps. The resulting plot is shown in
Figure 1.

While this example works fine, problems can occur when the relation
between the physical origin and the bounding box is not the same in all
input files. There is, in general, no safe automatic way to arrange the
individual plots such that the individual coordinate axes are always in
line. If such problems occur, one has to edit the final output file and
adjust the xorg and yorg commands.
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4.4 Plot Objects

This chapter describes commands for a variety of standard plot objects.
Further plot commands may also be found in other parts of the manual.

4.4.1 Polygons and Scatterplots

4.4.2 Line Types and Marker Symbols

4.4.3 Plotting Text

4.4.4 Rectangles

4.4.5 Step Functions

4.4.6 General Functions

4.4.7 Arrows

4.4.8 Circles, Arcs, Ellipses

4.4.9 Convex Hull

4.4.10 Smoothing Polygons

4.4.11 Contour Plots
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4.4.1 Polygons and Scatterplots

There are two commands to plot an arbitrary sequence of data points,
plot and plotp. The only difference is in the way the data points are
supplied. With the former one, the data points are taken from the pro-
gram’s internal data matrix, with the latter one, the data points can be
explicitly supplied as part of the command.

One important application of these commands is to create scatter-
plots. However, the same command can be used to plot a line, a rectangle,
or an arbitrary function, y = f(x), given by a sequence of points, (xi, yi).
The syntax of the first command, plot, is shown in Box 1. The right-
hand side of the command must contain exactly two variable names,
to be used for the x and y coordinates of the data points. All other
parameters are optional.

1. By default, the command uses all cases (rows) of the currently defined
data matrix. To select a subset of cases one can use the sel parameter
with syntax

sel = expression;

Given any valid expression which may contain names of variables, con-
stants and operators, the command uses only those cases of the data
matrix where the evaluation of expression results in a value not equal
to zero. Note that there must be at least two data points.

2. The parameters lt and lw can be used to change the line type and
line width, respectively. Defaults are lt=1 (solid line) and lw=0.2 (mm);
see the description in 4.4.2.

3. The s parameter can be used to request marker symbols to be plotted
at the location of the data points. The syntax is s=n where n is the
number of one of the available marker symbols, see 4.4.2. The size of
the markers symbols can be controlled with the fs parameter; default is
fs=2 (mm).

4. By default, the data points are connected by straight lines. To sup-
press these lines, one can use lt=0 or lw=0. However, the line width
defined by the lw parameter is also used for the marker symbols. There-
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Box 1 Syntax for plot command

plot (

lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
s=..., marker symbol
fs=..., size of marker symbol, def. 2 (mm)
gs=..., grey scale value, def. 1 (white)
r=..., creates step function
dir=..., type of step function
ns=..., if ns=1 plot only horizontal lines, def. 0
a=..., creates an arrow
nc=..., no clipping option, def. 0
sel=..., selection of data points

) = VX,VY;

Box 2 Syntax for plotp command

plotp (

lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
s=..., marker symbol
fs=..., size of marker symbol, def. 2 (mm)
gs=..., grey scale value, def. 1 (white)
r=..., creates step function
dir=..., type of step function
ns=..., if ns=1 plot only horizontal lines, def. 0
a=..., creates an arrow
nc=..., no clipping option, def. 0

) = x1, y1, . . . , xn, yn;

fore, to get only the marker symbols without connecting lines, one should
use lt=0.

5. The r, dir and ns parameters can be used to request step functions
and histograms as will be explained in 4.4.5.

6. The a parameter can be used to request that the polygon ends in an
arrow, see 4.4.7.

7. The gs parameter can be used to fill the area between the x axis and
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Box 3 Command file plot8.cf

nvar(

noc = 20, # create data

RD = rd(-2,2),

RDS = sort(RD),

ND = nd(RDS),

);

psfile = plot8.ps; output file

psetup(

pxlen = 90,

pylen = 50,

pxa = -2,2,

pya = 0,1,

);

plxa (sc=0.5,fmt=4.1); plot x axis

plya (sc=1,ic=10); plot y axis

plframe; plot frame

plot (s=4,fs=1.5) = RDS,ND; polygon with marker symbols

-2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0
0

1

Figure 1 PostScript plot plot8.ps, created with command
file plot8.cf shown in Box 3.

the polygon with a grey tone. The syntax is gs=x with x a real value
between 0 (black) and 1 (white).

8. By default, the plot is restricted to the area defined by the currently
active coordinate system. Any part of the plot object that falls outside
this area is clipped. To allow for plotting outside this area one can use
the command nc=1. The program then also tries to adjust the bounding
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Box 4 Syntax for plotm command

plotm (

lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
s=..., marker symbol
fs=..., size of marker symbol, def. 2 (mm)
gs=..., grey scale value, def. 1 (white)
r=..., creates step function
dir=..., type of step function
a=..., creates an arrow
nc=..., no clipping option, def. 0
sel=..., selection of data points

) = X1,Y1,X2,Y2,...;

box of the plot properly.

The syntax of the second command, plotp, is shown in Box 2. The right-
hand side is a sequence of n data points to be given in user coordinates.
There must be at least two data points. All other parameters are optional
and have the same meaning as explained above.

Example 1 To illustrate, command file plot8.cf, shown in Box 3,
generates 20 equally distributed random numbers in the range (−2,+2).
These random numbers are sorted and taken as arguments of the stan-
dard normal distribution function. As shown by the plot command, the
data points with coordinates given by variables RDS and ND are plotted
using a marker symbol of type 4 and size 1.5 mm; in addition, the points
are connected by a sequence of straight line segments. The resulting plot
is shown in Figure 1.

Separate Polygons. The plotm command can be used to plot a poly-
gon (or scatter plot) separately for each row in the data matrix. The
syntax is shown in Box 4. The right-hand side must provide at least
two pairs of variables: X1,Y1,X2,Y2,.... The command uses the values
of these variables as coordinates, separately for each row in the data
matrix, meaning that the ith plot is based on

(X1(i),Y1(i)), (X2(i),Y2(i)), ...

where i refers to the ith row in the data matrix. All parameters are
optional and have the same meaning as explained for the plot command.
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4.4.2 Line Types and Marker Symbols

Many plot commands have an lt parameter to select a line type and an
s parameter to select a marker symbol. The available options are shown
in the following boxes.

line type 1

line type 2

line type 3

line type 4

line type 5

line type 6

line type 7

line type 8

line type 9

marker 9

marker 8

marker 7

marker 6

marker 5

marker 4

marker 3

marker 2

marker 1

marker 17

marker 16

marker 15

marker 14

marker 13

marker 12

marker 11

marker 10

Note that there is an additional line type: zero, meaning that no line is
drawn to connect two data points. This is a useful option if, for instance,
data points shall be plotted by marker symbols without connecting lines.
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A zero line type can also be used to create grey-scaled plot objects with-
out visible bounding line segments.
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4.4.3 Plotting Text

To plot an arbitrary text, one can use the pltext command with syntax
shown in the following box.

pltext (

xy=..., coordinates
fs=..., font size, def. 2 (mm)
sc=..., sc=1 centers the string, def. 0
r=..., rotation, def. 0
s=..., number of a marker symbol

) = string;

The string given on the right-hand side is plotted beginning at the coor-
dinates (x,y) to be given with the xy=x,y parameter. Note that strings
should be enclosed in single or double quotation marks to preserve blank
characters.

All other parameters are optional. The fs parameter can be used
to change the font size; the default is 2 mm. The parameter sc=1 can
be used to center the string around the point (x,y). The r parameter
can be used to rotate the string; r=d rotates the string by d degrees
in counterclockwise direction; default is r=0. Finally, one can use the s
parameter to provide the number of a marker symbol. This symbol is
then plotted in front of the string. Note that this option implies that the
string cannot be centered and/or rotated.

Fonts. The PostScript language provides a variety of different fonts. In
TDA, two standard fonts are used for strings defined with the pltext
and/or plabel commands: Times-Roman and Symbol. It is assumed
that both fonts are available on almost all PostScript devices. Figures 1
and 2 show the available characters and symbols for these two fonts. (We
are grateful to Wolfgang Voges (Bremen) who has provided a convenient
recoding of these fonts containing a lot of useful characters and symbols
and has shown us how to include these fonts into TDA’s PostScript
features.) To reference these characters and symbols, one should use

\nnn and @nnn
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for Times-Roman and Symbol fonts, respectively. In both cases, nnn
is the character’s octal code as shown in the top left corner of each
character’s box.

Example. Command file plots.cf, shown in Box 1, illustrates possible
usage of special characters and symbols. The resulting plot is shown in
Figure 3.
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Box 1 Command file plots.cf

psfile = plots.ps; output file

psetup(

pxlen = 120,

pylen = 60,

pxa = 0,10,

pya = 0,5 ,

);

plxa (sc=1);

plya (sc=1,ic=2);

plframe;

pltext(xy=1,4) = "@141 = 2.5 \245 @142";

pltext(xy=4,4) = "pltext (xy=1,4) =

\324\100141 = 2.5 \\245 \100142\324";

pltext(xy=1,2) = "@123 = @173 @161 @174 @161 @316 @121 @175";

pltext(xy=2.2,0.9) = "pltext (xy=1,2) = \324\100123 =

\100173 \100161 \100174 \100161 \100316 \100121 \100175\324";

pltext(xy=1,3) = "Sm\277rebr\277d";

pltext(xy=4,3) = "pltext (xy=1,3) = \324Sm\\277rebr\\277d\324";

plotp (a=1,1) = 3.5,4.05,2.7,4.05;

plotp (a=1,1) = 3.5,3.05,2.7,3.05;

plotk (sc=-90) = 1.5,1.5,3.2,1.5,3.2,2.1;

plotp (a=1,1) = 3.2,2.1,2.9,2.1;

plotk (sc=-90) = 1.5,1.5,1.5,0.95;

plotp = 1.5,0.95,2,0.95;

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

α = 2.5 • β pltext (xy=1,4) = ‘@141 = 2.5 \245 @142‘

Σ = { θ | θ ∈ Θ }

pltext (xy=1,2) = ‘@123 = @173 @161 @174 @161 @316 @121 @175‘

Smørebrød pltext (xy=1,3) = ‘Sm\277rebr\277d‘

Figure 3 PostScript plot plots.ps, created with command
file plots.cf shown in Box 1.
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4.4.4 Rectangles

To plot a rectangle one can use the plrec command with syntax shown
in the following box.

plrec (

lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)
r=..., rotation, def. 0

) = x,y,xlen,ylen;

The command plots a rectangle with the lower left corner at the point
(x,y); xlen is the width and ylen the height of the rectangle (in logical
coordinates). All other parameters are optional. Default line type is lt=1,
default line width is lw=0.2. The gs parameter can be used to fill the
rectangle with a grey tone. The r parameter can be used to rotate the
rectangle. Note that xlen and ylen can be zero. Of course, the rectangle
is not plotted then; but the bounding box is updated to include the point
(x,y).
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4.4.5 Step Functions

The plot and plotp commands can be used to plot step functions and
histograms. The parameter r=1 draws straight lines to connects the
points of the polygon with the x axis. The parameter dir=1 has the ef-
fect that the data points are connected by “kinked” line segments where
the pen moves first in the x axis direction, then in the y axis direction.
This creates a step function. Alternatively, with dir=2, the pen moves
first in the y axis direction, then in the x axis direction. By default,
the command draws horizontal and vertical lines. Adding the parameter
ns=1, only horizontal lines will be drawn.

Example 1 To illustrate these options, we modify plot8.cf, the com-
mand file that was used in 4.4.1 to illustrate the plot command. In the
new command file, plot11.cf (not shown), the plot command is

plot (dir=1,gs=0.9) = RDS,ND;

The resulting grey-scaled step function is shown in the following figure.

-2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0
0

1
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4.4.6 General Functions

The plotf command can be used to plot a function y = f(x). The
plotf1 and plotf2 commands will plot, respectively, the first and second
derivative of the given function. All three commands use the same syntax
as shown in the following box.

plotf (

rx=..., range of function argument
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping option, def. 0

) = function;

The right-hand side must provide the definition of a function, depending
on a single argument, as explained in 5.3.1. If the definition refers to
at least one data matrix variable, the function is summed over all data
matrix cases.

The function is evaluated in the range [a,b] on the x axis, with in-
crements of size d; these values must be provided with the rx=a(d)b
parameter. For each evaluation, the argument is used as the x axis coor-
dinate and the value of the function as the y axis coordinate. The data
points are connected by straight line segments. The line type and line
width can be controlled with the lt and lw parameters, respectively.
Defaults are lt=1 (solid line) and lw=0.2 (mm).

Optionally, one can use the gs parameter to fill the area below the
function with a grey tone. The nc=1 parameter can be used to allow a
plot of the function outside the coordinate system.
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Box 1 Command file plot12.cf

psfile = plot12.ps; output file

psetup(

pxlen = 90,

pylen = 50,

pxa = -3,3,

pya = 0,1,

);

plxa (sc=0.5,fmt=4.1); plot x axis

plya (sc=1,ic=10); plot y axis

plframe; plot frame

plotf (rx=0(0.05)3,) = ndf((x - 1.5) / 0.5) / 0.5;

plotp = 1.5,0,1.5,0.798;

plotf(rx=-3(0.1)3,gs=0.8) = ndf(x);

plotp = 0,0,0,0.399;

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0  2.5  3.0
0

1

Figure 1 Example of a PostScript plot, created with command
file plot12.cf shown in Box 1.

Example 1 To illustrate the plotf command, plot12.cf (Box 1) cre-
ates plots of two normal density functions, one grey-scaled, and adds two
straight lines at the means. The result is shown in Figure 1. Note that
when using grey scales, the effect depends on the ordering of commands
since a grey-scaled object can mask previous objects.
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4.4.7 Arrows

The plot and plotp commands (see 4.4.1) can be modified such that
the resulting polygon ends in an arrow. The parameter is

a = xs,ys

with xs defining the length and ys the width of the arrow head (in mm),
respectively.

Command file plot13.cf, shown in Box 1, uses the plotp command
to illustrate several arrows with different line types and head sizes. The
plot is shown in Figure 1.
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Box 1 Command file plot13.cf

psfile = plot13.ps; output file

psetup(

pxlen = 90,

pylen = 50,

pxa = 0,10,

pya = 0,6,

);

plxa (sc=1); plot x axis

plya (sc=1); plot y axis

plframe; plot frame

plotp(a=1,1) = 5,3,8,3;

plotp(a=1.5,1.5) = 5,3,7,5;

plotp(a=2,2) = 5,3,5,5.5;

plotp(a=2.5,2.5) = 5,3,3,5;

plotp(a=1,1,lt=5) = 5,3,2,3; use line type 5

plotp(a=1.5,1.5,lt=5) = 5,3,3,1; use line type 5

plotp(a=2,2,lt=5) = 5,3,5,0.5; use line type 5

plotp(a=2.5,2.5,lt=5) = 5,3,7,1; use line type 5

pltext (xy=8.3,3) = [1,1]; some labels

pltext (xy=7.3,5) = [1.5,1.5];

pltext (xy=5.3,5.6) = [2,2];

pltext (xy=1.6,5) = [2.5,2.5];

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

[1,1]

[1.5,1.5]

[2,2]

[2.5,2.5]

Figure 1 PostScript plot plot13.ps, created with command
file plot13.cf shown in Box 1.
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4.4.8 Circles, Arcs, Ellipses

The ploto command can be used to plot circles and arcs; for an illus-
tration, see Figure 1. The syntax is shown in the following box.

ploto (

xy=..., coordinates of center
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping option, def. 0

) = r [,alpha,beta];

The xy=x,y parameter must be used to define the center of the circle.
The radius must be given on the right-hand side. The angles, α and β,
to be given in degrees, are optional. If these angles are not given, the
result is a full circle, otherwise it is an arc, beginning at the angle α
and ending at the angle β, in counterclockwise direction; default values
are α = 0 and β = 360 to provide a full circle. Other parameters are
optional. lt and lw can be used to change the default line type and line
width. gs can be used to fill the circle with a grey tone. And nc=1 can
be used to plot outside the coordinate system.
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0 1 2 3 4 5 6 7 8 9 10
0

1

2

ploto (xy=2,1,gs=0.9) = 1; plote (xy=7,1,gs=0.9) = 2,0.5;

1 2

0.5

Figure 1 PostScript plot plot15.ps, created with command
file plot15.cf (not shown), to illustrate the ploto and plote

commands.
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0 1 2 3 4 5 6 7 8 9 10
0

1

2

plote(xy=4,1,gs=0.9) = 3,0.3;

plote(xy=4,1) = 3,0.3,-45;

plote(xy=4,1) = 3,0.3,45;

Figure 2 PostScript plot plot16.ps, created with command
file plot16.cf (not shown), to illustrate the ploto and plote

commands.

The plote command can be used to plot ellipses; for an illustration see
Figure 2. The syntax is shown in the following box.

plote (

xy=..., coordinates of center
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping option, def. 0

) = a,b [,r];

The xy=x,y parameter must be used to define the center of the ellipse. a
is the half length of the main axis (interpreted in user coordinates of the
x axis), b is the half length of the second axis of the ellipse (interpreted
in user coordinates of the y axis). r is optional; if provided the ellipse is
rotated by r degrees.
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0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

plotk(a=1,1,sc=45) = a,b,c,d;

(a,b)

(c,d)

α

plotk(sc=45) = 6,2,6,4,7,5;
plotk(sc=-45) = 9,2,9,4,8,5;

Figure 3 PostScript plot plot14.ps, created with command
file plot14.cf (not shown), to illustrate the ploto and plotk

commands.

To plot arcs which optionally end in an arrow, one can use the plotk
command; for an illustration see Figure 3. The syntax is shown in the
following box.

plotk (

sc=..., degree of curvature, def. 0
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
a=..., size of arrow head
nc=..., no clipping option, def. 0

) = x1, y1, . . . , xn, yn;

Given this command, the points (x1, y1), . . . , (xn−1, yn−1) are connected
by a polygon, and the points (xn−1, yn−1) and (xn, yn) are connected
by an arc. The arc is constructed so that its radius is defined implicitly
by the angle α to be given in degrees with the parameter sc=alpha; see
the example given in Figure 3. Note that α is restricted to the range
−180 < α < 180.

As an additional option one can use the a=xs,ys parameter. The
polygon then ends in an arrow with xs defining the length and ys the
width of the arrow head (in mm), respectively.
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4.4.9 Convex Hull

To plot the convex hull of a set of points, TDA uses an algorithm pub-
lished by Eddy [1977]. The command is plotch with syntax shown in
the following box.

plotch (

lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
s=..., marker symbol
fs=..., size of marker symbol, def. 2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping option, def. 0
ns=..., number of intervals for smoothing
ic=..., added to smoothed hull, def. 0
sel=..., selection of data points

) = VX,VY;

The right-hand side of the command must contain exactly two variable
names, to be used for the x and y coordinates of the data points. All
other parameters are optional.

1. By default, the command uses all cases (rows) of the currently defined
data matrix. To select a subset of cases one can use the sel parameter,
see the description of the plot command in 4.4.1.

2. The lt and lw parameters can be used to modify the default line
type and line width.

3. By default, only the convex hull polygon is plotted. To plot the data
points, one can provide the number of a marker symbol with the s pa-
rameter. The fs parameter can then be used to change the default size
of the symbols.

4. The gs parameter can be used to fill the convex hull with a grey tone.
The nc=1 (no clipping) parameter can be used to allow plotting outside
of the coordinate system.

5. Finally, one can request a smoothing of the convex hull with the ns
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Box 1 Command file plot17.cf

nvar(

noc = 100,

X = rd,

Y = rd,

);

psfile = plot17.ps; output file

psetup(

pxlen = 90,

pylen = 50,

pxa = -0.5,1.5,

pya = -0.5,1.5,

);

plxa (sc=0.5);

plya (sc=0.5);

plframe;

plotch(gs=0.95,s=5,fs=0.7) = X,Y;

parameter. TDA uses then the Akima algorithm, described in 4.4.10, to
create a smoothed version of the convex hull polygon. (Note that the
resulting graph is no longer a convex hull in its strict definition.) The
parameter must be given as ns=n with n an integer greater than, or equal
to, 2. This specifies the number of subintervals used for smoothing. As
an additional option, one can use the ic=x parameter with some value
x > 0. Depending on the value of x, this results in some blow up of
the smoothed convex hull in such a way that all data points are strictly
inside its area.

Example 1 Command file plot17.cf, shown in Box 1, illustrates the
plotch command. In a first step, the command file creates 100 random
data points (using the rd operator). The plotch command is then used
to plot the convex hull of these data points. The area is grey-scaled
with value gs=0.9. A scatterplot of the data points is added with the s
parameter. The resulting plot is shown in Figure 1.
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Figure 1 PostScript plot plot17.ps, created with command
file plot17.cf shown in Box 1.
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Figure 2 PostScript plot plot18.ps, created with command
file plot18.cf (not shown), to illustrate a smoothed convex
hull plot.

Example 2 To illustrate the smoothing option, we have changed the
plotch command into

plotch(ns=10,ic=2,gs=0.95,s=5,fs=0.7) = X,Y;

The new command file, plot18.cf, is not shown here, but the resulting
plot is shown in Figure 2. The blow up parameter is ic=2 (mm).
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4.4.10 Smoothing Polygons

For smoothing polygons TDA uses an algorithm published by Akima
[1972]. There are two commands. The command plots, with syntax
shown in the following box,

plots (

ns=..., degree of smoothing, def. 2
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
s=..., marker symbol
fs=..., size of marker symbol, def. 2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping option, def. 0
sc=..., request closed curve (sc=1), def. sc=0
df=..., write data to output file
fmt=..., print format
sel=..., selection of data points

) = VX,VY;

can be used analogously to the plot command, see 4.4.1. The right-hand
side must provide the names of two variables containing the coordinates
of the data points.

1. The sel parameter can be used to select a subset of data points.

2. The degree of smoothing can be controlled with the ns parameter.
The syntax is ns=n with n an integer greater than, or equal to, 2; default
is ns=2.

3. The sc=1 parameter can be used to treat the polygon as a closed
curve. The first and last point of the polygon are then connected before
the smoothing algorithm is applied. These points are be marked by sym-
bols if the s parameter has been used to specify the number of a marker
symbol; the fs parameter can then be used to change the default symbol
size.

4. The gs parameter can be used to fill the smoothed curve with a
grey tone. The effect depends on the sc parameter. By default, the area
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Figure 1 PostScript plots created with command files plot19.cf

and plot20.cf to illustrate smoothed polygons. In the right plot, the
parameter sc=1 has been used to request a closed curve.

between the smoothed curve and the x axis is grey-scaled. With the sc=1
parameter, the area inside the closed curve is grey-scaled.

5. The lt and lw parameters can be used to change the default line type
and line width. The nc=1 (no clipping) parameter allows a plot outside
the area of the coordinate system.

5. Finally, one can provide the name of an output file with the df pa-
rameter. Coordinates of the smoothed data points will then be written
into this file. The print format can be controlled with the fmt parameter.

Alternatively, one can use the command

plotsp (ns=,...) = x1,y1,x2,y2,...,xn,yn;

that allows to provide a list of data points directly on the right-hand
side of the command. All other parameters have the same meaning as
explained above for the plots command.

Example 1 An example, based on some arbitrarily chosen data points,
is shown in Figure 1. The command for the plot on the right side is

plotsp(ns=10,gs=0.9) = 1,1,2,2.5,3,2,4,2.5,5,2,6,1;

For the plot on the right side the parameter sc=1 was added to request
a closed curve.
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4.4.11 Contour Plots

To get information about a single-valued function with two arguments,
f(x, y), it is sometimes useful to plot its projection onto a two-dimen-
sional plane. This is called a contour plot . To provide this option, TDA

uses an algorithm published by Snyder [1978]. The command to request
a contour plot is plotc with syntax shown in the following box.

plotc (

x=..., specification of levels
nn=..., grid specification, def. nn=10,10
lt=..., line type, def. 1 (solid line)
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)

) = function;

The right-hand side must contain the definition of a function depending
on (up to) two parameters, specified by the key words x1 (for the x axis)
and x2 (for the y axis). Depending on these arguments, the function
can be defined as any valid expression, which may contain numerical
constants, random numbers, and any of TDA’s type 1 operators. It must
be possible to evaluate the function over the whole range of the given
coordinate system.

The function is evaluated for the node points of a grid on the coor-
dinate system. The grid is defined by integers nx and ny, the number
of intervals on the x and y axis, respectively. The parameter to provide
these numbers is nn=nx,ny; default is nn=10,10.

In addition, the command requires the specification of a sequence
of levels with the x=l1,l2,... parameter. For each of these levels the
algorithm tries to plot a contour line defined by the curve f(x, y) = li.

The other parameters are optional. lt and lw can be used to modify
the default line type and line width. The gs parameter can be used to
request a grey-scaled contour plot. The levels should then be ordered
from lowest to highest. Given the parameter gs=g, each level gets a
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Box 1 Command file plot21.cf

psfile = plot21.ps; output file

psetup(

pxlen = 70,

pylen = 70,

pxa = -2,2,

pya = -2,2,

);

plxa (sc=1);

plya (sc=1);

plframe;

plotc (x=0.01,0.05,0.1,0.125,0.15,nn=50,50,gs=0.9) =

exp(-((x1 + 1)^2 + (x2 + 1)^2) / 2) / (2 * pi) +

exp(-((x1 - 1)^2 + (x2 - 1)^2) / 2) / (2 * pi);

grey-scale value according to

greyscale value = g

(
1 +

1− i

n

)
i = 1, . . . , n

One should note that, to save programming overhead, only closed con-
tour lines are filled with grey-scaled shades. However, a contour plot is
just another plot object, so it is possible to have many contour plots and
other plot objects in the same picture. In particular, the bounding box
of the coordinate system can be given a greyscale before adding contour
plots.

Example 1 To illustrate the contour plot command, our function is a
mixture of two two-dimensional normal densities with zero correlation,
defined symmetrically around zero:

f(x1, x2) =
2∑

i=1

1
2π

exp
(
−1

2
[
(x1 − µi)2 + (x2 − µi)2

])
The means are selected to be µ1 = −1 and µ2 = 1. Box 1 shows the
command file, plot21.cf, to create a contour plot for this function,
using five levels in ascending order. Figure 1 shows the resulting plot.
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Figure 1 PostScript plot plot21.ps, created
with command file plot21.cf shown in Box 1.
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4.5 Built-in Previewer

In order to preview PostScript plots, one most often will use a general
purpose preview utility, e.g., GhostScript or GhostView. For very simple
plots one can also use TDA’s built-in previewer. This option is available
when TDA runs in a Windows environment. It relies on a set of graphic
primitives for an X-Windows environment, and the previewer will there-
fore work properly only when TDA runs in an X-Windows environment of
a UNIX system. There are, however, some substitutes when TDA runs in
an MS-Windows environment. In any case, the previewer is not available
for a DOS version of TDA.

This section describes four commands that can be used to work “in-
teractively” with TDA PostScript files. Some additional ready-made plot
commands will be described in 4.6.
1. The command

xopen = psfile;

requires that psfile is the name of a PostScript file that was created
by TDA. The command then makes this file TDA’s current PostScript
file and one can add and delete plot objects.

2. The command

xlog [= psfile];

shows the plot objects in TDA’s current PostScript file or, alterna-
tively, in the file specified on the right-hand side. Each plot object
is shown by a number and a short description in TDA’s standard
output.

3. The command

xdelete = n1,n2,... ;

deletes the plot objects with numbers n1,n2,... from the current
PostScript file.

4. The command

xshow [= psfile];
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invokes the built-in previewer to show a picture of the current Post-
Script file or, alternatively, the PostScript file specified on the right-
hand side, on the screen. If possible, the previewer opens a plot win-
dow and shows the plot in this window. Note that TDA remains
inactive as long as the plot window is open. Note also that, in an MS
Windows environment, one has to “click” on the window in order to
get the picture.

As an option, the command can also be used as

xshow (dscale=...) [= psfile];

where the dscale parameter provides a scaling factor for the plot.
The default scaling factor is 1.

Limitations. One should note that the built-in previewer has a number
of limitations. Each single plot object may only contain up to 1000 data
points; and the previewer can not show text and grey-scaled areas.



4.6 ready-made plot commands 1

4.6 Ready-made Plot Commands

There are a few ready-made plot commands that have the following
features:
• If there is no current open PostScript file, they create a new Post-

Script file and automatically create a coordinate system in such a
way that the new plot object roughly fits. A new PostScript plot file
is always named xplot.ps.

• If a current PostScript file exists, these commands (like all other plot
commands) add a plot object to this file.

The main usage of these commands is to allow for “quick and dirty” plots
that can be viewed with the built-in previewer (see 4.5). The following
pages describe the currently available commands.
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Box 1 Syntax for xplot command

xplot (

opt=..., plot option, def. 1
1 : scatterplot
2 : line plot

s=..., symbol type, def. 1
fs=..., symbol size, def. 1.3 mm
lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm
pxlen=..., length of x axis, def 120 mm
pylen=..., length of y axis, def 80 mm

) = VX,VY [,VG];

Standard Line and Scatter Plots

By default, the xplot command creates a scatterplot based on the data
in the first two variables given on the right-hand side. As an option
(opt=2) the data points are connected by straight lines. As a further
option, one can add a third variable on the right-hand side. If added,
each set of data points having the same value of this variable is treated
as a separate group and is shown by a separate plot symbol. Note that
the s parameter can only be used when there is only one group.
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Box 2 Syntax for xplotf command

xplotf (

cn=..., column numbers of variables, def. cn=1,2
gn=..., column number of group variable
opt=..., plot option, def. 1

1 : scatterplot
2 : line plot

s=..., symbol type, def. 1
fs=..., symbol size, def. 1.3 mm
lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm
pxlen=..., length of x axis, def 120 mm
pylen=..., length of y axis, def 80 mm

) = name of data file;

Standard Line and Scatter Plots Based on a Data File

This command works similar to the xplot command but gets its data
directly from a free format data file that must be specified on the right-
hand side.
a) By default, the command uses the first two data columns in the input

file to get values for the X and Y variables.

b) Optionally, one can use the cn parameter to specify data column
numbers: cn=ci,cj,ck,... This specifies the data point groups:

(Xi,Xj), (Xi,Xk), ...

and a scatterplot, or line plot, is created separately for each group.

c) As a further option, one can specify

cn=ci,cj, gn=ck,

in order to define corresponding variables VX, VY, and VG. VX and VY
provide the data points, and VG is a grouping variable, meaning that
each set of (VX,VY) values which have the same value in VG is treated
as a separate group.
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Box 3 Syntax for xf command

xf (

rx=..., definition of x axis, def. rx=1(1)10
lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm
pxlen=..., length of x axis, def 120 mm
pylen=..., length of y axis, def 80 mm

) = function(x);

Functions

This command plots function(x). If there is a currently open PostScript
file, the function is plotted for the already defined x axis. Otherwise, the
command creates a new PostScript file. By default, the function is then
plotted for an x axis from 1 to 10. Alternatively, one can define the x
axis with the parameter

rx = a (d) b,

The range is then from a to b with increments d.
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Box 4 Syntax for xconh command

xconh (

lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm

) = function(x);

Convex Hulls

This command adds a convex hull to the most recent scatterplot. If the
scatterplot consists of more than one group, the convex hulls are created
separately for each group.



4.6 ready-made plot commands 6

Box 5 Syntax for xreg command

xreg (

sig=..., sigma for lowess, def. 0.5
lt=..., line type, def. 1
lw=..., line width, def. 0.2 mm

) [= n];

Regression Curves

This command adds a regression curve to the most recent scatterplot.
In case of more than one group of points this is done separately for each
group. One of there options can be selected on the right-hand side:

1 Lowess regression curve (default)

2 Least squares regression line

3 L1 norm regression line
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4.7 3D Coordinate Systems

This chapter describes how to define and use three-dimensional coordi-
nate systems for PostScript plots.

4.7.1 Coordinates and Projections

4.7.2 The plot3 and plotp3 Commands

4.7.3 Plotting Text

4.7.4 Parametric Curves

4.7.5 Parametric Surfaces

4.7.6 Arbitrarily Distributed Points
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4.7.1 Coordinates and Projections

In order to create 3-dimensional PostScript plots it is necessary to define
a PostScript output file with the psfile command and to set up a
coordinate system and projection with the psetup3 command:
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4.7.2 The plot3 and plotp3 Commands

There are two commands to plot an arbitrary sequence of data points,
plot and plotp. The only difference is in the way the data points are
supplied. With the former one, the data points are taken from the pro-
gram’s internal data matrix, with the latter one, the data points can be
explicitly supplied as part of the command.
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4.7.3 Plotting Text

There are two commands to plot an arbitrary sequence of data points,
plot and plotp. The only difference is in the way the data points are
supplied. With the former one, the data points are taken from the pro-
gram’s internal data matrix, with the latter one, the data points can be
explicitly supplied as part of the command.
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4.7.4 Parametric Curves

There are two commands to plot an arbitrary sequence of data points,
plot and plotp. The only difference is in the way the data points are
supplied. With the former one, the data points are taken from the pro-
gram’s internal data matrix, with the latter one, the data points can be
explicitly supplied as part of the command.
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4.7.5 Parametric Surfaces

There are two commands to plot an arbitrary sequence of data points,
plot and plotp. The only difference is in the way the data points are
supplied. With the former one, the data points are taken from the pro-
gram’s internal data matrix, with the latter one, the data points can be
explicitly supplied as part of the command.
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4.7.6 Arbitrarily Distributed Points

There are two commands to plot an arbitrary sequence of data points,
plot and plotp. The only difference is in the way the data points are
supplied. With the former one, the data points are taken from the pro-
gram’s internal data matrix, with the latter one, the data points can be
explicitly supplied as part of the command.
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5. Mathematical Procedures

This part contains the following sections.

5.1 Working with Matrices

5.2 Expressions

5.3 Functions

5.4 Numerical Integration

5.5 Smoothing Procedures

5.6 Function Minimization
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5.1 Working with Matrices

This chapter explains how to use TDA for matrix calculations. It contains
the following sections.

5.1.1 Introduction and Overview

5.1.2 Matrices explains the basic concepts and how to create and
print matrices.

5.1.3 Matrix Expressions explains TDA’s concept of matrix expres-
sions.

5.1.4 Matrix Commands explains all currently available matrix com-
mands.
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5.1.1 Introduction and Overview

Command Section

mdef creates a matrix 5.1.2
mdefb creates a matrix from a block 5.1.2
mdeff reads a matrix from a file 5.1.2
mdefi creates an identity matrix 5.1.2
mdefc creates a matrix with constant values 5.1.2
mdefg creates a graph’s adjacency matrix 5.1.2
mfmt changes the print format 5.1.2
mfree deletes matrices 5.1.2
mnvar creates internal data matrix 5.1.2
mpr prints a matrix/expression 5.1.2

mpra appends a matrix/expression 5.1.2

mexpr evaluates a matrix expression 5.1.3
mexpr1 evaluates a matrix expression 5.1.3
msetv changes elements of a matrix 5.1.3

mag matrix aggregation 5.1.4.1
mcath horizontal concatenation 5.1.4.1
mcathv direct sum 5.1.4.1
mcatv vertical concatenation 5.1.4.1
mcel edge list from adjacency matrix 5.1.4.14
mcent centering 5.1.4.3
mchol Cholesky decomposition 5.1.4.6
mcross cross product 5.1.4.1
mcsum column sums 5.1.4.1
mcvec stacks columns 5.1.4.1
mdcent double centering 5.1.4.3
mdcol creates diagonal matrix 5.1.4.1
mdiag creates diagonal matrix 5.1.4.1
mdiagd extracts diagonal 5.1.4.1
mdrow creates diagonal matrix 5.1.4.1
mev eigenvalues and eigenvectors 5.1.4.11
mevs eigenvalues of symmetric matrix 5.1.4.11
mginv generalized inverse 5.1.4.5
minvd inverse of diagonal matrix 5.1.4.5
minvs inverse of symmetric matrix 5.1.4.5
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Command Section

mkp Kronecker product 5.1.4.1
mlp linear programming 5.1.4.13
mlp1 linear programming with constraints 5.1.4.13
mls least squares regression 5.1.4.7
mlse linear equations 5.1.4.8
mlsei regression with constraints 5.1.4.10
mlsi linear inequalities 5.1.4.9
mmul multiplication 5.1.4.1
mncol extracts number of columns 5.1.3
mnls regression with constraints 5.1.4.10
mnorm maximal norm 5.1.4.4
mnorm1 L1 norm 5.1.4.4
mnorm2 Euclidean norm 5.1.4.4
mnrow extracts number of rows 5.1.3
mpbl lower block diagonal matrix 5.1.4.14
mpbu upper block diagonal matrix 5.1.4.14
mpcol column permutation 5.1.4.1
mpfit iterative proportional fitting 5.1.4.14
mpinv inverse permutation 5.1.4.1
mpit Leslie matrix iteration 5.1.4.14
mple Kaplan-Meier estimates 5.1.4.14
mproc Procrustes rotation 5.1.4.14
mprow row permutation 5.1.4.1
mpsym symmetrical permutation 5.1.4.1
mpz zero-free main diagonal 5.1.4.14
mqap quadratic assignment 5.1.4.14
mrank ranking 5.1.4.2
mrsum row sums 5.1.4.1
mrvec stacking rows 5.1.4.1
mscal1 scaling 5.1.4.3
mscol selection of columns 5.1.4.1
msort sorting 5.1.4.2
msort1 sorting 5.1.4.2
msqrtd square root of diagonal matrix 5.1.4.1
msqrti inverse square root of diagonal matrix 5.1.4.1
msrow selection of rows 5.1.4.1
mstand standardization 5.1.4.3
msvd singular value decomposition 5.1.4.12
msvd1 singular value decomposition 5.1.4.12
mtrace trace 5.1.4.1
mtransp transposition 5.1.4.1
mwvec construction of weights 5.1.4.14
mwvec1 construction of weights 5.1.4.14
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5.1.2 Matrices

Matrix Names

Matrices are rectangular arrays of numerical entries. A general (m,n)
matrix X, that is, a matrix with m rows and n columns, is of the form

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

...
xm1 xm2 · · · xmn


X is the name of the matrix. TDA uses the same conventions for matrix
and variable names (see 2.1). A matrix name is an arbitrary string of up
to 32 characters which may consist of the following letters:

A,. . . ,Z,a,. . . ,z,0,1,. . . ,9, ,@,$

The first character of a matrix name must be an upper case letter, or
one of the characters “ ”, “@”, “$”. Note that matrix names are case
sensitive, that is, lower and upper case letters are distinguished. There
is no special notation for vectors. Column vectors are treated as (m, 1)
matrices, row vectors as (1, n) matrices.

Storage of Matrices

Matrices are always stored in double precision (8 byte) arrays. To store
an (m,n) matrix needs (m · n + 1) · 8 bytes. There is an upper limit of
MaxMat matrices. When invoking the program, the default (MaxMatDef
= 200) can be changed with the maxmat command (see 1.4). Memory
to store matrices is only allocated when a new matrix becomes defined,
and if a matrix is deleted, the previously allocated memory will be given
back to the operating system and can be used then for other purposes.

Creating Matrices

There are several different options to create matrices.
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1. The command

mdef(X);

creates a (m,n)-matrix X with m equal to the number of rows in the
current internal data matrix and n equal to the current number of
variables. The command then copies the internal data matrix into X.

2. The command

mdef(X,m,n);

creates a (m,n)-matrix X and copies a maximum of m rows and n
columns (variables) from the internal data matrix into X.

3. The command

mdef(X) = varlist;

creates a (m,n)-matrix X with m equal to the number of rows in the
current internal data matrix and n equal to the number of variables
in varlist. The command then copies the values of the specified
variables into X.

4. The command

mdef(X,m,n) = varlist;

creates a (m,n)-matrix X and copies the values for maximal n vari-
ables from varlist and for maximal m rows in the current data
matrix into X. If m is greater then the number of cases (noc) or if n
is greater than the number of variables in varlist, the corresponding
rows or columns are filled with zeros.

5. The command

mdef(X,m,n) = x11, . . . , x1,n, . . . , xm1, . . . , xm,n;

creates a (m,n)-matrix X and uses for its elements the values given
on the right-hand side. See Box 1 for an example.

6. The command

mdef(X,m,n) = file name;
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creates a (m,n)-matrix X. The command then tries to open a data
file with the name given on the right-hand side and reads a maximum
of m data records from the file. From each record, the command uses
the first n numerical entries for the elements of X. It is assumed that
the file is organized as a free-format file.

7. The command

mdeff(X) = file name;

tries to open a free-format data file with the name specified on the
right-hand side. Given that the file contains m data records and n
numerical entries in each record, the command then creates a (m,n)-
matrix X and copies the numerical entries from the file into the ele-
ments of X.

8. Given a relational data structure, the command

mdefg(

gn=...,

sc=...,

) = matrix name;

creates a matrix containing the graph’s adjacency matrix. Except for
the name of a matrix to be given on the right-hand side all parameters
are optional. The gn parameter can be used to select a graph from
the current relational data structure. By default, the command uses
the first graph. The sc parameter can be used to substitute specific
values for missing edges.

Special Matrices

1. The command

mdefc(m,n,x,A);

creates a (m,n)-matrix A and sets all of its elements to the value x.
x must be provided as a scalar (matrix) expression.

2. The command

mdefi(m,n,A);

creates a (m,n)-matrix A and sets A(i, i) = 1, for i = 1, . . . ,min(m,n).
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Box 1 Illustration of mdef command

# command file: mat1.cf

mdef(I,3,3) = 1,0,0,

0,1,0,

0,0,1;

mpr(I);

Standard output

---------------

mdef(I,3,3)=...

mpr(I)

1.0000 0.0000 0.0000

0.0000 1.0000 0.0000

0.0000 0.0000 1.0000

3. The command

mnum(x,d,m,A);

assumes that x, d, and m are scalar (matrix) expressions. The com-
mand creates a (m, 1)-matrix A and sets

A(i) = x + (i− 1)d (i = 1, . . . , m)

x, d, and m can be (1,1) matrices.

Exchange with Internal Data Matrix

As has been described above, part or the whole of TDA’s internal data
matrix can be used to create matrices. On the other hand, one can also
use a matrix to create a new internal data matrix. The command is

mnvar(A);

where A is a (m,n) matrix. The command creates a new internal data
matrix with m rows and n variables. Variable names are created by using
the matrix name and adding column numbers. If a data matrix already
exists the command exits with an error message.

Saving Data Matrix Blocks in a Matrix

The comamnd

mdefb(B,expression);
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can be used to save a block of data matrix rows in a matrix. The com-
mand requires that the dblock command has been used previously to
define data matrix blocks (see 1.9). B must be a valid matrix name, and
expression must be a scalar expression that evaluates to a valid block
number, say n. The mdefb command then creates a matrix named B and
copies block number n from the current data matrix into this matrix.
Block numbers can be written into a matrix using the dblock command,
see Section 1.9.

Information about Matrices

The command mdef, without parameters, can be used to get information
about the currently defined matrices. A table will be displayed contain-
ing, for each matrix, its name, its dimensions, and the command that
was used to define or create the matrix.

Printing Matrices

The command to print matrices has syntax

mpr(X [,string]);

where X is the name of a matrix. This matrix is then written into the
program’s standard output using the currently defined print format for
matrices. The print format can be changed with the command

mfmt = formatstring;

The default print format is mfmt=10.4. Alternatively, using the com-
mand

mpr(X [,string]) = name of an output file;

the matrix is written into the specified output file. Using mpra instead
of mpr appends to the output file.

Deleting Matrices

The command

mfree(X);
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can be used to delete the matrix X from the list of currently defined ma-
trices. The same command without an argument, simply mfree, deletes
all currently defined matrices. The memory used to hold the matrix data
is then deallocated and can be used for new matrices or other purposes.
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5.1.3 Matrix Expressions

Matrix expressions are a generalization of standard (scalar) expressions
that are described in 5.2. The extension is that at all places where a
standard expression may contain numerical constants, a matrix expres-
sion may contain the name of a matrix, a variable, or a namelist. The
basic idea can best be explained by referring to the mexpr command that
is used to evaluate matrix expression. The general syntax is

mexpr(op(A,...,V,...,L,...), R);

where A,... refers to matrix names, V refers to variable names, L refers
to namelist names, and op is used to refer to some (combination of) type
1 operators. Data matrix variables are treated as (m, 1) matrices with m
the number of rows in the current data matrix. Namelists are treated as
(m,n) matrices with m the number of rows in the current data matrix
and n the number of variables in the namelist. Consequently, each of
the referred objects, A,..., V,..., and L,..., can be considered as a
matrix with dimensions, say, row(i) and col(i), for the ith object in
the matrix expression. The resulting matrix R then gets the dimensions

max {row(i)} ×max {col(i)}

If one of the objects (matrices, variables, namelists) has smaller dimen-
sions, its missing rows and columns are created by cyclically using the
available ones. For example, if a matrix A has n columns, its (n + 1)th
column will equal its first column, and so on; analogously for rows.

We now give some additional hints on the usage of matrix expressions.
1. Names of matrices, variables and namelists must be different.

2. There are two type 1 operators which may help when using matrix
expressions. The operator

row(expression)

returns the row dimension of expression, and the operator

col(expression)
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returns the column dimension of expression.1

3. The evaluation of matrix expressions is performed element-wise. For
example, given matrices

A =

 1
2
3

 , B = (1, 2)

the result of the matrix expression

mexpr(A * B, R);

would be

R =

 1 2
2 4
3 6


4. Matrix expressions may contain type 2 operators. Not allowed are

the pre and suc operators (but the lag operator will work), and
the operators for episode and sequence data. When a matrix ex-
pression contains type 2 operators, the resulting matrix is calculated
as a sequence of column vectors, meaning that the operators apply
separately for each of these column vectors. For example,

mexpr(sort(X),R);

would separately sort each column of X in ascending order.

5. In order to allow the block mode operators for matrix expressions,
there is an additional command,

mexpr1(B, expression, R);

where B is a (m,n) matrix and expression is some (r,c) matrix
expression. It is required that m ≥ r. The resulting matrix, R, has
dimension max(m, r) × c and is evaluated from expression. While
evaluating the expression, B is used for the definition of blocks, that
is, each consecutive number of identical rows in B is treated as a
separate block.

1These are operators; the corresponding commands are mnrow and mncol.
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6. A matrix expression may contain arguments

X(row,col) where X is a matrix, or
V(row,1) where V is a data matrix variable, or
L(row,col) where L is a namelist.

The result is the corresponding element of X, V, or L. For example,

mexpr(A(row,col),R);

would create a scalar matrix, R, containing the value of A(row,col).
row and col can be any scalar expression.

7. Values resulting from row and col expressions must be positive in-
tegers. If they exceed the corresponding matrix dimensions, they are
cyclically turned around. For example, if the matrix is

A = (1, 2, 3),

then A(1,5) = 2.

8. In addition, one can use the following constructs (where X is a matrix,
a variable, or a namelist):

X(row,.) sum of the elements in the row
X(.,col) sum of the elements in the column
X(.,.) sum of all elements

9. All constructs mentioned so far are considered as type 1 operators
and get the dimension (1, 1). There is a further type 2 operator,

X(i)

which returns the ith column of the matrix (or variable, or namelist)
X. The returned object has dimension row×1 where row is the number
of rows of object X.

10. Whenever the argument of a matrix command refers to an existing
matrix, it is possible to use an arbitrary matrix expression instead of
a single matrix name. So it is possible to combine scalars, matrices,
variables and namelists in all matrix commands. For example,

mpr(sin(V));

where V is a data matrix variable would print the resulting vector.
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11. As a further extension, one can directly refer to vectors with the
syntax

< e1,e2,... > for column vectors
< e1,e2,... >′ for row vectors

where e1, e2, ... are any scalar expressions. For example,

mpr(<1,2,3>′);

would be printed as the row vector (1, 2, 3) and

mpr(<1,2,3> + < 4,5,6 >′);

would be printed as the matrix 5 6 7
6 7 8
7 8 9


If a vector has fewer elements as required by the dimension of its
context, it is cyclically updated. For example,

mpr(< 1,2 >′ + < 3,4,5 >′);

would result in the vector (4, 6, 6).

12. Note that the prime character (’) is different from the single quotation
mark character (‘) which can be used to enclose strings. The prime
character can only be used with vectors, not with general matrices
or matrix expressions. Note also that due to stack size limitations, a
directly specified vector can have at most 9 elements. This may be
less when the vector is used as part of a more complex expression.

13. In addition to its standard form, one can use the mexpr command in
the form

mexpr(<rsel,csel,a>, expression, Matrix-name)

The optional string <rsel,csel,a> controls how the matrix ex-
pression is evaluated. rsel selects row indices, csel selects column
indices of the matrix expression. Only elements selected both by rsel
and csel are evaluated via expression, all other elements get a value
defined by a.

a can be a scalar constant or the name of an already existing matrix.
rsel and csel can be specified as follows:
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* selects all row (column) indices
i selects row (column) index i
-i selects all rows (columns) except i
(i1,i2,...) selects rows (columns) i1,i2,...
-(i1,i2,...) selects all rows (columns) expept i1,i2,...
i(d)j selects rows (columns) i, i+d, ...
-(i(d)j) selects all rows (columns) except

i, i+d, i+2d,...

Changing the Elements of a Matrix

In order to change specific elements of a matrix one can use the command

msetv(expression, X(row,col));

where expression is a scalar expression, X is the name of an existing
matrix, and row and col are scalar expressions referring to an existing
element of X. This element is then changed into the value of expression.
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5.1.4 Matrix Commands

This section describes the currently available matrix commands.

5.1.4.1 Elementary Matrix Commands

5.1.4.2 Sorting and Ranking

5.1.4.3 Standardization and Scaling

5.1.4.4 Matrix Norms

5.1.4.5 Inverse Matrices

5.1.4.6 Cholesky Decomposition

5.1.4.7 Least Squares Regression

5.1.4.8 Linear Equations

5.1.4.9 Linear Inequalities

5.1.4.10 Regression with Constraints

5.1.4.11 Eigenvalues and Eigenvectors

5.1.4.12 Singular Value Decomposition

5.1.4.13 Linear Programming

5.1.4.14 Some Further Commands
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5.1.4.1 Elementary Matrix Commands

This section describes some elementary matrix commands. All the com-
mands create new matrices and will result in an error if there is not
enough memory for the new matrices or if the maximum number of ma-
trices is reached. The name of an existing matrix can be used to name a
result. In this case the previously existing matrix is overwritten. Matrix
commands do not echo unless silent = -1.

Number of Rows and Columns

1. Given a (m,n) matrix A, the command

mnrow(A,R);

creates a (1, 1) matrix R that contains m.

2. Given a (m,n) matrix A, the command

mncol(A,R);

creates a (1, 1) matrix R that contains n.

Multiplication, Transposition, Trace

1. The command

mmul(A1,...,Ak,R);

creates a matrix R that contains the product of the matrices A1,...,Ak.

2. The command

mtransp(A,R);

creates a matrix R that contains the transpose of the matrix A.

3. The command

mtrace(A,R);

creates a (1, 1)-matrix R that contains the trace of the matrix A.
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4. The command

mcross(A,R);

creates a matrix R that contains the cross product A’A.

Diagonal Matrices

1. The command

mdiag(X,D);

assumes that X is a (m, 1)-matrix (column vector). The commands
creates an (m,m)-matrix D and copies X into its main diagonal.

2. The command

mdrow(A,D);

assumes that A is a (m,n)-matrix. The commands creates an (m,m)
diagonal matrix D and sets

dii =
n∑

j=1

aij

3. The command

mdcol(A,D);

assumes that A is a (m,n)-matrix. The commands creates an (n, n)
diagonal matrix D and sets

dii =
m∑

i=1

aij

4. To extract the main diagonal from a matrix one can use the command

mdiagd(A,X);

It is assumed that A is a (m,n)-matrix. The commands creates a
(k, 1) column vector X, k = min(m,n), containing the main diagonal
elements from A.
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5. The command

msqrtd(A,R);

assumes that A is a (m,m) square matrix with non-negative entries
in its main diagonal. The command creates a (m,m) diagonal matrix
R and sets

rii =
√

aii

6. The command

msqrti(A,R);

assumes that A is a (m,m) square matrix with non-negative entries
in its main diagonal. The command creates a (m,m) diagonal matrix
R and sets

rii = 1/
√

aii

Concatenation

1. The command

mcath(A1,...,Ak,R);

creates a matrix

R = [A1, . . . , Ak]

meaning that the matrices are horizontally concatenated. The num-
ber of rows of R will equal the number of rows of A1.

2. The command

mcatv(A1,...,Ak,R);

stacks the matrices A1,...Ak vertically into the new matrix R. The
number of columns of R will equal the number of columns of A1.

3. The command

mcathv(A1,...,Ak,R);

creates the direct sum of the matrices A1,...Ak:

R =

 A1
. . .

Ak
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Sums of Rows and Columns

1. Given a (m,n)-matrix A, the command

mrsum(A,R);

creates a (m, 1)-matrix R that contains row sums of A.

2. Given a (m,n)-matrix A, the command

mcsum(A,R);

creates a (1, n)-matrix R that contains the column sums of A.

Note that row sums can also be computed with the command mmul(A,1,R),
and column sums with mmul(1,A,R). Also, mmul(1,A,1,R) provides the
sum of the elements of A.

Selection of Rows and Columns

1. The command

msrow(A,D,R);

assumes that A is a (m,n) matrix and D is a row or column vector
providing indices for rows in A. Assuming that D contains k indices,
the command creates (k, n)-matrix R that contains the selected rows
from A.

2. The command

mscol(A,D,R);

assumes that A is a (m,n) matrix and D is a row or column vec-
tor providing indices for columns in A. Assuming that D contains
k indices, the command creates (m, k)-matrix R that contains the
selected columns from A.

Rows can also be specified by giving an index list in the form

msrow(A,< i1, i2, . . . >,R)

Any sequence of integers between 1 and m can be specified. If elements
in the list are separated by two consecutive commas the corresponding
range is used. The same applies to mscol.
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Trimming Matrices

The command

mtrim(A,ca,ra,cb,rb,R)

expects a (n, m) matrix A and scalar expressions ca, ra, cb, and rb. It
creates a new matrix, R, by deleting the first ca columns of A (if ca ≥ 0)
or adding ca zero columns (if ca < 0), and correspondingly treats the
first ra rows of A, the last cb columns of A, and the last rb rows of A.

Stacking Rows or Columns of a Matrix

Given an (n, m) matrix A, the command

mcvec(A,V)

creates a (n ∗m, 1) vector V containing the stacked columns of A. Corre-
spondingly, the command

mrvec(A,V)

creates a (n ∗m, 1) vector V containing the stacked rows of A.

Kronecker Product

Given matrices A and B, the command

mkp(A,B,R);

creates R = A⊗ B.

Permutations

The command

mprow(A,P,B)

expects an (n, m) matrix A = (aij) and an (n, 1) or (1, n) permutation
vector P = (pi) and creates an (n, m) matrix B = (bij) with bi,j = api,j .
Analogously, the command

mpcol(A,P,B)
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creates bi,j = ai,pj
. The command

mpsym(A,P,B)

expects a quadratic matrix A and creates the symmetrical permutation
bi,j = api,pj

. Finally, given an (n, 1) or (1, n) permutation vector P =
(pi), the command

mpinv(P,Q)

creates an output vector Q = (qi) with qpi
= i, that is, the inverse

permutation.

Matrix Aggregation

The command

mag(A,R,C,B)

expects an (n, m) matrix A, a (n, 1) vector R and a (1,m) vector C.
Elements of R correspond to the rows of A, elements of C correspond to
columns of A. If these elements are zero the corresponding rows and/or
columns of A are dropped. If two or more elements of R and C have the
same value, the corresponding elements of A are aggregated. The rows
and columns of the resulting matrix B are ordered according to the order
of the elements of R and C, respectively. The following examples illustrate
the command:

1 2 3 1
A = 5 6 7 R = 0 C = 1 2 3 B = 2 4 4

1 2 1 1

1 2 3 1
A = 5 6 7 R = 0 C = 1 4 4 B = 2 8

1 2 1 1

1 2 3 1
A = 5 6 7 R = 0 C = 5 4 4 B = 8 2

1 2 1 1
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5.1.4.2 Sorting and Ranking

The following commands are available for sorting and ranking the rows
of a matrix.
1. The command

msort(A,D,R);

assumes that A is a (m,n)-matrix and D is a column vector providing
indices of columns of A. The command then sorts the rows of A in
ascending order, based on the values in the columns selected by D,
and returns the result in a new (m,n)-matrix R.

2. The command

msort1(A,D,R);

is almost identical with the msort command, but this command drops
rows of A which occur more than once. Therefore, R will have the same
number of columns but may have a smaller number of rows than A.

3. The command

mrank(A,D,R);

assumes that A is a (m,n)-matrix and D is a column vector providing
indices of columns of A. The command then sorts the rows of A in
ascending order, based on the values in the columns selected by D.
The command finally returns a new (m, 1)-vector R that contains
rank numbers for the sorted rows of A.

d05010402.tex December 20, 1999



5.1.4.3 standardization and scaling 1

5.1.4.3 Standardization and Scaling

The following commands are available for centering, standardizing, and
scaling matrices.
1. Given a (m,n)-matrix A, the command

mcent(A,R);

creates a (m,n)-matrix R and sets its columns to the mean-centered
columns of A.

2. Given a (m,n)-matrix A, the command

mstand(A,R);

creates a (m,n)-matrix R and sets its columns to the standardized
columns of A, that is, columns with mean 0 and variance 1. If a
column has variance zero it is filled with zeros.

3. Given a symmetric (n, n)-matrix A, the command

mdcent(A,R);

creates a (n, n)-matrix R that contains the “double-centered” version
of A, that is:

rij = −1
2
(a2

ij − a2
i. − a2

.j + a2
..)

4. Given a (m,n)-matrix A, the command

mscal1(A,R);

creates a (m,n)-matrix R with values

rij = aij/Σklakl
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5.1.4.4 Matrix Norms

1. Given a (m,n)-matrix A, the command

mnorm(A,R);

creates a (1, 1)-matrix R that contains the absolute value of that
element of A that has largest absolute value.

2. Given a (m,n)-matrix A, the command

mnorm1(A,R);

creates a (1, 1)-matrix R that contains the sum of the absolute values
of the elements of A.

3. Given a (m,n)-matrix A, the command

mnorm2(A,R);

creates a (1, 1)-matrix R that contains√
Σija2

ij
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5.1.4.5 Inverse Matrices

Inversion of a Diagonal Matrix

Given a diagonal (m,n)-matrix A, the command

minvd(A,R);

returns a (m,n)-matrix R with non-zero elements

rii = 1/aii (i = 1, . . . ,min(m,n))

Inversion of a Symmetric Positive Definite Matrix

Given a symmetric positive definite (n, n)-matrix A, the command

minvs(A,R);

returns a (n, n)-matrix R that contains the inverse of A. Values are taken
only from the lower triangle of A, including its main diagonal.

Generalized Inverse Matrices

If A is a (m,n) matrix, there is a unique (n, m) matrix B with properties

ABA = A

BAB = B

(AB)′ = AB

(BA)′ = BA

B is then called the generalized inverse of A, or sometimes the pseudo-
inverse or Moore-Penrose inverse of A. See, e.g., Pringle and Rayner
[1971]. For more general definitions see Rao [1973, pp. 24–27]. If A is a
square regular matrix, then its generalized inverse is identical with its
standard inverse.

As shown by Golub and Reinsch [1971], calculation of the general-
ized inverse of A can be based on its singular value decomposition (see
5.1.4.12). If the singular value decomposition of A is given by

A = UQV ′
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Box 1 Example: generalized inverse

Command file: mat8.cf

mfmt = 13.10;

mdef(A,4,3) = 1,5,0, 2,6,0, 3,7,0, 4,8,0;

mpr(A);

mginv(A,B);

mpr(B);

mmul(A,B,C);

mmul(C,A,D);

mpr(D);

Output:

mdef(A,4,3)=...

mpr(A)

1.0000000000 5.0000000000 0.0000000000

2.0000000000 6.0000000000 0.0000000000

3.0000000000 7.0000000000 0.0000000000

4.0000000000 8.0000000000 0.0000000000

mginv(A,B)

Pseudorank of A: 2

mpr(B)

-0.5500000000 -0.2250000000 0.1000000000 0.4250000000

0.2500000000 0.1250000000 0.0000000000 -0.1250000000

0.0000000000 0.0000000000 0.0000000000 0.0000000000

mmul(A,B,C)

mmul(C,A,D)

mpr(D)

1.0000000000 5.0000000000 0.0000000000

2.0000000000 6.0000000000 0.0000000000

3.0000000000 7.0000000000 0.0000000000

4.0000000000 8.0000000000 0.0000000000

one can first define the generalized inverse of the diagonal matrix Q by

Pij =
{

1/Qij if Qij 6= 0
0 otherwise

In a second step, the generalized inverse of A can be calculated as

B = V PU ′

TDA uses this method to calculate generalized inverse matrices. The sin-
gular value decomposition is done as described in 5.1.4.12. The command
is

mginv(A,B);
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A is assumed to be an already defined (m,n) matrix with m ≥ n. The
procedure creates a (n, m) matrix B and the generalized inverse of A is
returned in B. In addition, the rank of A is written in the standard output.
Note that the numerical determination of the rank of a matrix always
involves some inaccuracies due to limitations in representing floating
point numbers on a digital computer. So in general, one only gets the
pseudo-rank of a matrix.

Example 1 An illustration, using a (3, 3) matrix, is given in Box 1.
The result is shown in the same box.
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5.1.4.6 Cholesky Decomposition

An (n, n) square matrix A is called positive definite if

x′Ax > 0 for all x 6= 0

If a matrix is symmetric and positive definite there is a unique decom-
position

A = RR′ (1)

where R is a lower triangular matrix with positive diagonal elements.
This is called a Cholesky decomposition of the matrix A, see, e.g., Mo-
hamed and Wait [1986, p. 10], Martin et al. [1971].

TDA provides the command

mchol(A,R);

to calculate the Cholesky decomposition of A. This must be a (n, n)
square matrix. TDA does not check whether the matrix is symmetric, it
simply uses its lower triangular part to perform the decomposition. The
result is then copied into the lower triangular part of the (n, n) matrix
R. If A is not positive definite, there will be an error message and R = 0.
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5.1.4.7 Least Squares Regression

In matrix notation, a linear regression model can be written as

Y = Xβ + ε (1)

with an (m, 1) vector Y (dependent variable), an (m,n) matrix X (in-
dependent variables), an (n, 1) vector β (regression coefficients to be
estimated), and an (m, 1) vector ε (residuals). A least squares solution
of (1) is a vector β̂ that minimizes the Euclidean norm of the residuals:

‖ ε ‖ = ‖ Y −Xβ ‖ (2)

Here we use ‖ x ‖ to denote the Euclidean norm of a vector x, that is,
the square root of Σx2

i . In the context of linear regression, it is normally
assumed that m > n and X has full column rank (rank(X) = n). There
is, then, a unique least squares solution

β̂ = (X ′X)−1X ′Y (3)

If rank(X) < n, there are (in general) many possible solutions. To cal-
culate a least squares solution for (1), TDA uses an algorithm developed
by Hanson and Haskell [1982]. (This algorithm extends earlier work of
Lawson and Hanson [1974].) One should note that this algorithm does
not require that X has full column rank. If rank(X) < n, the algorithm
tries to find one of the possible solutions. The command is

mls(S,B);

with S an (m,n + 1) matrix containing [X, Y ]. If the input data are
not already available in such a matrix, S can easily be created by using
the mcath command; see 5.1.4.1. The contents of S is destroyed by the
command. The command creates an (n, 1) vector B for the least squares
solution, β, of (1). In addition, the rank of X and the Euclidean norm
of the residuals (2) are shown in the standard output.
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Box 1 Example of least squares regression

Command file: mat2.cf

mfmt = -16.12;

mdef(A,4,3) = 1,2,3, 4,7,11, -1,1,0, 5,6,11;

mpr(A);

mls(A,B);

mpr(B);

Output:

mdef(A,4,3)=...

mpr(A)

1.000000000000e+00 2.000000000000e+00 3.000000000000e+00

4.000000000000e+00 7.000000000000e+00 1.100000000000e+01

-1.000000000000e+00 1.000000000000e+00 0.000000000000e+00

5.000000000000e+00 6.000000000000e+00 1.100000000000e+01

mls(A,B)

Rank of left-hand side: 2

Norm of residuals: 4.440892098501e-16

mpr(B)

1.000000000000e+00

1.000000000000e+00

Example 1 Box 1 illustrates the mls command with a simple example.
The command file is mat2.cf.
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5.1.4.8 Linear Equations

A general system of linear equations can be written as

Ax = b (1)

where A is an (m,n) left-hand side matrix, b is an (m, 1) right-hand side
matrix (vector), and x is an (n, 1) matrix (vector) to be determined as
the solution of the system. The command

mlse(S,X);

can be used to find a solution of the system (1). S should be a (m,n+1)
matrix containing [A, b]. The command creates an (n, 1) vector X and,
if a solution is found, it is copied into this matrix. In addition, one gets
information about the rank of the left-hand side matrix, A, and the
Euclidean norm of the residuals:

‖ Ax− b ‖

To solve system (1), TDA uses an algorithm developed by Hanson and
Haskell [1982]. The algorithm is quite general and can cope also with
under-determined and over-determined systems. In general, there are
three possible situations.
1. A is a square matrix (m = n) and has full rank. Then there is a

unique solution x that solves the system (1). An example (taken
from Lawson and Hanson [1974, p. 14]) is shown in Box 1.

2. If m ≤ n and rank(A) < n, there may be a unique solution, or a set
of different solutions, or the system may be contradictory without a
solution. If there is more than one solution, TDA will provide just
one of the possible solutions. If the equations are contradictory, TDA

calculates a least squares solution.

3. If m > n and rank(A) ≥ n, the algorithm tries to find a least squares
solution of the system, that is, a vector x that minimizes the Eu-
clidean norm of the residuals.
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Box 1 Example: full rank system of linear equations

Command file: mat3.cf (Lawson, Hanson 1974, p. 14)

mfmt = 12.8;

mdef(A,3,4) = -0.4744,-0.4993,-0.7250,-0.8615,

0.5840,-0.7947, 0.1652, 0.0,

-0.6587,-0.3450, 0.6687, 0.0;

mpr(A);

mlse(A,B);

mpr(B);

Output:

mdef(A,3,4)=...

mpr(A)

-0.47440000 -0.49930000 -0.72500000 -0.86150000

0.58400000 -0.79470000 0.16520000 0.00000000

-0.65870000 -0.34500000 0.66870000 0.00000000

mlse(A,B)

Rank of left-hand side: 3

Norm of residuals: 0.00000000

mpr(B)

0.40872542

0.43019126

0.62456022
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5.1.4.9 Linear Inequalities

A general system of linear inequalities can be written as

Ax ≥ b (1)

where A is an (m,n) left-hand side matrix, b is an (m, 1) right-hand side
matrix (vector), and x is an (n, 1) matrix (vector) to be determined as
the solution of the system. In general, this system of inequalities may
have a unique solution, many solutions, or no solution if the inequalities
are incompatible. To solve the system, TDA uses again an algorithm
developed by Hanson and Haskell [1982]. This algorithm always tries
to find (at least) one solution with a minimal Euclidean norm of the
residuals. The command is

mlsi(S,X);

with S an (m,n + 1) matrix containing [A, b]. The command creates an
(n, 1) matrix X and, if a solution is found, it is copied into this matrix. The
contents of the matrix S is destroyed by the procedure. Box 1 illustrates
the mlsi command with a simple example.
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Box 1 Example: linear inequalities

Command file: mat4.cf

mfmt = 12.8;

mdef(A,4,3) = 1,2,3,5,6,11,-1,-2,-3,0,1,1;

mpr(A);

mlsi(A,B);

mpr(B);

Output:

mdef(A,4,3)=...

mpr(A)

1.00000000 2.00000000 3.00000000

5.00000000 6.00000000 11.00000000

-1.00000000 -2.00000000 -3.00000000

0.00000000 1.00000000 1.00000000

mlsi(A,B)

mpr(B)

1.00000000

1.00000000
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5.1.4.10 Regression with Constraints

As described in 6.9.1, the lsreg command can solve least squares prob-
lems with additional equality and inequality constraints. To allow for
these calculations with the help of matrix commands, we added the fol-
lowing commands.
1. The command

mlsei(W,me,mi,X);

expects a (m,n + 1) matrix W and two scalar expressions, me and mi,
in the following form:

W =

 E F
A B
H G


where

E is a (me, n) matrix

F is a (me, 1) vector

A is a (ma, n) matrix

B is a (ma, 1) vector

H is a (mi, n) matrix

G is a (mi, 1) vector

and ma = m − me − mi. Note that m is defined by the number of
rows in W, and me and mi are given by the scalar expressions in the
command. It is possible to have me ≥ 0, ma ≥ 0, and mi ≥ 0. The
command tries to find (not always successfully) an (n, 1) vector X in
such a way that

EX = F (equality constraints)

HX ≥ G (inequality constraints)

and the Euclidean norm of (AX −B) is minimal in the least squares
sense. The algorithm is the same as used for TDA’s lsreg command.
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2. The command

mnls(W,me,k,X);

expects a (m,n + 1) matrix W and two scalar expressions, me and k,
in the following form:

W =
(

E F
A B

)
where

E is a (me, n) matrix

F is a (me, 1) vector

A is a (ma, n) matrix

B is a (ma, 1) vector

and ma = m−me. Note that m is defined by the number of rows in W,
and me ≥ 0 is given by the scalar expressions in the command. The
command tries to find (not always successfully) an (n, 1) vector X in
such a way that

EX = F (equality constraints)

and the Euclidean norm of (AX −B) is minimal in the least squares
sense. In addition, k is a scalar expression that satisfies 0 ≤ k ≤ n and
is used to specify non-negativity constraints for the solution vector,
X, in such a way that

X(j) ≥ 0 for j = k, . . . , n

The algorithm is the same as used for TDA’s lsreg command.
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5.1.4.11 Eigenvalues and Eigenvectors

Let A be a square (n, n) matrix. An (n, 1) vector x 6= 0 is called an
eigenvector of A, if there is a scalar λ so that

Ax = λx (1)

λ is then called an eigenvalue (or latent root) of A, and x is the cor-
responding eigenvector (or latent vector). These concepts play a funda-
mental role in linear algebra and also have statistical applications. Most
linear algebra textbooks, and many statistical textbooks, introduce the
basic concepts and theorems. Here we only note a few points.
1. Eigenvectors defined by (5.1.4.11) are right eigenvectors. Correspond-

ingly, one can define left eigenvectors as non-trivial solutions of

yA = λy

Left eigenvectors have dimension (1,m) (row vectors). By transpos-
ing (1) one sees that the transposed right eigenvectors of A are the
left eigenvectors of A′.

2. For every (n, n) matrix A one can define a characteristic equation

| A− λIn | = 0 (2)

where | | denotes the determinant of a matrix. The eigenvalues of A
are the roots of this characteristic equation.

3. Every nonzero (n, n) matrix possesses at least one nonzero eigenvec-
tor and a corresponding eigenvalue. Or put otherwise, one can say
that every (n, n) matrix has n eigenvalues; but these eigenvalues are
not necessarily distinct, there can be multiple eigenvalues (roots of
the characteristic equation). For example, let A be the (2, 2) matrix

A =
[

1 1
0 1

]
(3)

The characteristic equation is

| A− λI2 | =
∣∣∣∣ 1− λ 1

0 1− λ

∣∣∣∣ = (1− λ)2

Obviously, there is only a single root, 1.
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4. A general (n, n) matrix A can have real or complex eigenvalues and
eigenvectors. Complex eigenvalues and eigenvectors always occur in
conjugate complex pairs.1 If λ = λ(r) + iλ(i) is a complex eigenvalue
of A, and x = x(r) + ix(i) the associated complex eigenvector, then

A(x(r) + ix(i)) = (λ(r) + iλ(i))(x(r) + ix(i))
= (λ(r)x(r) − λ(i)x(i)) + i(λ(r)x(i) + λ(i)x(r))

It follows that

λ∗x∗ = (λ(r)x(r) − λ(i)x(i))− i(λ(r)x(i) + λ(i)x(r))
= Ax(r) − iAx(i)

= Ax∗

That is, if λ is a complex eigenvalue of A with complex eigenvector
x, then also λ∗ is an eigenvalue of A with associated eigenvector x∗.

5. Eigenvectors are not unique. As seen from (1), if x is an eigenvec-
tor of A, then also αx is an eigenvector where α is any nonzero
scalar. Therefore, when calculating eigenvalues, one has to adopt a
convention for scaling. The TDA algorithm (described below) uses
the following convention: If an eigenvector is real, it is scaled to have
the Euclidean length 1, that is

‖ x ‖ =

(
n∑

i=1

x2
i

)1/2

= 1 (4)

If an eigenvector is complex, say x = x(r) ± ix(i), it is scaled so that

max
1≤i≤n

{
x

(r)
i

}
= 1

and the imaginary component, corresponding to the maximum real
part component, gets the value zero.

6. If the (n, n) matrix A is symmetric (A = A′), then all of its eigenval-
ues and eigenvectors are real. If, in addition, the matrix is positive
definite (semi-definite), all eigenvalues are positive (not negative).

1If z = a + ib is a complex number, then the complex conjugate of z, denoted z∗, is
defined as z∗ = a− ib.
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Box 1 Example: eigenvectors and eigenvalues

Command file: mat5.cf

mfmt = 13.10;

mdef(A,4,4) = 6,-3,4,1, 4,2,4,0, 4,-2,3,1, 4,2,3,1;

mpr(A);

mev(A,ER,EI,EVR,EVI);

mpr(ER);

mpr(EI);

mpr(EVR);

mpr(EVI);

Output:

mdef(A,4,4)=6,-3,4,1,4,2,4,0,4,-2,3,1,4,2,3,1

mpr(A)

6.0000000000 -3.0000000000 4.0000000000 1.0000000000

4.0000000000 2.0000000000 4.0000000000 0.0000000000

4.0000000000 -2.0000000000 3.0000000000 1.0000000000

4.0000000000 2.0000000000 3.0000000000 1.0000000000

mev(A,ER,EI,EVR,EVI)

mpr(ER)

5.2360679292

5.2360680258

0.7639320225

0.7639320225

mpr(EI)

0.0000000000

0.0000000000

0.0000000207

-0.0000000207

mpr(EVR)

-0.2627643879 -0.2627643970 -0.3726779962 -0.3726779962

-0.6152998190 -0.6152998181 0.1273220038 0.1273220038

-0.2350236149 -0.2350236199 0.3333333333 0.3333333333

-0.7050708544 -0.7050708501 1.0000000000 1.0000000000

mpr(EVI)

0.0000000000 0.0000000000 0.0000000122 -0.0000000122

0.0000000000 0.0000000000 0.0000000060 -0.0000000060

0.0000000000 0.0000000000 -0.0000000134 0.0000000134

0.0000000000 0.0000000000 -0.0000000000 0.0000000000

General Matrices

TDA offers two algorithms to calculate eigenvalues and eigenvectors. One
algorithm is restricted to symmetric matrices and will be described be-
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Box 2 Example: eigenvalues of symmetric matrix

Command file: mat6.cf

silent=-1;

mfmt = 13.10;

mdef(A,3,3) = 1,1,1, 1,2,0, 1,0,10;

mpr(A);

mevs(A,E,V); calculate eigenvalues and vectors

mpr(E); print eigenvalues

mpr(V); print eigenvectors

mmul(A,V,B); check results

mpr(B);

mscol(V,1,V1);

mexpr(E(1,1)*V1,B1);

mpr(B1);

mscol(V,2,V2);

mexpr(E(2,1)*V2,B2);

mpr(B2);

mscol(V,3,V3);

mexpr(E(3,1)*V3,B3);

mpr(B3);

low. The other algorithm is adopted from Grad and Brebner [1963] and
can be applied to arbitrary real quadratic matrices. The command is

mev(A,ER,EI,EVR,EVI);

The command expects a (n, n) matrix A and creates four matrices ER,
EI, EVR, and EVI. ER and EI are both (n, 1) vectors containing the real
and imaginary parts of the eigenvalues, respectively. EVR and EVI are
(n, n) matrices and will contain the real and imaginary parts of the
right eigenvectors, respectively. Note that the eigenvectors are scaled as
described above.

Example 1 To illustrate the mev command, we use an example given
in Eberlein and Boothroyd [1971, p. 334]. The data and results are shown
in Box 1. The matrix A is defective and has two pairs of multiple roots:
3±
√

5. The right eigenvectors are:

(±
√

5, 3±
√

5, 2, 6 )′

The output of the mev command in Box 1 shows the scaled eigenvectors.
As a result of rounding errors, the imaginary parts of the second pair
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of eigenvalues and eigenvectors are not exactly zero. These eigenvectors
are therefore scaled according to the complex case mentioned above.

Symmetric Matrices

A quadratic (n, n) matrix A is called symmetric if A = A′, that is, if
A is equal to its transpose. As already mentioned, symmetric matrices
only have real eigenvalues and eigenvectors and, therefore, the calcu-
lation is easier than for general matrices. To calculate eigenvalues and
eigenvectors of a symmetric matrix, TDA offers the command

mevs(A,E,V);

It is expected that A is an (n, n) symmetric matrix. The procedure creates
an (n, 1) matrix (vector) E and an (n, n) matrix V. The eigenvalues of A
are stored in E (in descending order). The eigenvectors of A are stored
in the columns of V. The eigenvector corresponding to the ith eigenvalue
(ith component of E) is stored in the i column of V. Eigenvectors are
scaled to have the Euclidean length 1.

The algorithm to calculate eigenvalues and eigenvectors is adopted
from Sparks and Todd [1974]. Note that the algorithm does not check
whether the input matrix, A, is symmetric; only its lower triangular part
is used.

Example 2 To illustrate the mevs command, Box 2 shows a simple
example, supplemented with commands to check the result. The output
is shown in Box 3.
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Box 3 Example (continued): eigenvalues of symmetric matrix

Output of mat6.cf

mdef(A,3,3)=1,1,1,1,2,0,1,0,10

mpr(A)

1.0000000000 1.0000000000 1.0000000000

1.0000000000 2.0000000000 0.0000000000

1.0000000000 0.0000000000 10.0000000000

mevs(A,E,V)

mpr(E)

10.1112597744

2.5823542359

0.3063859897

mpr(V)

0.1105672008 -0.5020854553 -0.8577208693

0.0136313229 -0.8621650266 0.5064441272

0.9937751663 0.0676879796 0.0884830847

mmul(A,V,B)

mpr(B)

1.1179736900 -1.2965625022 -0.2627936574

0.1378298465 -2.2264155084 0.1551673851

10.0483188637 0.1747943409 0.0271099775

mscol(V,1,V1)

mexpr(E(1,1)*V1,B1)

mpr(B1)

1.1179736900

0.1378298465

10.0483188637

mscol(V,2,V2)

mexpr(E(2,1)*V2,B2)

mpr(B2)

-1.2965625022

-2.2264155084

0.1747943409

mscol(V,3,V3)

mexpr(E(3,1)*V3,B3)

mpr(B3)

-0.2627936574

0.1551673851

0.0271099775
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5.1.4.12 Singular Value Decomposition

If A is an (m,n) matrix with m ≥ n, there is a decomposition

A = UQV ′ (1)

with the following matrices (In is used to denote the (n, n) unit matrix):
an orthogonal (m,n) matrix U , i.e.,

U ′U = In

An orthogonal (n, n) matrix V , i.e.,

V ′V = V V ′ = In

And a (n, n) diagonal matrix

Q = diag {q1, . . . , qn}

(1) is called the singular value decomposition of the matrix A; and the
entries q1, . . . , qn are called the singular values of A. See, e.g., Golub and
Reinsch [1971]. Basic properties are:
1. The number of nonzero singular values equals the rank of A.

2. q2
1 , . . . , q2

n are the eigenvalues of the matrix A′A.

3. The columns of V are the eigenvectors of A′A, that is:

(A′A)V = (QQ)V

The singular value decomposition is a basic tool for linear algebra prob-
lems but also has many statistical applications.

d05010412.tex December 20, 1999



5.1.4.12 singular value decomposition 2

Box 1 Example: singular value decomposition

Command file: mat7.cf

mfmt = 13.10;

mdef(A,3,3) = 1,0,0, 5,7,0, 1,0,1;

mpr(A);

mcross(A,AA); create cross product

mpr(AA);

msvd1(AA,Q,U,V); singular value decomposition

mpr(Q);

mpr(U);

mpr(V);

mevs(AA,E,V); calculate eigenvalues and eigenvectors

mpr(E);

mpr(V);

TDA provides two commands for singular value decomposition. Both
assume a (m,n) matrix, A, with m ≥ n. The command

msvd(A,Q);

performs a singular value decomposition of A and saves the singular val-
ues in the (n, 1) matrix Q. The command

msvd1(A,Q,U,V);

does the same, but additionally creates the (m,n) matrix U and the (n, n)
matrix V as described above. Calculation is based on an algorithm by
Golub and Reinsch [1971].

Example 1 To illustrate the msvd1 command, Box 1 shows a simple
example. To check the result, the mevs command is used to calculate
eigenvalues and eigenvectors directly. The output is shown in Box 2.
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Box 2 Example (continued): singular value decomposition

Output of mat7.cf

mdef(A,3,3)=...

mpr(A)

1.0000000000 0.0000000000 0.0000000000

5.0000000000 7.0000000000 0.0000000000

1.0000000000 0.0000000000 1.0000000000

mcross(A,AA)

mpr(AA)

27.0000000000 35.0000000000 1.0000000000

35.0000000000 49.0000000000 0.0000000000

1.0000000000 0.0000000000 1.0000000000

msvd1(AA,Q,U,V)

mpr(Q)

74.6926238609

1.9752562176

0.3321199215

mpr(U)

-0.5917332901 0.6195362372 0.5157776305

-0.8060938137 -0.4611140127 -0.3709267188

-0.0080297492 0.6352548449 -0.7722608401

mpr(V)

-0.5917332901 0.6195362372 0.5157776305

-0.8060938137 -0.4611140127 -0.3709267188

-0.0080297492 0.6352548449 -0.7722608401

mevs(AA,E,V)

mpr(E)

0.3321199215

1.9752562176

74.6926238609

mpr(V)

-0.5157776305 -0.6195362372 -0.5917332901

0.3709267188 0.4611140127 -0.8060938137

0.7722608401 -0.6352548449 -0.0080297492
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5.1.4.13 Linear Programming

A linear programming problem can be described as follows:

c′x = z → max
Ax ≤ b (1)

x ≥ 0

The first line defines the objective function to be maximized; c is an
(n, 1) vector with given values, x is an (n, 1) vector containing variables.
Explicitly written, the objective function is

z(x1, . . . , xn) =
n∑

i=1

cixi

The second and third lines in (1) define constraints. The second line
assumes a given (m,n) matrix A and an (m, 1) vector b resulting in m
inequalities to be satisfied by x. The third line requires that feasible
solutions for x are restricted to be nonnegative.

(1) is called the primal problem. Associated with the primal problem
is a dual problem defined as

b′y = z → min
A′y ≥ c (2)

y ≥ 0

The variables are now given in an (m, 1) vector y. The objective function,
b′y, is given the same value, z, because it can be shown that, if the primal
problem has a (finite) solution, then also the dual problem has a solution,
and the values of the primal and dual objective functions are the same.

The formulation in (1) assumes that there is only a specific type
of inequality constraints: Ax ≤ b. However, if in an original problem
formulation, some constraints are formulated with an ≥ relation, that
equation can simply be multiplied by −1 to fit into the formulation
given in (1). It would also be possible to use two inequality constraints
to define an equality to hold exactly, but equality constraints can also
defined directly.
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The algorithm is adopted from Salazar and Sen [1968]. The TDA com-
mand can be given in two different forms. A first command is

mlp(T,X,Y);

T is expected to be a (m + 1, n + 1) matrix containing the data for the
linear programming problem in the following form:

T =
[

c′ 0
A b

]
with A, b, and c as defined above. If possible, an optimal solution of the
primal and dual problems is calculated. Alternatively, the command can
be given as

mlp1(T,p,X,Y);

The last p rows of Ax ≤ b are then interpreted as equality constraints.
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Box 1 Example: linear programming

Command file: lp1.cf

mdef(T,3,3) = 1, 0, 0,

1, 0, 1,

0, 1, 1;

mpr(T);

mlp(T,X,Y,1);

mpr(X);

mpr(Y);

Output:

mdef(T,3,3)=...

mpr(T)

1.0000 0.0000 0.0000

1.0000 0.0000 1.0000

0.0000 1.0000 1.0000

mlp(T,X,Y,1)

Value is: 1.0000

mpr(X)

1.0000

1.0000

mpr(Y)

1.0000

0.0000

Example 1 A trivial example is shown in Box 1. The problem is to
maximize x1, s.t. x1, x2 ≥ 0, x1 ≤ 1, and x2 = 1.
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5.1.4.14 Some Further Commands

1. Given (m, 1)-vectors T and C, the command

mple(T,C,F,D);

performs a product-limit estimation of the cumulative distribution
function of the values in T. The elements in C are interpreted as cen-
soring information: if C(i) = 0, T(i) is interpreted as not censored;
if C(i) has a non-zero value, the corresponding T(i) is interpreted
as censored. The largest value of T is always interpreted as being not
censored.

The command creates two (m, 1)-vectors, F and D. If the command
terminated successfully, F will contain the cumulative distribution
function, and D will contain the jumps of the function for uncensored
values.

2. Given (m, 1)-vectors A and W, the command

mwvec(A,W,R);

creates a (m, 1)-vector R with elements

ri =

∑
j∈I(i) ajwj∑

j∈I(i) wj
where I(i) = {k | i < k ≤ m}

If I(i) is empty, or the sum of weights is zero, then ri = ai.

3. Given (m, 1)-vectors A, W, and T, the command

mwvec1(A,W,T,R);

creates a (m, 1)-vector R with elements

ri =

∑
j∈I(i) ajwj∑

j∈I(i) wj
where I(i) = {k |T (k) > T (i)}

If I(i) is empty, or the sum of weights is zero, then ri = ai.
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4. Given a (n, n) matrix A, the command

mpz(A,B,P);

tries to find a permutation of the rows of A that puts as many non-
zero elements in the main diagonal as possible. The permuted matrix
is returned in B. Also returned is an (n, 1) vector P that contains the
permutation. (The algorithm is adapted from ACM algorithm 575
(Permutations for a zero-free diagonal), developed by I.S. Duff.)

5. Given a (n, n) matrix A, the commands

mpbl(A,B,P,N,U)

mpbu(A,B,P,N,U)

try to find a simultaneous permutation of rows and columns to make
A a lower (mpbl) or upper (mpbu) block diagonal matrix. The per-
muted matrix is returned in B. Also returned is an (n, 1) vector P
that contains the permutation, an (1, 1) scalar N that contains the
number of blocks, and a (k, 1) vector U with k the number of blocks.
ui,1 is the number of the row where the ith block begins. (The algo-
rithm is adapted from ACM algorithm 529 (Permutations to block
triangular form), developed by I.S. Duff and J.K. Reid.)

6. The command

mpit(F,N,k,R)

can be used to iterate a Leslie matrix. It is assumed that F is a (n, 2)
matrix, N is a (n, 1) vector, and k is an integer. The first column
of F contains the first row of the (n, n) Leslie matrix L, and the
second column of F contains the subdiagonal of L (the last element is
ignored). The vector N contains the starting values for the iteration.
The command creates the (k + 1, n) matrix R. The ith row of R
contains Li N.

7. The command mproc (Procrustes rotation) is described in Section
7.4.4.1.

8. The parameters mplog, mppar, mpcov, and mpgrad (giving results for
function maximization) are described in Section 5.6.1.
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9. The following commands are only documented in the help file tda.hlp:

a) mbrr (results of balanced replications)

b) mcel (edge list from adjacency matrix)

c) mpfit (iterated proportional fitting)

d) mqap (quadratic assignment)
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5.2 Expressions

This chapter explains TDA’s concept of expressions. It contains the fol-
lowing sections.

5.2.1 Introduction

5.2.2 Evaluating Expressions

5.2.3 Numerical Constants

5.2.4 Random Numbers

5.2.5 Type 1 Operators

5.2.6 Type 2 Operators

5.2.7 Block Mode Operators

5.2.8 Operators for Episode Data

5.2.9 Operators for Sequence Data
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5.2.1 Introduction

Many TDA commands require expressions, that is, strings which can be
evaluated numerically; for example:

1.2 a single floating point number
max (1,7) maximum of two numbers
exp (expression) exponential function of another expression

In TDA, expressions serve mainly three purposes:
1. To define variables. In general, a variable is defined by

VName = expression;

VName is the name of the variable (to be defined), and expression de-
scribes how to assign numerical values to the variable (for additional
options see 2.1). Remember that a variable is actually a column vec-
tor with a number of components equal to the number of rows in the
data matrix. Consequently, expression is evaluated for each row in
the data matrix and the resulting numerical value is the value of the
variable for that row.

2. To define functions. This will be explained in 5.3.

3. To specify case select statements. For instance, the syntax of the
isel (input select) command is

isel = expression;

meaning that expression is evaluated for each record of the input
data file. The record is then selected (for the data matrix) if the
result is not equal to zero, and otherwise the record is not selected.

In general, expressions are build by using numerical constants and ran-
dom numbers, references to data file entries or already defined variables,
and by using operators. Several operators will be introduced in subse-
quent sections. There are operators without any arguments and operators
that have one or more arguments. For instance, rd is an operator without
arguments and provides the next random number, equally distributed in
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the 0–1 interval, from the connected random number generator. An ex-
ample of an operator with two arguments is rd (a,b); the arguments
a and b are real numbers with a < b. This operator provides the next
random number that is equally distributed in the interval [a,b].

In general, most operators are identified by a key word, for instance
rd, that must be given in lower case letters. If an operator has one
or more arguments, these arguments follow in brackets, separated by
commas:

op (arg1,arg2,...)

Some operators have a somewhat different syntax. For instance, the sim-
ple arithmetical operators (+, -, . . . ) are operators with two arguments.
They are, however, not written as +(x,y), but more conveniently as x
+ y. Another exception are the operators to create dummy variables.

Most operators have none or a fixed number of arguments. Some
operators have a variable number of arguments, in particular:

min(a1, a2, . . . ) minimum of a1, a2, . . .

max(a1, a2, . . . ) maximum of a1, a2, . . .

An important distinction is based on the amount of information required
for the evaluation of operators. In TDA, the basic distinction is between
type 1 and type 2 operators.

1. Type 1 operators can be evaluated using only information from the
current data file record or data matrix row. Therefore, these operators
can be evaluated while sequentially reading an input data file and cre-
ating the rows of the data matrix.

2. Type 2 operators are operators that require information about the val-
ues of their arguments for all cases of the data matrix (if in record mode)
or for all records in a block (if in block mode). For instance, mean (V), the
mean of a variable V, requires all values of V in the current data matrix
(or data block) for its evaluation. There are, therefore, some restrictions
in using these operators, see 5.2.6.
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5.2.2 Evaluating Expressions

Expressions are evaluated in two steps. In a first parsing step, TDA

creates an algorithm to evaluate the expression. This is actually a stack
that symbolically references all operators and arguments contained in
the expression. In a second step the algorithmic representation of the
expression can be evaluated for any number of different arguments.

1. Understanding details of the first step is actually not necessary when
using expressions. However, TDA offers the command

parse = expression;

to get some information about the result of the parsing procedure.

2. A more interesting command is

mpr(expression);

This command evaluated expression and prints the result into the stan-
dard output. Optionally, the command can also be used as

mpr(expression,string);

where string is an arbitrary string. The command then first prints the
string, in a new line, prints the value of expression. As a further option,
the command can be used as

mpr(expression [,string]) = file name;

The result is then written, not to the standard output, but to the file
specified on the right-hand side. By default, a new file is created by the
mpr command. Using the command as mpra, data can be appended to
an already existing file.
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5.2.3 Numerical Constants

Numerical constants can be used to create expressions. They can be
given in the following formats:

Integer for example: 0, 367, -133
Floating point F Format for example: 11.87, -1.1, -.12
Floating point E Format for example: 1.3E12, -1E-123, 1.e+2

Numerical constants must not begin with a + sign. For instance the
expression +3 will result in a syntax error because + is interpreted as an
operator. One should also note that, if numerical constants are used to
define variables, the possible accuracy depends on the storage size of the
variable (see 2.1). However, if a variable is defined as a single numerical
constant, the storage size is always 8 for a double precision value.

Some numerical constants have predefined names.

1. The operator pi (without arguments) provides the numerical constant
π = 3.14159 . . .
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5.2.4 Random Numbers

The following operators can be used to generate random numbers.
1. The operator rd provides the next random number, equally dis-

tributed in the 0–1 interval. The algorithm is adopted from Pike
and Hill [1965], modified for 32 bit machines.

2. The operator rd(a,b) provides the next random number, equally
distributed in the [a, b] interval. The algorithm is the same as used
for the rd operator.

3. The operator grd(V) provides a random number that is equally dis-
tributed in the 0–1 interval; a new random number is only generated
in the first row of the data matrix or if the variable V changes its
value. The algorithm is the same as used for the rd operator. Note
that this operator is classified as a type 1 operator but has some
restrictions. In particular, this operator should not directly be used
as part of an if-then-else construction.

4. The operator rdn provides standard normally distributed random
numbers. The algorithm is adopted from Bell [1968].

5. The operator rdn1 provides an alternative method for standard nor-
mally distributed random numbers, based on an algorithm described
by Brent [1974].

6. The operator rdmn(i, Σ) creates random numbers that follow a multi-
variate normal distribution with correlation matrix Σ. The operator
requires that a complete symmetric and positive definite correlation
matrix is defined with the mdef command, see 5.1.2. Given that an
(n, n) correlation matrix Σ has been defined, rdmn(i, Σ) returns the
ith component of

(ε1, . . . , εn) ∼ N (0,Σ)

It is required that n ≥ 2. A new random vector is only created when
i = 1, otherwise the operators returns components of a previously
generated random vector.

The algorithm follows Tong [1990, p. 185]. Its input consists of stan-
dard normally distributed random numbers that are created with the
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algorithm of Brent [1974].

7. The operator rdp1(z) returns random numbers according to a Pois-
son distribution with mean z. The range is 0 < z < 350. The algo-
rithm is adapted from Schaffer [1970].



5.2.5 type i operators 1

5.2.5 Type 1 Operators

Type 1 operators can be evaluated by using only information from the
current data file record or data matrix row. The available type 1 opera-
tors are described in the following subsections.

5.2.5.1 General Operators

5.2.5.2 Arithmetical Operators

5.2.5.3 Mathematical Operators

5.2.5.4 Logical Operators

5.2.5.5 Dummy Variables

5.2.5.6 Density Functions

5.2.5.7 Distribution Functions

5.2.5.8 Julian Calendar

5.2.5.9 String Variables
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5.2.5.1 General Type 1 Operators

1. The operator case returns the current case number, that is, the
sequence number of the data matrix row. For example,

CASE [6.0] = case;

defines a variable, CASE, with print format [6.0], that will contain
the current case number.

2. The operator nocdm returns the number of cases in the data matrix,
or 0 if there is no data matrix.

3. The operator noc returns the number of currently selected cases in
the data matrix, or 0 if there is no data matrix.

4. The operator nvar returns the number of currently defined variables.

5. The operator bnoc returns the number of blocks that have been found
by the latest use of the dblock command.

6. The operator

num(x,d)

where x and d are (floating point) expressions provides the sequence
of numbers:

x + id for i = 0, 1, 2, . . .

7. The operator

exists(Name)

requires that Name is a syntactically valid matrix, variable, or namelist
name. The operator returns 1 if the object denoted by Name exists,
and otherwise returns 0. In particular,

exists()

returns 0. This is useful in order to check whether $n expressions in
macro definitions are actually available when the macro is executed.
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For example, exists($1) when used inside a macro, will be expanded
to exists(Name) when Name is given for $1 when invoking the macro,
and is expanded into exists() when the macro argument $1 is not
used.

Remember that $n expressions are substituted by their corresponding
names, when given by the user, or substituted by Null-strings. This
rule also applies when $n expressions are used inside double quotation
marks. The only exception is when $n expressions are inside single
quotation marks. For example,

print("$1 ...")

will substitute $1 by a valid name, or by the Null-string; but

print("... ‘$1’ ...")

will not substitute $1 by a name or the Null-string.

8. The operator

row(expression)

returns the row dimension of expression, and the operator

col(expression)

returns the column dimension of expression (see
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5.2.5.2 Arithmetical Operators

The following arithmetical operators are available, all classified as type 1
operators. In describing these operators, x and y are numerical (integer
or floating point) expressions.

x + y addition
x− y subtraction
x ∗ y multiplication
x / y division (y must not be zero)
x ∧ y power of (y must not be negative)
x % y modulus operator (x and y must be integer)
x & y logical and; result is 1 if both x and y have nonzero value,

otherwise the result is zero.
x | y logical or; result is 1 if x or y has a nonzero value, otherwise

the result is zero.

When an expression contains more than one of these operators, evalua-
tion follows the usual priority rules: (+,−, |), (∗, /, &), (∧,%) in ascend-
ing order. Brackets may be used to control the order of evaluation.
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5.2.5.3 Mathematical Operators

The following mathematical operators are available. All arguments are
numerical (floating point) expressions.

1. rnd (x) provides the integer value of x; rounded to the nearest in-
teger. This is identical with

sign(x) * floor(abs(x) + 0.5)

2. abs(x) evaluates the absolute value of x.

3. sign(x) provides the sign of x, i.e., +1 if x is greater than zero, -1
if x is less than zero; and otherwise 0.

4. floor(x) provides the largest integer not greater than x.

5. ceil(x) provides the smallest integer not less than x.

6. tr(x, a, b) truncates x to the interval [a, b], meaning that the result
is equal to a if x < a, equal to b if x > b, and other is equal to x.

7. min(x1, x2, . . .) gives the minimum of its arguments. The operator
has a variable number of arguments.

8. max(x1, x2, . . .) gives the maximum of its arguments. The operator
has a variable number of arguments.

9. sqrt(x) gives the square root of x. It is required that x ≥ 0.

10. exp(x) evaluates the exponential function (antilogarithm) of x.

11. eexp(x) evaluates exp(x)/(1 + exp(x)).

12. log(x) evaluates the natural logarithm of x. It is required that x > 0.

13. sin(x) evaluates the sine of x.

14. cos(x) evaluates the cosine of x.

15. lgam(x) provides the natural logarithm of the gamma function, eval-
uated at x. It is required that x > 0. The algorithm is adopted from
Pike and Hill [1966].
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16. digam(x) provides the first derivative of the logarithm of the gamma
function, evaluated at x. It is reqired that x > 0. The algorithm is
adopted from Bernado [1976].

17. trigam(x) provides second derivative of the logarithm of the gamma
function, evaluated at x. It is required that x > 0. The algorithm is
adopted from Schneider [1978].

18. icg(x, q) evaluates the incomplete gamma integral, that is,

icg(x, q) =
1

Γ(q)

∫ x

0

tq−1e−tdt, x, q > 0

The algorithm is adopted from Moore [1982]. Note that there is an-
other operator, icg1, that also evaluates the incomplete gamma in-
tegral, based on an algorithm by Lau [1980]. However, while icg can
be used with automatic differentiation, this is not possible with icg1.

19. icb(x, a, b) provides the incomplete beta integral, evaluated for x
with coefficients given by a and b. It is required that 0 < x < 1. The
algorithm is adopted from Baker ([1992], p. 580).

20. bc(n, m) returns the binomial coefficient, n over m. n and m must
be integers. It is required that 0 ≤ m ≤ n. The operator can easily
lead to overflows. One should then consider to use the lgam operator
for the logarithm of the gamma function.
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5.2.5.4 Logical Operators

Logical operators to build expressions may have one, two, or three ar-
guments. The arguments are any expressions, the result is a logical ex-
pression, that is, only two values are distinguished: a logical expression
is true if it evaluates to a nonzero value, otherwise the logical expression
is false. The following logical operators are available:
1. not (E) returns the logical negation of expression E, that is, if E is

true, not (E) returns 0 (false); if E is false, not (E) returns 1 (true).

2. and (E1,E2) returns the logical AND of expressions E1 and E2, that
is, if both E1 and E2 are true, and (E1,E2) returns 1 (true), otherwise
it returns 0 (false). Note that it is often more convenient to write E1
& E2 instead of and (E1,E2).

3. or (E1,E2) returns the logical OR of expressions E1 and E2, that is,
if E1 or E2 is true, or (E1,E2) returns 1 (true), otherwise it returns 0
(false). Note that it is often more convenient to write E1 | E2 instead
of or (E1,E2).

4. eq (E1,E2) returns 1 (true) if expressions E1 and E2 have equal value,
otherwise it returns 0 (false).

5. ne (E1,E2) returns 1 (true) if expressions E1 and E2 do not have
equal value, otherwise it returns 0 (false).

6. lt (E1,E2) returns 1 (true) if the value of expressions E1 is less than
the value of expression E2, otherwise it returns 0 (false).

7. le (E1,E2) returns 1 (true) if the value of expressions E1 is less than,
or equal to, the value of expression E2, otherwise it returns 0 (false).

8. gt (E1,E2) returns 1 (true) if the value of expressions E1 is greater
than the value of expression E2, otherwise it returns 0 (false).

9. ge (E1,E2) returns 1 (true) if the value of expressions E1 is greater
than, or equal to, the value of expression E2, otherwise it returns 0
(false).

10. if (E,E1,E2) returns E1 if the logical expression E is true (not equal
to zero), and returns E2 otherwise. This operator, like all others, can

d05020504.tex April 20, 1998



5.2.5.4 logical operators 2

be used recursively, for example,

if (E, E1, if (E2, E3, E4))

When using the if operator for the definition of variables, one can
also use another, sometimes more convenient, syntax:

if E then E1 else E2

is then equivalent to

if(E,E1,E2)

or more general:

if E then E1 else if EE then EE1 else if ... else E2
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5.2.5.5 Dummy Variables

There are two operators to ease creation of dummy variables with cor-
nered or with centered effects. In describing these operators, E is an
expression and J1,J2,..., and K1,K2,..., are integer expressions.

1. The result of

E[J1,J2,...]

is a cornered effect dummy variable taking the value 1 if E has any one
of the integer values J1,J2,...; otherwise the result is 0. A comma can
be substituted by two commas, meaning then the range between two
integer values. For instance, E[J1,,J2] would result in the value 1 if the
expression E takes any one of the values in the range from J1 to J2.

2. The result of

E[J1,J2,...:K1,K2,...]

is a centered dummy variable, taking the value 1 if E is equal to one of
the integer expressions J1,J2,..., taking the value -1 if E is equal to
one of the integer expressions K1,K2,...; and is otherwise 0.

The following box provides some examples.

X X[1] X[1,7] X[1,,3] X[1,3,,7] X[1:2,3]

-----------------------------------------------

1 1 1 1 1 1

7 0 1 0 1 0

2 0 0 1 0 -1

3 0 0 1 1 -1

1 1 1 1 1 1

In order to give sensible results, E should be an integer expression. In
fact, the expression E is always truncated (not rounded) to an integer
expression before making comparisons with the arguments J1,J2,...,
and K1,K2,... If E is not a simple expression, it should be enclosed in
brackets, for instance:

(E1 * (E2 + E3))[...]
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Dummy variables can also be created with the ndvar command, see 2.5.
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5.2.5.6 Density Functions

The following operators are available to calculate density functions. In
describing these operators, x represents a numerical (floating point) ex-
pression.

1. ndf(x) returns the value of φ(x), the standard normal density func-
tion. The operator can be used for automatic differentiation.

2. mr(x) returns the reciprocal value of Mill’s ratio, that is,

mr(x) = φ(x)/(1− Φ(x))

where φ is the density and Φ the distribution function of the standard
normal distribution. The algorithm is adopted from Swan [1969].

3. poisson(θ, k) returns the logarithm of the Poisson distribution, i.e.,

log
(

θk

k! exp(θ)

)
= k log(θ)− log(Γ(k + 1))− θ

Automatic differentiation is possible only wrt θ.

4. negbin(α, γ, k) returns the logarithm of the negative binomial dis-
tribution, i.e.,

log

(
(Γ(α + k)

Γ(k + 1) Γ(α)

(
γ

α + γ

)k (
α

α + γ

)α
)

The operator allows for automatic differentiation with respect to its
first two arguments, α and γ, see 6.14.2.
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5.2.5.7 Distribution Functions

The following operators evaluate distribution functions. In describing
these operators, x represents a floating-point numerical expression.

1. nd(x) return the value of Φ(x), i.e., the standard normal distribution
function. The algorithm is adopted from Hill [1973]. The operator can
be used for automatic differentiation.

2. ndi(x) returns the value of Φ−1(x), i.e., the inverse standard nor-
mal distribution function. The algorithm is adopted from Hill and
Davis [1971]. (This is a replacement for the algorithm from Beasley
and Springer [1977] that was used in earlier versions of TDA.) The
operator supports automatic differentiation for its first derivative.

3. td(x, n) returns the value of the t-distribution, evaluated at x, with
degress of freedom given by the integer expression n. The algorithm
is adopted from Levine [1969].

4. chd(x, n) returns the value of the χ2-distribution, evaluated at x,
with degrees of freedom given by the integer expression n. The algo-
rithm is adopted from Hill and Pike [1967].

5. fd(x, n, m) returns the value of the F-distribution, evaluated at x,
with degrees of freedom given by the integer expressions n and m.
The algorithm is adopted from Dorrer [1968].

6. bivn(x, y, ρ) returns the value of the bivariate normal distribution
with correlation ρ, that is,

bivn(x, y, ρ) = Φ2(x, y, ρ) =
∫ x

−∞

∫ y

−∞
φ2(u, v, ρ) dvdu

where

φ2(x, y, ρ) =
1

2π
√

1− ρ2
exp

{
−1

2
x2 + y2 − 2ρxy

1− ρ2

}
The algorithm is adopted from Donnelly [1971]. (Values can be com-
pared with tables in Tong [1990].)
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The operator allows for automatic differentiation. The derivatives are
calculated as follows (see Tong [1980, p 9] for derivatives wrt ρ).

∂Φ2(x, y, ρ)
∂x

= φ(x) Φ
( y − ρx√

1− ρ2

)
∂Φ2(x, y, ρ)

∂ρ
= φ2(x, y, ρ)

∂2Φ2(x, y, ρ)
∂x∂x

= −φ(x){
ρ√

1− ρ2
φ
( y − ρx√

1− ρ2

)
+ xΦ

( y − ρx√
1− ρ2

)}
∂2Φ2(x, y, ρ)

∂x∂y
=

1√
1− ρ2

φ(y) φ
( x− ρy√

1− ρ2

)
∂2Φ2(x, y, ρ)

∂x∂ρ
= −x− ρy

1− ρ2
φ2(x, y, ρ)

∂2Φ2(x, y, ρ)
∂ρ∂ρ

= φ2(x, y, ρ)

{
1

1− ρ2

(
x− ρy√
1− ρ2

y − ρx√
1− ρ2

+ ρ

)}
φ and Φ denote, respectively, the density and distribution function
of the standard normal distribution.

7. mvn(Σ, k, ε, x1, . . . , xn) returns the value of an n-dimensional normal
distribution with correlation matrix Σ, that is

1
(2π)n/2 |Σ|1/2

∫ xn

−∞
· · ·
∫ x1

−∞
exp

(
− 1

2
x′Σ−1x

)
dx1 · · · dxn

where x = (x1, . . . , xn)′. The number of dimensions is restricted to
2 ≤ n ≤ 20. The operator expects as its first argument the name
of an (n, n) correlation matrix that must be defined with the mdef
command, see 5.1.2. Its upper triangle is used for the correlation
matrix.

The algorithm is adopted from Drezner [1992] and uses an adap-
tive Gaussian quadrature method for numerical integration. There
are two options, depending on k (integer) and ε (floating point). If
2 ≤ k ≤ 10, ε is ignored and the algorithm performs one Gaus-
sian quadrature with k points for each dimension of the integral. If
12 ≤ k ≤ 20, the algorithm performs progressive quadratures with
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number of points m = 2, . . . , k− 10, until the difference between two
successive evaluations of the integral does not exceed ε. To check the
operator one can use TDA’s calc command. For tables with values
of the multivariate normal integral see Tong [1990].

The operator cannot be used for automatic differentiation. If deriva-
tives are required they must be approximated numerically. For ap-
plications, see 6.12.5.
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5.2.5.8 Julian Calendar

Given variables Y (year, four digits), M (month), and D (day), the
operator

jul (Y,M,D)

returns the corresponding day in the Julian calendar. On the other hand,
given a day J in the Julian calendar, then

july(J) returns the corresponding year
julm(J) returns the corresponding month
juld(J) returns the corresponding day

Consequently,

july (jul(Y, M, D)) = Y

julm (jul(Y, M, D)) = M

juld (jul(Y, M, D)) = D
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5.2.5.9 String Variables

The following type 1 operators can be used for string variables.
1. Given a string variable S the operator

strlen(S)

returns the length of the string variable, i.e., the number of columns
that are used for each of the strings.

2. Given a string variable S the operator

strv(S)

tries to convert the strings in S into numerical values. If this is not
possible because a string does not consist only of digits, the operator
returns -1.

3. Given a string variable S the operator

strvp(S,n,m)

tries to convert the sub-strings from column n until, and including,
column m into numerical values. If this is not possible because a sub-
string does not consist only of digits, the operator returns -1.
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5.2.6 Type 2 Operators

Type 2 operators are specific in that they require information not only
about the current data matrix row. The actual amount of information
depends on the mode of data generation, see 2.2. In record mode (de-
fault), type 2 operators are evaluated for all rows in the current data
matrix; in block mode, they are evaluated for all rows in a block. This
implies some restrictions in using these operators to define expressions.

Note that a variable is assigned type 4 (see 2.1) if its definition con-
tains type 2 operators, or if its definition refers to at least one other
variable that, in turn, involves type 2 operators. Here are some exam-
ples of type 2 operators.

X vmin(X) vmax(X) sum(X) cum(X) cd(X) cdv(X) mean(X) std(X)

-------------------------------------------------------------

1 1 3 7 1 0.50 0.2857 1.75 0.9574

1 1 3 7 2 0.50 0.2857 1.75 0.9574

2 1 3 7 4 0.75 0.5714 1.75 0.9574

3 1 3 7 7 1.00 1.0000 1.75 0.9574

Currently available type 2 operators will be described in the following
subsections.

5.2.6.1 General Type 2 Operators

5.2.6.2 Recode Operators

5.2.6.3 Leads and Lags

5.2.6.4 Sorting and Ranking

5.2.6.5 Counting Subsets

5.2.6.6 Counting Changes

5.2.6.7 Aggregates

5.2.6.8 String Variables

Note that type 2 operators cannot be used for automatic differentiation.
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5.2.6.1 General Type 2 Operators

In describing the following general type 2 operators, X denotes the name
of a variable that must be available in the currently defined data matrix.

1. vmin (X) provides the minimum of the values of the variable X.

2. vmax (X) provides the maximum of the values of the variable X.

3. sum (X) provides the sum of the values of the variable X.

4. cum (X) provides the cumulated values of the variable X.

5. cd (X) provides the empirical distribution function of X.

6. cdv (X) provides the incomplete first moment of the distribution
of variable X, calculated as

cdv(x) =

∑
xi≤x xi∑n
i=1 xi

7. mean (X) provides the mean value of the variable X.

8. std (X) provides the standard deviation of the variable X.

9. ndv (X) calculates the number of different values occurring in X.

10. ndv1 (X, A) calculates the number of different values occurring in
variable X that are not less than A (any expression).

11. ndv2 (X, A,B) calculates the number of different values occurring
in variable X that are not less than A and not greater than B.

12. mav (X, n) calculates a moving average for variable X:

mav(X, n) =
1

2n + 1

n∑
j=−n

Xi+j

n must be a positive integer.
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13. The operator bfa (X[. . .]) returns the number of times that the
dummy variable X[. . .] (i.e., the argument of the operator) takes a
non-zero value in the current block (or the data matrix, if not in
block mode).

14. The operator bfr (X[. . .]) returns the relative frequency of the
occurrence of non-zero values of the dummy variable X[. . .] in the
current block (or the data matrix, if not in block mode).

15. The operator quant (X, p) returns the p-quantile of the distribu-
tion of the variable X. Calculation is done with the same method
als described for the quant command.

16. The operator quant1 (X, Z, p,m) returns the p-quantile of the dis-
tribution of X, but X might contain censored values. This is in-
dicated by values of variable Z. If Zi = 0, Xi is assumed to be a
censored value; otherwise Xi is treated as uncensored. If the re-
quested quantile cannot be calculated, the operator returns the
value m.

17. The operator vdif (X, Y ) returns an indicator of different values.
Given values Xi and Yi for i = 1, . . . , n, the result of vdif (X, Y )
for the ith record is 1 if Xi is not equal to any of the values Yj for
j = 1, . . . , n; otherwise the result will be 0. Example:

X Y vdif (X, Y )

1 3 0
2 2 0
7 8 1
9 1 1
1 8 0
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5.2.6.2 Recode Operators

Assume a variable, X, and a list, L, having two columns. The operator

Y = recode (X, L)

can be used to create a new variable, say Y , such that whenever X has a
value occurring in the first column of L, Y gets the corresponding value
in the second column of L. L must be the name of a matrix having at
least two columns, defined with an mdef command, see 5.1.2.

Using the recode operator, if X has a value not occurring in the
first column of L, Y gets the value of X. Alternatively, one can use the
operator

Y = recode (X, L, v)

Then, if a value of X does not occur in L, the new value in variable Y
will be v.
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5.2.6.3 Leads and Lags

The following operators are available to refer to leads and lags of the
values of a variable.

1. Given a variable X, pre (X) provides its values lagged by one data
matrix row. X must be the name of a data matrix variable. Note that
the pre operator is specific in that it is the only operator that can
be used in a self-referencing way. In all other cases, when defining a
variable, one can only use references to previously defined variables.
In contrast, the pre operator allows for constructions as

Y = if ne(X,pre(X)) then Y else Y + pre(X)

These expressions must not contain any other type 2 operators; oth-
erwise one will get a wrong result.

2. Given a variable X, suc(X) provides its values leaded by one data
matrix row. X must be the name of a data matrix variable.

3. Given a variable X, lag(X, n) provides its values lagged by n data
matrix rows if n < 0, or leaded by n data matrix rows if n > 0. It is
possible to use a general expressions instead of n.

The result of these operators is zero if they refer to nonexistent data
matrix rows. In block mode, the result is zero if they refer to data matrix
rows outside the current block.
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5.2.6.4 Sorting and Ranking

The following type 2 operators can be used to sort, or rank, the values
of a variable.

1. Given a variable X, sort(X) creates a new variables that contains
the values of X sorted in ascending order.

2. Given a variable X, snum(X) provides serial numbers based on sort-
ing the values of X in ascending order.

3. Given a variable X, rank(X) provides rank numbers for the values
of sort(X).

If the values of the variable X are not unique, the sorting is not stable.
In any case, evaluation depends on being in record mode or in block
mode. Some examples are shown in the following box.

X sort(X) sqrt(abs(sort(X))) -sort(-X) snum(X) rank(X)

-------------------------------------------------------------

1 -3 1.7321 9 3 3.5

7 -3 1.7321 9 8 8.0

2 1 1.0000 7 6 6.0

9 1 1.0000 2 10 9.0

-3 2 1.4142 2 2 1.5

1 2 1.4142 2 4 3.5

2 2 1.4142 1 7 6.0

-3 7 2.6458 1 1 1.5

9 9 3.0000 -3 9 9.0

2 9 3.0000 -3 5 6.0
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5.2.6.5 Counting Subsets

The following type 2 operators can be used to count subsets (of cases)
of a variable.

1. cnteq (X, Y ) returns the number of cases where X is equal to Y .

2. cntne (X, Y ) returns the number of cases where X is not equal to
Y .

3. cntlt (X, Y ) returns the number of cases where X is less than Y .

4. cntgt (X, Y ) returns the number of cases where X is greater than
Y .

5. cntle (X, Y ) returns the number of cases where X is less than, or
equal to, Y .

6. cntge (X, Y ) returns the number of cases where X is greater than,
or equal to, Y .

X and Y are variables (or more general, expressions). Calculating the
counts depends on whether the operators are used in record mode or
in block mode. In record mode, the counts are based on the number of
cases in the currently defined data matrix, in block mode the counts are
calculated for each block separately. Some examples, assuming record
mode, are shown in the following box.

V1 V2 cnteq cntne cntlt cntgt cntle cntge

-------------------------------------------------

1 1 2 8 6 2 8 4

7 2 2 8 6 2 8 4

2 3 2 8 6 2 8 4

9 4 2 8 6 2 8 4

-3 5 2 8 6 2 8 4

1 6 2 8 6 2 8 4

2 7 2 8 6 2 8 4

-3 8 2 8 6 2 8 4

9 9 2 8 6 2 8 4

2 10 2 8 6 2 8 4
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5.2.6.6 Counting Changes

The following type 2 operators can be used to provide information about
changes in the values of a variable.

1. Given a variable X, change(X) provides a dummy variable taking
the value 1 if the current value of X is not equal to its previous value.
X is assumed to be not equal to its predecessor if in the first row of
the data matrix or of a block.

2. Given a variable X, cntch(X) provides the number of changes in
the values of X, that is, the number of rows where X is not equal to
its previous value. X is assumed to be not equal to its predecessor if
in the first row of the data matrix or a block.

3. Given a variable X, ccntch(X) provides the number of changes in
the values of X up to, and including, the current row. X is assumed
to be not equal to its predecessor if in the first row of the data matrix
or a block.

4. Given a variable X, lagch(X) provides the number of rows, calcu-
lated backwards from the current row, where the last change of X
occurred. X is assumed to be not equal to its predecessor if in the
first row of the data matrix or a block.

Some examples are shown in Box 1.
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Box 1 Examples of operators for changes

Record Mode

ID S T change(S) cntch(S) ccntch(S) lagch(S) lag(T,-lagch(S))

---------------------------------------------------------------------

1 1 10 1 7 1 0 10

1 3 15 1 7 2 0 15

1 2 20 1 7 3 0 20

2 2 12 0 7 3 1 20

2 3 18 1 7 4 0 18

3 3 8 0 7 4 1 18

3 1 12 1 7 5 0 12

3 2 15 1 7 6 0 15

3 2 17 0 7 6 1 15

3 2 18 0 7 6 2 15

3 1 19 1 7 7 0 19

Block Mode

ID S T change(S) cntch(S) ccntch(S) lagch(S) lag(T,-lagch(S))

---------------------------------------------------------------------

1 1 10 1 3 1 0 10

1 3 15 1 3 2 0 15

1 2 20 1 3 3 0 20

2 2 12 1 2 1 0 12

2 3 18 1 2 2 0 18

3 3 8 1 4 1 0 8

3 1 12 1 4 2 0 12

3 2 15 1 4 3 0 15

3 2 17 0 4 3 1 15

3 2 18 0 4 3 2 15

3 1 19 1 4 4 0 19
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5.2.6.7 Aggregates

The term aggregate is used to denote a contiguous sequence of data
matrix rows, identified by having the same value of an identification
variable. The following operators to evaluate characteristics of aggregates
are available.

1. gcnt (A) counts the number of cases in each of the aggregates defined
by the variable A.

2. grec (A) provides a serial number for the records in an aggregate
defined by variable A.

3. gsn (A) provides a serial number for the aggregates defined by A.

4. gfirst (A) provides a dummy variable with value 1 for the first
record in each aggregate defined by A.

5. glast (A) provides a dummy variable with value 1 for the last record
in each aggregate defined by A.

6. gsum (X, A) returns the sum of the values of variable X, calculated
separately for each aggregate defined by A.

7. gmean (X, A) returns the mean value of variable X, calculated sep-
arately for each aggregate defined by A.

8. gstd (X, A) returns the standard deviation of variable X, calculated
separately for each aggregate defined by A.

9. gmin (X, A) returns the minimum of variable X, calculated sepa-
rately for each aggregate defined by A.

10. gmax (X, A) returns the maximum of variable X, calculated sepa-
rately for each aggregate defined by A.

11. gsort (X, A) sorts the values of variable X, in ascending order, sep-
arately for each aggregate defined by A.

12. gndv (X, A) counts the number of different values in variable X,
separately for each aggregate defined by A.
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Box 1 Examples of operators for aggregates

V A gcnt(A) grec(A) gsn(A) gfirst(A) glast(A)

-----------------------------------------------------

1 1 3 1 1 1 0

4 1 3 2 1 0 0

5 1 3 3 1 0 1

3 2 1 1 2 1 1

6 7 2 1 3 1 0

2 7 2 2 3 0 1

V A gmean(V,A) gstd(V,A) gmin(V,A) gmax(V,A)

---------------------------------------------------

1 1 3.333 2.082 1.000 5.000

4 1 3.333 2.082 1.000 5.000

5 1 3.333 2.082 1.000 5.000

3 2 3.000 0.000 3.000 3.000

6 7 4.000 2.828 2.000 6.000

2 7 4.000 2.828 2.000 6.000

13. gndv1 (X, Y,A) counts the number of different values in variable X
that are not less than Y , separately for each aggregate defined by A.

The aggregate consists of all contiguous data matrix rows that have an
identical value of the aggregating variable. Evaluation of the operator
depends on being in record mode or block mode. In block mode, there
are two levels of aggregates: the first level is defined as blocks, the sec-
ond level is defined by an aggregating variable inside the blocks. Some
examples based on record mode are shown in Box 1.
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5.2.6.8 String Variables

The following type 2 operators can be used for string variables.
1. Given a string variable S the operator

strsp(S)

returns a numerical variable that sorts the strings in S in ascending
order. For strings which are identical the resulting variable gets the
same value.
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5.2.7 Block Mode Operators

The following type 2 operators assume block mode, see 2.2.

1. brec provides the current case number for the rows in a block; brec
is 1 for the first row in block, 2 for the second row, and so on.

2. bnrec provides the number of cases contained in the current block.

3. bfirst provides a dummy variable with value 1 for the first record
in the current block.

4. blast provides a dummy variable with value 1 for the last record in
the current block.

5. bmin(X) provides the minimum of the variable X in the current
block.

6. bmax(X) provides the maximum of the variable X in the current
block.

7. brd provides a random number that is equally distributed in the 0–1
interval. For each block a single new random number is drawn. The
algorithm is the same as used for the rd operator.

8. bnum provides the current block number. Block numbers are: 1, . . . ,m
where m is the number of blocks in the data matrix.

The following box shows some examples.

X Y brec bnrec bfirst blast bmin(X) bmax(X) brd

----------------------------------------------------------

1 1 1 3 1 0 1 5 0.0291

4 1 2 3 0 0 1 5 0.0291

5 1 3 3 0 1 1 5 0.0291

3 2 1 1 1 1 3 3 0.9495

6 7 1 2 1 0 2 6 0.0943

2 7 2 2 0 1 2 6 0.0943
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5.2.8 Operators for Episode Data

There are a few operators that can be used to get information about
currently defined episode data. These operators are also called type 3
operators and can only be used in expressions defining type 5 variables
in the edef command, see 3.3.2.

1. sn provides the current spell number.

2. org provides the current origin state.

3. des provides the current destination state.

4. ts provides the current starting time.

5. tf provides the current ending time.

6. There is one further operator, time, that can only used when esti-
mating Cox models.
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5.2.9 Operators for Sequence Data

Sequence data are defined by sequences of variables, e.g., Y1, . . . , Yn,
where only nonnegative values are valid and negative values indicate
missings, see 3.4.2.

1. slen (Y1, , Yn) calculates the sequence length, that is, the number of
variables beginning with the first nonnegative value and ending with
the last nonnegative value.

2. glen (Y1, , Yn) calculates the length of internal gaps, that is, the
number of variables inside the valid sequence length having nonneg-
ative values. For more information see 3.4.2.
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5.3 Functions

This chapter explains TDA’s concept of functions. It contains the follow-
ing sections.

5.3.1 Syntax for Functions

5.3.2 Automatic Differentiation

5.3.3 Evaluating Functions
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5.3.1 Syntax for Functions

We consider real-valued functions

f(x1, . . . , xn) : Rn −→ R (1)

The function f is an expression depending on the arguments x1, . . . , xn.
Arguments can be any strings consisting of lower-case letters and digits.
They must begin with a lower-case letter and must be different from
predefined keywords and operators. Given this convention, one can define
functions in the same way as variables, by using a set of arguments,
numerical constants and operators. For example,

f(x, y) ≡ sin(x) + cos(y)

would be a valid function definition depending on two variables. In defin-
ing functions one can use most of TDA’s type 1 operators as described
in 5.2.5. Type 2 operators cannot be used. Also, for if-then-else con-
structions one has to use the if operator. For instance, to define the
function

f(x) =
{

1 : x ≤ 0 or x ≥ 1
0 : otherwise

one should use

f(x) ≡ if(le(x,0) + ge(x,1),1,0)

When defining functions one can also refer to data matrix variables. In
general, if the definition of a function contains at least one reference to
a data matrix variable, the function values are obtained by summing its
expression over all cases in the currently active data matrix. For example,
assume a data matrix containing the variables A and B for m cases. It
would then be possible to define a function

f(x, a, b) ≡ x + A * a + B * b

TDA will evaluate this expression as

f(x, a, b) =
m∑

i=1

x + Aia + Bib
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Using this feature, it is quite easy to formulate function expressions for
nonlinear regression and ML estimation. However, such expression can
easily become quite complex. Therefore, to allow for clearly arranged
expressions, functions can also be defined recursively. The basic idea
is first to define parts of a complex expression and then using names
of these parts for defining more complex expressions. The syntax is as
follows:

f(x1, x2, x3, . . .) ≡
t1 = expression depending on (x1,x2,...),
t2 = expression depending on (t1,x1,x2,...),
· · ·
fn = expression depending on (t1,t2,...,x1,x2,...)

fn is a reserved keyword and, although it is optional, should be used
to define the final function expression. t1,t2,... and x1,x2,... can
be any parameter strings consisting of lower case letters and digits. All
parameter string which do occur on the left side of an equal sign will be
interpreted as intermediate expressions (the maximum number is 50);
all remaining strings will become arguments of the function. These final
function arguments are sorted alphabetically to provide an ordering: first
argument, second argument, and so on.

Here is a simple example.

f(x1, x2) ≡ sx1 = sin(x1),
sx2 = sin(x2),
fn = sx1 + sx2

x1 is the first and x2 is the second argument of the function. As an-
other example consider the log-likelihood of a simple logit model with a
dependent 0-1-variable, Y, and two independent variables, A and B. The
log-likelihood can be defined as

f(b0, b1, b2) ≡
v = b0 + A * b1 + B * b2,
e = exp(v),
fn = Y * log(e / (1 + e)) + (1 - Y) * log(1 / (1 + e))

or in a simpler way as

f(b0, b1, b2) ≡ e = b0 + A * b1 + B * b2,
fn = Y * e - log(1 + exp(e))
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The log-likelihood of a corresponding probit model could be written as

f(b0, b1, b2) ≡
e = b0 + A * b1 + B * b2,
fn = Y * log(nd(e)) + (1 - Y) * log(1 - nd(e))
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5.3.2 Automatic Differentiation

Most algorithms for function minimization need first, some also need
second derivatives. In principle, there are four different approaches:
1. The user must also provide expressions for derivatives. Of course,

this would be very inconvenient and error prone.

2. Derivatives can be approximated numerically. This is not only very
time-consuming but also introduces numerical errors.

3. One can try to automatically create expressions for derivatives based
on the function expression provided by the user. However, it would be
very difficult to implement this approach in the required generality.

4. Finally, a very simple and efficient method is to calculate derivatives,
if required, simultaneously with evaluating the expression defining
the function. This approach was originally proposed by Wengert
[1964], see also Wexler [1987]. For the purpose of function minimiza-
tion, this approach seems to be the most efficient and is used in
TDA.

In general, the implementation of this approach depends on how a pro-
gram evaluates expressions. In TDA, given an expression, the program
first creates some intermediate code for representing the numerical steps
required to evaluate the expression. (To see this intermediate code, one
can use the parse command.) Based on this intermediate code, the ex-
pression can be evaluated efficiently for arbitrary arguments. If required,
first and second derivatives are calculated while evaluating this interme-
diate code for the expression.

There are some limitations for defining the function if derivatives are
required. The function may contain:

1. Numerical constants and references to data matrix variables.

2. The elementary operators +, −, ∗, /, and ∧.

3. The operators exp, log, abs, sqrt, sin, cos, lgam, icg, eexp, ndf,
and nd. With restrictions, one can also use ndi, poisson, and negbin.

4. The logical operator if. Most other logical operators result in zero
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derivatives. Of course, when using the if operator, the result is not
necessarily a continuously differentiable function.

5. The int operator for numerical integration, see 5.4.

In order to check results one can use the evalf command, see 5.3.3.
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5.3.3 Evaluating Functions

The command for function evaluation is evalf with syntax shown in the
following box.

evalf (

fmt=..., print format
argument1=..., value of first argument, def. 0
argument2=..., value of second argument, def. 0
..., and so on

) = function;

The right-hand side must provide the definition of the function. All other
arguments are optional. As default, all arguments have zero value.

1. The evalf command only calculates the function value. If using the
command evalf1, instead of evalf, one also gets first derivatives, based
on automatic differentiation as explained in 5.3.2.

2. As a further option, one can use evalf2, instead of evalf, and will
then get the function value and first and second derivatives.
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Box 1 Command file deriv1.cf and standard output

evalf2(

fmt = 12.6, # print format

x = 2, # set value of x argument

y = 5, # and y argument

) = x * y^2; # define function

Output

------

Function definition:

fn = x*y^2

Arguments: x=2 y=5

50.000000 function value

25.000000 gradient x

20.000000 gradient y

0.000000 hessian x x

10.000000 hessian y x

4.000000 hessian y y

Example 1 To illustrate, we use the simple function f(x, y) = xy2.
Box 1 shows the command file deriv1.cf used to evaluate this function
and its derivatives. The command to request first and second derivatives
is evalf2. Optional parameters are the print format and values for the
arguments of the functions. The output shows the function value and
values of the derivatives, evaluated for the given arguments.
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5.4 Numerical Integration

Several different methods have been proposed in the literature for nu-
merical integration. In general, there is no best method, and the behavior
depends strongly on the type of function and the required accuracy. For
this reason, TDA offers a choice between five different methods.
1. Method 1 is the QNG algorithm, adapted from Piessens et al. [1983].

2. Method 2 is the QSUB algorithm adapted from Patterson [1973].

3. Method 3 is the SNIFF algorithm adapted from Garribba et al. [1978].

4. Method 4 is the QTRAP algorithm adapted from Press et al. [1988,
p. 121].

5. Method 5 is the QSIMP algorithm adapted from Press et al. [1988,
p. 123].

All these algorithms are adaptive, meaning that they try to reach a given
error tolerance by a succession of applying some basic integration rules.
Let f(x) denote the integrand, a real-valued function depending on a
single argument. It is tried to approximate the integral

I =
∫ b

a

f(x) dx

for the finite interval [a, b]. Given a relative error tolerance, εr, an algo-
rithm terminates successfully if

| Ik − Ik−1 | ≤ εr | Ik | (1)

where Ik denotes the kth approximation to I. All algorithms use this
relative convergence criterion. Only algorithm 1 (QNG) uses additionally
an absolute error tolerance, εa, with the criterion

| Ik − Ik−1 | ≤ εa (2)

The algorithm terminates when (1) or (2) is satisfied.
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The different methods for numerical integration have been implemented
in TDA both on the level of commands and on the level of operators, see

5.4.1 Commands for Numerical Integration

5.4.2 Operators for Numerical Integration
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5.4.1 Commands for Numerical Integration

For available algorithms see 5.4. Default is method 1 (the QNG algorithm)
with relative error = 0.0001. To change this default, one can use the
niset command with syntax shown in the following box. The selection
remains valid until changed with another niset command.

niset (

rerr=, relative error, def. rerr=1.e-4
aerr=, absolute error, def. aerr=1.e-4

) = n; method (1 – 5), def. 1.

While the main application of these algorithms in TDA is their use for
evaluating log-likelihood functions, they can also be used directly with
the int command. The following box shows the syntax.

int (

ab=a,b, integration interval, no default
fmt=, print format, def. fmt=0.0

) = function;

The command requires the definition of a function that depends on a
single argument on its right-hand side. Also required is the specification
of an integration interval with the ab parameter.
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Box 1 Illustration of int command

Command:

int (ab=0,1) = sqrt(x);

Output:

> int(...)=...

----------------------------------------------------

Numerical integration. Current memory: 132624 bytes.

Function definition:

fn = sqrt(x)

Function argument: x

Integration interval: 0 -- 1

Method 1 (QNG).

Relative error: 1.00000e-04

Approximation: 0.666667 (successful)

Number of function calls: 43

Example 1 As an example, we try to find the value of

I =
∫ 1

0

x1/2 dx

which should be equal to 2/3. When using the default method 1, the
command is simply

int(ab=0,1) = sqrt(x),

Box 1 shows this command and its standard output. The command file
in the example archive is int1.cf.
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5.4.2 Operators for Numerical Integration

In order to allow for numerical integration as part of expressions, there
are some operators. For integration over a finite interval one can use the
operators

int (a,b,f(t))

where a, b and f(t) are expressions, possibly depending on further ar-
guments. This operator evaluates the integral

I =
∫ b

a

f(t) dt

using the currently selected integration method (see the niset command
in 5.4.1). t is a reserved keyword and used to denote the integration
variable. If the expression defining f(t) does not contain t, TDA assumes
a constant function and simply returns its value multiplied with (b− a).

Example 1 To replicate the example given in 5.4.1 with the int op-
erator, one can use the command

evalf = int (0,1,sqrt(t));

The command file in the example archive is int2.cf.

While it is not possible to use the int operator recursively, it can be used
as part of more complex expression, in particular as part of function
definitions. In general, a, b, and f(t) can be functions depending on
arguments. For example, assuming that

a = a(x1, . . . , xn), b = b(x1, . . . , xn), f(t) = f(x1, . . . , xn, t),

the resulting integral would be the function

I(x1, . . . , xn) =
∫ b(x1,...,xn)

a(x1,...,xn)

f(x1, . . . , xn; t) dt

If required, first and second derivatives are calculated using automatic
differentiation, see 5.3.2. This allows, for example, to define log-likelihood
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expression for transition rate models by only using analytical expressions
for the transition rate. For calculating first derivatives, TDA uses the for-
mula:

∂I(x1, . . . , xn)
∂xi

=

∂b(x1, . . . , xn)
∂xi

f(x1, . . . , xn; b)−

∂a(x1, . . . , xn)
∂xi

f(x1, . . . , xn; a) +

∫ b(x1,...,xn)

a(x1,...,xn)

∂f(x1, . . . , xn; t)
∂xi

dt

For calculating second derivatives, TDA uses the formula:

∂2I(x1, . . . , xn)
∂xi ∂xj

=

∂2b(x1, . . . , xn)
∂xi ∂xj

f(x1, . . . , xn; b) +

∂b(x1, . . . , xn)
∂xi

∂f(x1, . . . , xn; b)
∂xj

+

∂b(x1, . . . , xn)
∂xj

∂f(x1, . . . , xn; b)
∂xi

−

∂2a(x1, . . . , xn)
∂xi ∂xj

f(x1, . . . , xn; a)−

∂a(x1, . . . , xn)
∂xi

∂f(x1, . . . , xn; a)
∂xj

−

∂a(x1, . . . , xn)
∂xj

∂f(x1, . . . , xn; a)
∂xi

+

∫ b(x1,...,xn)

a(x1,...,xn)

∂2f(x1, . . . , xn; t)
∂xi ∂xj

dt

TDA recognizes constant expressions with zero derivatives and skips
the corresponding calculations. However, evaluating first and second
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Box 1 Example command file int3.cf and standard output

evalf2(

x = 0,

y = 2,

z = 1.5,

) = int (x,y * z,2 * z^2);

Output:

Function definition:

fn = int(x,y*z,2*z^2)

Arguments: x=0 y=2 z=1.5

13.5000 function value

-4.5000 gradient x

6.7500 gradient y

27.0000 gradient z

0.0000 hessian x x

0.0000 hessian y x

0.0000 hessian y y

-6.0000 hessian z x

13.5000 hessian z y

36.0000 hessian z z

derivatives of expressions containing the int operator can be very time-
consuming.

Limitations. One should be aware of an important limitation. The
integration variable, t, can only be used inside the int operator.

Example 2 To illustrate, command file int3.cf in Box 1 evaluates
the integral

I(x, y, z) =
∫ yz

x

2 z2 dt

and its derivatives. In this example, since the function does not depend
on the integration parameter t, TDA has actually not used any of the
specific subroutines for numerical integration. It would do, however, if
the function definition would be changed into

int (x,y * z,2 * z∧ 2 + 0 * t);

Of course, the result should be the same. See command file int3a.cf in
the example archive.
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5.5 Smoothing Procedures

This chapter describes some general-purpose smoothing procedures. For
a useful introduction see Goodall [1990]. Further approaches will be dis-
cussed in the part on statistical procedures.

5.5.1 Moving Averages

5.5.2 Running Median Smoothers

5.5.3 Smoothing Splines
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5.5.1 Moving Averages

Assume a variable, Y , with values y1, . . . , yn. Also assume a sequence
of weights: wi ≥ 0, for i = 0, . . . , s. We can then defined a smoothed
variable, Y ∗, by

y∗i :=
s∑

k=−s

wkyi+k

This is called a moving average of the original variable, Y . Of course,
one will normally use weights having the property

s∑
k=−s

wk = 1

One needs to specify how to deal with the two ends of the sequence.
There are two possibilities.

1. One can restrict the calculation of smoothed values to the range
i = s+1, . . . , n− s. This is sometimes called the copy-on end-value rule.

2. Alternatively, one can use the end values as often as they are required,
meaning that we introduce

y1−i := y1 for i = 1, . . . , s

yn+i := yn for i = 1, . . . , s

This is sometimes called the replicate end-value rule.

TDA’s command for calculating moving averages is called sma, the syntax
is shown in Box 1. The gss parameter must be used to specify weights
in the following order:

gss = w0, w1, . . . , ws,

The command calculates a sequence of smoothed values for each variable
specified in varlist on the right-hand side. The result is written into
the standard output. Alternatively, one can specify an output file with
the df parameter. As an option, one can specify a repeat factor with the
r parameter meaning that the smoothing procedure is repeated r times.
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Box 1 Syntax for sma command

sma (

gss=..., specification of weights
opt=..., treatment of end values, def. 1

1 = copy-on end-values
2 = replicate end values

r=..., repeat factor, def. 1
fmt=..., print format, def. 10.4
df=..., optional output file
sel=..., optional case selection

) = varlist;

Box 2 Command file ds3.cf

nvar(

dfile = ds3.dat, # data file

Y = c1,

);

sma(

gss = 0.5,0.25,

df = df,

) = Y;

sma(

gss = 0.5,0.25,

opt = 2, # replicate end values

dfa = df, # append

) = Y;

sma(

gss = 0.5,0.25,

opt = 2, # replicate end values

r = 2, # repeat

dfa = df, # append

) = Y;

Example 1 To illustrate, we use the data

Y = 1, 3, 7, 6, 6

contained in data file ds3.dat. The command file, ds3.cf, is shown in
Box 2. The first sma command uses the default copy-on end-value rule.
The second command uses the alternative replicate end-value rule. The
third command requests that the values are smoothed two times. The
resulting output file is shown in Box 3.
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Box 3 Output file, df, created by ds3.cf

# Var: Y

0 1 1.0000 1.0000

0 2 3.0000 3.5000

0 3 7.0000 5.7500

0 4 6.0000 6.2500

0 5 6.0000 6.0000

# Var: Y

0 1 1.0000 1.5000

0 2 3.0000 3.5000

0 3 7.0000 5.7500

0 4 6.0000 6.2500

0 5 6.0000 6.0000

# Var: Y

0 1 1.0000 2.0000

0 2 3.0000 3.5625

0 3 7.0000 5.3125

0 4 6.0000 6.0625

0 5 6.0000 6.0625

The sma Operator It is possible to use the sma procedure directly as
a type 2 operator. The syntax is:

VName = sma[gss=...,r=...,opt=...](Y),

where it is assumed that Y is the name of an already existing variable.
The sma operator creates a new variable, VName, containing the smoothed
values. The gss parameter must be used to specify weights. The other
parameters are optional.
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5.5.2 Running Median Smoothers

A useful smoothing procedure is based on running medians, see Goodall
[1990]. The TDA command is smd with syntax shown in Box 1. The sm
parameter must be used to specify a sequence of operations. The syntax
is

sm=[c1 c2 c3 ...],

where each ci is one of the following characters:

ci =



2 2-median
3 3-median
4 4-median
5 5-median
H hanning
R replicate until no more changes
S splitting
t combine smooth and rough

There are some restrictions in specifying a sequence of these characters.
The character R can only be used if it comes after a 3 or 5. The t char-
acter, if used, must be the last character in the sequence and must have
another character as predecessor. Each character represents an opera-
tion; the ordering is from left to right. Given a variable, Y , with values
y1, . . . , yn, the operations performed are

yi
c1−→ y′i

c2−→ y′′i
c3−→ . . .

meaning that each operation uses the result from the previous operation
as its input.

1. If ci = 2, the operation consists in applying an alternate 2-median:

y′i =
{

if r = 0 : med(yi−1, yi) for i = 2, . . . , n

if r = 1 : med(yi, yi+1) for i = 1, . . . , n− 1

At the beginning, r = 0. Then, if the 2-median (or a 4-median) operation
is finished, r gets the value 1. Then, if the second 2-median or 4-median
operation is finished, r gets again the value 0, and so on.
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Box 1 Syntax for smd command

smd (

sm=[...], sequence of operations
opt=..., treatment of end values, def. 1

1 = copy-on end-values
2 = replicate end values
3 = E rule

fmt=..., print format, def. 10.4
df=..., optional output file
sel=..., optional case selection

) = varlist;

2. If ci = 3, the operation consists in applying a 3-median:

y′i = med(yi−1, yi, yi+1)

3. If ci = 4, the operation consists in applying an alternate 4-median:

y′i =
{

if r = 0 : med(yi−2, yi−1, yi, yi+1) for i = 3, . . . , n− 1
if r = 1 : med(yi−1, yi, yi+1, yi+2) for i = 2, . . . , n− 2

4. If ci = 5, the operation consists in applying a 5-median:

y′i = med(yi−2, yi−1, yi, yi+1, yi+2) for i = 3, . . . , n− 2

y′2 = med(y1, y2, y3)

y′n−1 = med(yn−2, yn−1, yn)

5. If ci = H, the operation consists in calculating the moving average:

y′i = 0.25yi−1 + 0.5yi + 0.25yi+1 for i = 2, . . . , n− 1

6. If ci = S, the operation consists in a splitting procedure applied to yi

and yi+1. This is only done if yi = yi+1 and 3 ≤ i ≤ n− 3. The splitting
procedure sets:

y′i = med(yi, yi−1, 3yi−1 − 2yi−2)

y′i+1 = med(yi+1, yi+2, 3yi+2 − 2yi+3)
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Box 2 Command file ds4.cf

nvar(

noc = 20, # create random data

C = case,

A = rd,

M1 = smd[sm=[3R]](A),

M2 = smd[sm=[4253Ht]](A),

M3 = smd[sm=[3RSSHt]](A),

);

psfile = ds4.ps;

psetup(

pxa = 0,21,

pya = 0,1,

pxlen = 90,

pylen = 50,

);

plxa(sc=1);

plya(sc=1,ic=10);

plot(lt=0,s=5,fs=1.0) = C,M1;

plot=C,M1;

plot(lt=5) = C,M2;

plot(lt=8) = C,M3;

7. If ci = R, this is not a specific operation but the previous operation
(which must be a 3-median or a 5-median) is repeated until no more
changes occur in the smoothed values.

8. If the last character in the sequence of operations specified with the
sm parameter is t, smoothed and rough components are combined as
follows:

y′i = S(yi) + S(yi − S(yi))

where yi refers to the original values of Y and S(y) means the result of
applying the whole sequence of operations to y.

By default (opt=1), the smd command uses the copy-on end-value rule. If
opt=2, the replicate end-value rule is used, but only for the H operation.
If opt=3, and if the operation is a 3-median or 5-median, the algorithm
additionally performs:

y′1 = med(y1, y
′
2, 3y′2 − 2y′3)

y′n = med(yn, y′n−1, 3y′n−1 − 2y′n−2)
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Figure 1 PostScript plot, created with command file ds4.cf,
that illustrates the smd operator.

The smd Operator It is possible to use the smd procedure directly as
a type 2 operator. The syntax is:

VName = smd[sm=[...],opt=...](Y),

where it is assumed that Y is the name of an already existing variable.
The smd operator creates a new variable, VName, containing the smoothed
values. The sm parameter must be used to specify a sequence of opera-
tions in the same way as has been explained above for the smd command.

Example 1 To illustrate, command file ds4.cf, shown in Box 2, first
creates 20 random numbers and then applies the smd operator with
three different sequences of smoothing operations. It finally generates
a PostScript plot as shown in Figure 1.
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5.5.3 Smoothing Splines

Dierckx [1975] has published a useful algorithm that calculates smooth-
ing splines (for a general introduction to splines see Boor [1978]). This
algorithm has been implemented in TDA. The command is spl with syn-
tax shown in Box 1. The command requires two or three variables on
the right-hand side. If there are three variables, the values of the third
one are interpreted as weights.

These variables provide the input data (xi, yi), or if weights are given
by a third variable, then (xi, yi, wi), for i = 1, . . . , n. By default, wi = 1
if no weight variable is specified. Weights must be strictly positive. The
command then calculates a spline function, s(x), with degree k ≥ 2, the
default is k = 2. Higher degrees can be specified with the deg parameter.
The number of data points, n, must be at least 2k and the xi values must
be strictly increasing. The spl command tries to achieve this by sorting
the input data in ascending order. It will exit with an error message if
there are two, or more, equal values in the X variable.

The resulting spline also depends on the smoothing factor, σ, that
can be specified with the sig parameter. By default, σ = 0 and the
algorithm calculates an interpolating spline. If σ > 0, a smoothing spline
is calculated, meaning the smoothest spline function satisfying

n∑
i+1

wi(yi − s(xi))2 ≤ σ

If σ is much larger than 0, the result will be an OLS approximation with
a polynomial of degree k.

The algorithm requires storage space for a maximum number of knots
that cannot be determined in advance. In general, the number of knots
actually used, nk, is

3k ≤ nk ≤ n + k + 1

The default maximum number of knots is

max{3k + 1, n/2 + 1}

If this is not sufficient, the user can specify another maximum with
the max parameter. Furthermore, the algorithm requires some iterative
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Box 1 Syntax for spl command

spl (

sig=..., smoothing factor, def. 0.0
deg=..., degree of spline, def. 2
max=..., max number of knots, def. see text
mxit=..., max number of iterations, def. 10
fmt=..., print format, def. 10.4
df=..., output file
rx=a(d)b, range for interpolation

) = X,Y [,W];

procedures and may not be able to reach convergence. The maximum
number of iterations can be specified with the mxit parameter. The
default value is 10 and should be sufficient for most applications.

There are two options of requesting an output. Both require that
an output file is specified with the df parameter. With the first option
(default), the output file will contain n records, an index number followed
by

xi, yi,
d sj(x)
dj x

(j = 0, . . . , k)

possibly followed by a column containing the weights. So one not only
gets the smoothed values, but also derivatives up to the number of de-
grees.

Alternatively, one can use the rx parameter to specify a range of
values for interpolation. The syntax is

rx = a (d) b,

where it is required that a < b and d > 0. It is then tried to find values
of s(x) and its derivatives for the values

a + id for i = 0, 1, 2, . . . until b

It may happen that the algorithm is not able to calculate the function for
the whole interval. The largest interval that can be used will be shown
in the standard output.
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Box 2 Command file ds5.cf

nvar(

noc = 100,

X[10.4] = case / 10,

Z[10.4] = sin(X),

Y[10.4] = Z + rd(-0.2,0.2),

);

psfile = ds5.ps;

psetup(

pxa = 0,10,

pya = -1.5,1.5,

pxlen = 90,

pylen = 50,

);

plxa(sc=1);

plya(sc=0.5,ic=5,fmt=4.1);

plot(lt=0,s=2,fs=1.0) = X,Y;

plot(lt=5) = X,Z;

spl(

sig = 1,

df = df,

) = X,Y;

clear;

nvar(

dfile = df,

X[10.4] = c2,

Y[10.4] = c4,

);

plot = X,Y;

Example 1 To illustrate, command file ds5.cf, shown in Box 2, first
creates some random data and then uses the spl operator to calculate
a smoothing spline with smoothing factor σ = 1. It finally generates a
PostScript plot shown in Figure 1. The solid line represents the spline
function.
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Figure 1 PostScript plot, created with command file ds5.cf,
that illustrates the spl command.
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5.6 Function Minimization

This chapter describes a command, and some algorithms, that can be
used to find a local minimum of a function. The same algorithms can be
used for nonlinear regression and maximum likelihood estimation. This
will be discussed in different sections of the manual. Here we have the
following sections.

5.6.1 The fmin Command

5.6.2 Algorithms

5.6.3 Protocol File

5.6.4 Starting Values

5.6.5 Covariance Matrix

5.6.6 Constraints

5.6.7 Possible Difficulties
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5.6.1 The fmin Command

The command for function minimization is fmin with syntax

fmin (parameter) = function;

where function is a function as explained in 5.3.1. Optional parameters
are shown in Box 1.

1. The mina parameter can be used to select a minimization algorithm.
For available algorithms and their features see 5.6.2. The default algo-
rithm is Newton (I) and requires first and second derivatives. For most
functions, these derivatives will be available via automatic differenti-
ation. Otherwise one should select an algorithm that only needs first
derivatives, or no derivatives at all. As a special option for algorithms 7
and 8, one can use the dopt=1 parameter to request numerical approxi-
mation of derivatives.

2. If f(θ) is the function given as input to the fmin command, it actually
minimizes σf(θ) where σ is some scaling factor. This scaling factor can
be specified with the parameter

dscal = σ,

Scaling is helpful to reduce the probability of numerical overflows and
underflows. However, the scaling factor σ only influences the global range
of the function. There is no automatic procedure for also scaling the
individual parameters in the function. The user should therefore take
care that all variables have similar magnitudes.

3. The mxit parameter can be used to specify a maximal number of iter-
ations. For default values, and also for stopping criteria and convergence
tolerances, see 5.6.2.

4. The prot parameter can be used to request a protocol file. For more
information see 5.6.3.

5. The xp and dsv parameters can be used to define starting values.
How to use these parameters will be explained in 5.6.4.
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Box 1 Syntax for fmin command

fmin (

mina=..., minimization algorithm, def. 5
dopt=..., 1 for numerical approx of derivatives, def. 0
dscal=..., scaling factor for function, def. 1
mxit=..., max number of iterations
mxitl=..., max number of line search iterations, def. 50
crit= convergence criterion
tolg=..., tolerance: norm of gradient, def. 10−6

tolf=..., tolerance: change of function value, def. 10−12

tolp=..., tolerance: change of parameters, def. 10−4

tolv=..., tolerance: variance of function values, def. 10−10

tols=..., tolerance: reduction factor, def. 10−4

tolsg=..., tolerance: scaled gradient, def. 10−5

tolsp=..., tolerance: scaled parameter change, def. 10−8

slen=..., step length, def. 1
sred=..., reduction factor, def. 0.5
smin=..., minimum of step size, def. 10−10

sst=..., option for evaluation of derivatives, def. 0
prot=..., (or prot1) name of protocol file
pfmt=..., print format for protocol file, def. -19.11
xp=..., starting values
dsv=..., input file with starting values
ppar=..., output file with estimated parameters
tfmt=..., print format for parameters, def. 10.4
ccov=..., type of covariance matrix
pcov=..., output file with covariance matrix
mfmt=..., print format for covariance matrix, def. 12.4
mplog=..., write function minimum into matrix
mppar=..., write minimizing arguments into matrix
mpcov=..., write covariance matrix into matrix
mpgrad=..., write gradients into matrix
pres=..., additional output file
mfmt=..., print format for pres option, def. 12.4
v=..., varlist for pres option

) = function;

6. The ppar parameter can be used to request an additional output file
that will contain the estimated parameters (and standard errors, if any).
The print format can be controlled with the tfmt parameter.
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Box 2 Command file fmin1.cf and output

fmin = (x - 5)^2 + (y + 6)^2;

Output:

Function definition:

fn = (x-5)^2+(y+6)^2

Function minimization.

Algorithm 5: Newton (I)

Number of model parameters: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: 1

Idx Parameter Starting value

1 x 0.0000

2 y 0.0000

Convergence reached in 2 iterations.

Number of function evaluations: 2 (2,2)

Minimum of function: 0

Last absolute change of function value: 1

Last relative change in parameters: 1

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 x 5.0000

2 y -6.0000

Function (starting values): 61.0000

Function (final estimates): 0.0000

7. A covariance matrix is only calculated if the function refers to at least
one data matrix variable and the number of cases exceeds the number of
function arguments to provide at least one degree of freedom. The ccov
parameter can be used to select a calculation method for the covariance
matrix, and the pcov parameter can be used to write the covariance
matrix into an output file. For more information about covariance matrix
calculation see 5.6.5.
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8. The pres parameter can be used to request an output file containing
individual function values for all data matrix cases. If the function defi-
nition refers to data matrix variables, and if the minimization procedure
finished successfully, the pres parameter creates the specified output
file containing: a case number for the data matrix rows and the function
value evaluated separately for each data matrix row. The print format
for the function values can be controlled with the fmt parameter, default
is fmt=12.4. In addition, one can use the parameter

v = varlist,

to add the variables specified in varlist to the output file.

Example 1 To illustrate the fmin command, we begin with a simple
example without reference to a data matrix. The function is

f(x, y) = (x− 5)2 + (y + 6)2

Box 2 shows the command file, fmin1.cf, and the standard output from
its fmin command. Since the function definition does not refer to data
matrix variables, a covariance matrix is not calculated and there are no
standard errors.

Example 2 To illustrate reference to data matrix variables we calcu-
late the mean value of a variable Ai = 1, . . . , 101 by minimizing

f(x) =
101∑
i=1

(x−Ai)2

Box 3 shows the command file, fmin2.cf, and the standard output from
its fmin command. The covariance matrix is written to cov; the proto-
col file will give information about intermediate calculations. The pres
parameter in the command file creates an additional output file, res,
containing three variables. First, the case number. Second, the function
value for each case; in this example, it is simply (51 − i)2. The third
variable is A, specified with the v parameter.
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Box 3 Command file fmin2.cf and part of output

nvar( # define data: A = 1,...,101

A = case,

noc = 101,

);

fmin (

prot1 = p, # protocol file

pcov = cov, # covariance matrix

pres = res, # print individual function values to res

v = A, # add variable A

) = fn = (x - A)^2; # function definition

Part of standard output

-----------------------

Function definition:

fn = (x-A)^2

Function minimization.

Algorithm 5: Newton (I)

Number of model parameters: 1

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: 1

Idx Parameter Starting value

1 x 0.0000

Convergence reached in 2 iterations.

Number of function evaluations: 3 (3,3)

Minimum of function: 85850

Norm of final gradient vector: 4.9738e-13

Last absolute change of function value: 0.753695

Last relative change in parameters: 1

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 x 51.0000 0.0707 721.2489 1.0000

Function (starting values): 348551.0000

Function (final estimates): 85850.0000
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5.6.2 Minimization Algorithms

Many different algorithms have been proposed in the literature for func-
tion minimization. Our basic references are McCormick [1983] and Flet-
cher [1987]. For a short overview, see also Harley [1986]. TDA supports
the methods shown in the following box.

1 Direct search
2 Simplex algorithm
3 Method of conjugate gradients
4 BFGS algorithm
5 Newton algorithm (I)
6 Newton algorithm (II)
7 CES (quadratic model)
8 CES (tensor model)

Direct search. The most simple, but least efficient method is direct
search. TDA’s version of this method is based on an algorithm given
by Kaupe [1963] taking into account some modifications proposed by
Bell and Pike [1966], Tomlin and Smith [1969], and Smith [1969]. The
algorithm does not need any derivatives, selection is with mina=1.

The algorithm is controlled by two parameters, a step length and a
reduction factor. They can be changed with the slen and sred param-
eters, respectively. The step length, multiplied with the absolute values
of the parameter components, determines how the parameter space is
searched; the default step length is 1. The reduction factor is used for a
proportional reduction of the step length in each iteration, the default
value is 0.5. The parameters can be changed with the options

slen = new step length,

sred = new reduction factor,

The algorithm terminates when the maximum number of iterations (de-
fault 100) is reached, or when the reduction factor is less than a given
tolerance that can be controlled with the option

tols = minimum of reduction factor,
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The default is tols = 10−4.

Simplex method. Another algorithm that does not need derivatives
but is more powerful than direct search is based on a simplex procedure,
see Nelder and Mead [1965]. TDA’s version of this algorithm is adopted
from O’Neill [1974] and can be selected with mina=2.

The size of the initial simplex can be controlled with the slen option,
default value is 1. The algorithm terminates if the maximum number of
iterations is reached, default is 100, or if the variance of the function
values evaluated at the simplex vertices is less than a given tolerance
that can be controlled with the parameter

tolv = variance of function values,

The default value is tolv = 10−10.
Both algorithms, direct search algorithm and the simplex procedure,

are not recommended in most situations but may sometimes be helpful
to find starting values for other methods.

Conjugate gradients and BFGS. There are two variants of Quasi-
Newton methods, a method of conjugate gradients and the BFGS al-
gorithm. The implementation of these algorithms in TDA is based on
Shanno and Phua [1986]. Both algorithms need first derivatives; the
method of conjugate gradients can be selected with mina=3, the BFGS

method with mina=4.
For both algorithms, the convergence check is based on the Euclidean

norm of the gradient of the function. Iterations end if this norm becomes
less than a given tolerance. The default value of this tolerance is 10−6,
but can be changed with the parameter

tolg = norm of gradient,

The default maximum number of iterations for these algorithms is 100,
but can be changed with the mxit option.

Two more parameters can be used to control the line search. The
default maximum number, 50, of sub-iterations during line search can
be changed with the parameter

mxitl = maximum number of line search iterations,

and the minimum step length, default 10−10, can be changed with the
parameter

smin = minimum step length,
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Both algorithms are quite reliable and can be used with all of TDA’s
models. Normally one would prefer the Newton method discussed be-
low. However, this method may fail due to badly chosen starting values
or because calculation of second derivatives is inexact. The method of
conjugate gradients or the BFGS algorithm is then a good alternative.
With most models implemented in TDA, the BFGS seems to be more
efficient than the method of conjugate gradients.

CES algorithms. Recently, Chow, Eskow and Schnabel [1994] have
published an algorithm based on tensor methods. Instead of approximat-
ing the function by a quadratic model, their algorithm uses a fourth-order
model. At least in certain applications, this seems to be more efficient.

The TDA implementation of this method is adapted from the code
published by Chow, Eskow and Schnabel [1994]. There are actually two
methods, one based on a quadratic model, the other one based on the
tensor model. The first method, called CES (quadratic model), can be
selected with mina=7, the second method, called CES (tensor model),
can be selected with mina=8.

Convergence check is based on two criteria. First, the algorithm
checks the size of a scaled gradient and assumes convergence if

max
i

{
|gf (θi)| maxj{θj}

max{f(θ), 1}

}
≤ TOLSG

θ = (θ1, . . . , θn) is the parameter vector, f(θ) the function value, and
gf (θ) the gradient. TOLSG is the tolerance with default value 1.e-5; this
value can be changed with the tolsg parameter. A second check is based
on changes of the parameter vector. Convergence is then assumed if

max
i

{
|θi − θ∗i |

max{θi, 1}

}
≤ TOLSP

where θ∗ is the parameter vector from the previous iteration. TOLSP is
the tolerance with default value 1.e-8; this value can be changed with the
tolsg parameter. The maximum number of iterations can be controlled
with the mxit parameter, default is mxit=20.

Newton methods. If first and second derivatives are available, a very
efficient minimization method for well-behaved functions is the Newton
algorithm. The algorithm requires that the function is well-behaved in
at least a neighborhood of its minimum. Furthermore, one needs appro-
priate starting values already near to the minimum. In particular, the
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Hessian matrix must be positive definite for all parameter values during
the iteration process.

Consequently, for practical implementation, the Newton method must
be modified to cope with situations where the Hessian is not positive defi-
nite. Many different proposals exist. For implementation in TDA, we have
chosen two options. The first (default) option uses simply the gradient
if the Hessian is not positive definite.1 The second, more sophisticated
modification follows a proposal of McCormick [1983, p. 166].

To explain the algorithm we shall use the following terminology. f(θ)
is the function to be minimized. gf (θ) is the gradient, i.e. the (column)
vector of first derivatives. hf (θ) is the Hessian matrix, i.e. the matrix of
second derivatives. The index k is used to denote iterations.

Then, having some start vector, θk, for the kth iteration step, the
algorithm tries to find a better estimate, θk+1. To find this new parameter
estimate, the algorithm calculates a search direction and a step size. The
calculation depends on whether the Hessian matrix, evaluated at θk, is
positive definite or not.

If the Hessian matrix, hf (θk), is positive definite, one can use the
Newton search direction defined by

sk = −hf (θk)−1 gf (θk) (1)

The new parameter vector is then calculated as

θk+1 = θk + λk sk (2)

where λk is a scalar, called the step size. This step size is chosen as
the largest value of the series 2−i (i = 0, 1, 2, . . .) so that the first-order
Armijo condition (cf. McCormick [1983, p. 134]) is fulfilled:

f(θk+1)− f(θk) ≤ µλk s′k gf (θk) 0 < µ < 1 (3)

The scalar constant µ is given a default value of 0.2. In most cases it is
not necessary to try other values. This can be done, however, by using
the amue option.

Two more parameters can be used to control the line search. The
default maximum number, 50, of sub-iterations during line search can
be changed with the mxitl option; and the minimum step length, default
10−10, can be changed with the smin option.

1This has been proposed, for instance, by Polak [1971, p. 304].
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If the Hessian matrix at θk is not positive definite the Newton search
direction is not available. This is possible in intermediate iteration steps,
in particular, if the starting values are not close to the optimizing point.
Of course, it should not be the case in the final iteration steps because
a local minimum requires that the Hessian matrix is positive definite.

If the algorithm finds that the Hessian matrix at θk is not positive
definite, its further behavior depends on the type of modification. With
type I (mina=5), the algorithm reduces then to a simple gradient method,
that is the search vector is determined as the negative of the gradient,
sk = −gf (xk). The algorithm then proceeds in the same way as explained
above, i.e. the line search is based on the first-order Armijo condition.

With type II of the algorithm (mina=6), the search vector is build
from two parts. The first part is, again, the negative of the gradient.
A second part is added to reach, hopefully, a region of negative (non-
positive) curvature of the function. This is tried by using the eigenvector,
ek, of the Hessian matrix that is associated with its minimum eigen-
value.2 Because the minimum eigenvalue is less than, or equal to zero,
ek is a vector of non-positive curvature,

e′k hf (θk) ek ≤ 0 (4)

The sign of ek is chosen so that it can be used as part of the search
direction, as a vector with non-ascent direction

e′k gf (θk) ≤ 0 (5)

The new parameter estimate is calculated as

θk+1 = θk + λk sk +
√

λk ek (6)

λk is again a scalar step size, now the largest of the series 2−i that fulfills
the second-order Armijo condition (cf. McCormick [1983, p. 135])

f(θk+1)− f(θk) ≤ µλk

[
s′kgf (xk) +

1
2

e′k hf (xk) ek

]
(7)

where µ is defined the same way as with the first-order Armijo condition
(3). With both modifications of the standard Newton algorithm it should
be possible, not in all but in many cases, to reach within a few iteration

2The algorithm to calculate the minimum eigenvector of the Hessian matrix is
adopted from Sparks and Todd [1973].



5.6.2 minimization algorithms 6

steps a region of negative curvature where the standard method applies.
One can expect that the type II algorithm is more efficient than type I.
However, the calculation of ek is expensive, and the algorithm is slowed
down in this case; therefore, the default algorithm in TDA is type I
(mina=5).

For both versions of the Newton methods one has a choice of three
convergence criteria, selectable with the crit parameter.

1. If crit=1, the algorithm uses the Euclidean norm of the gradient. If
this is less than, or equal to a given tolerance value, the algorithm as-
sumes to have reached a local minimum and terminates. The default
value is 10−6, but can be changed with the tolg option.

2. If crit=2, the algorithm uses the change in function values during the
iterative process. The algorithm terminates if the absolute difference
of the function values in two successive iterations is less than, or
equal to a given tolerance. The default value, 10−12, can be changed
with the tolf option.

3. If crit=3, the algorithm uses changes in the function arguments to
decide about convergence. First, for each of these arguments, the
relative change across two successive iterations is calculated. Then,
the algorithm terminates if the maximum of these changes is less
than, or equal to a given tolerance. The default value is 10−4 and
can be changed with the tolp parameter.

The default convergence criterion is a combination of the first two crite-
ria. Convergence is assumed whenever the Euclidean norm of the gradient
is less than tolg or the decrease of the function is less than tolf. If a
specific criterion is selected with the crit option, then only this criterion
is used to check convergence. All convergence checks are based on the
scaled function.

In addition to these convergence checks, the algorithm terminates
if the maximum number of iterations is reached. The default value for
both Newton algorithms is 20 iterations. This can be changed with the
mxit option. But, as a general rule, if these algorithms do not reach
convergence in less than 20 iterations there is a high probability that the
model is badly specified.

Another point of consideration is how to evaluate the function during
step size search. This could be done without calculation of derivatives
because they are not needed for the step size search. However, in many
cases the Armijo conditions can be fulfilled with a unit step size, that
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is with only a single sub-iteration. It is more efficient, then, to have
the derivatives already calculated since they can be used for the next
iteration step. Therefore, as a default, all function evaluations during the
step size search include the calculation of derivatives. If this default is
not optimal, it can be changed with the sst=1 option (default is sst=0).
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5.6.3 Protocol File

When TDA runs a minimization algorithm, basic results are written into
the program’s standard output and standard error output. The standard
output will indicate whether the algorithm has converged and found a
local optimum and also provides information about the number of iter-
ations, function (log-likelihood) values, and parameter estimates. While
the algorithm is running, some information about the iterations is also
written into the standard error output. These messages will appear on
the screen even if the standard output has been redirected into an output
file.

In addition, one can request a more detailed protocol of the calcula-
tions performed by the selected minimization algorithm. The option to
request such a protocol file is

prot = name of protocol file,

TDA then creates an output file with the specified name and writes ad-
ditional information into this file. By default, only an iteration protocol
is written into the output file. More information about parameter values
and derivatives (if any) can be requested by using prot1 instead of prot.
(An additional option, prot2, is basically only for test purposes.) The
print format for the protocol file can be controlled with the

pfmt = print format for protocol file,

parameter. The default is pfmt=-19.11. If the prot parameter specifies
the name of an already existing file, it is overwritten without warning.
One can use prota, instead of prot, to request that the new information
is appended to the the end of an already existing file.
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5.6.4 Starting Values

Iterative procedures for function minimization require starting values for
the parameters to be estimated. Although TDA provides default starting
values, they are sometimes not good enough to find a solution. The user
has then the option to provide his own starting values instead of TDA’s
default values. There are two options.

1. One can use the parameter

xp = list of starting values,

The right-hand side must provide a sequence of numerical values sep-
arated by commas. They will be used, in the same order, as starting
values for the model parameters.

2. Alternatively, one can use the parameter

dsv = name of file containing starting values,

The file must be a free-format data file containing the starting values as
first entries in each record. Given that a model has n parameters, TDA

sequentially reads the first n data records and takes the first numerical
entry in the ith record as starting value for the ith model parameter. If
the file contains more than n data records, or if there is more than one
numerical entry in each record, this is ignored. If there are less than n
values, the remaining model parameters get the initial value zero.

In many applications model estimation is done sequentially, starting with
simple models containing only a few parameters and then adding more
parameters. It is often a good idea, to use parameter estimates from a
previously estimated model as starting values for a new one. This can
easily be achieved by using the option

ppar = name of an output file,

This option writes the estimated parameters (and its standard errors)
into the specified output file. And the resulting output file can then be
used as an input file providing the starting values for a new model es-
timation. Of course, if the new model contains additional parameters,
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starting values for these parameters should be added to the file. The
print format for the output file containing parameter estimates can be
controlled with the tfmt option. The default is tfmt=10.4 and is identi-
cal to the print format used for parameter estimates in TDA’s standard
output.
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5.6.5 Covariance Matrix

Let f(θ) denote the function depending on a parameter vector, θ, that
has q components. To exhibit alternative estimates of a covariance ma-
trix, we use the following definitions.

J(θ) =

[
n∑

i=1

∂f(yi, θ)
∂θj

∂f(yi, θ)
∂θk

]
j,k=1,...,q

H(θ) =

[
n∑

i=1

∂2f(yi, θ)
∂θj ∂θk

]
j,k=1,...,q

These definitions assume that the function is summed over n data matrix
cases and yi denotes the data for the ith case. For example, f can be a
log-likelihood function.

To select a method of calculation one can use the ccov parameter.
There are three possibilities (additional background information will be
given in the section on maximum likelihood estimation).

J(θ̂)−1 if ccov = 1

−H(θ̂)−1 if ccov = 2

H(θ̂)−1J(θ̂)H(θ̂)−1 if ccov = 3

Note that the ccov parameter works independent of the selected min-
imization algorithm. Having found a solution, θ̂, for a local minimum,
TDA uses this parameter vector for an additional function evaluation
that performs the desired covariance matrix calculation.
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5.6.6 Constraints

As an option, one can define linear equality constraints for the parame-
ters of a function. If θ is the parameter vector with q components, linear
equality constraints can be written as

Rθ = d (1)

R is a (r, q) matrix with r the number of constraints and d is a vector
of dimension r. It is required that r < q since otherwise there are no
degrees of freedom for a change of the function values. Also, to simplify
calculations, it is required that all rows of R are linear independent, that
is, R should have rank r.

The problem is to minimize the function f(θ), as defined above, sub-
ject to the constraint (1). To find a solution we follow the discussion
given by McCormick [1983, chap. 13]. The basic idea is to define an ap-
propriate subspace of the original parameter space and then to perform
unconstrained function minimization in this subspace. An appropriate
subspace is given as the null space of R. This is easily seen by assuming
that one already has a starting vector θs with Rθs = d. Then all vectors
fulfilling this constraint can be represented as

θs + θ with Rθ = 0 (2)

If R has rank r, its null space has dimension q−r. One can define a (q, q−
r) projection matrix Q to map all vectors of the (q−r)-dimensional space
into the null space of R, that is a matrix Q with RQ θ̃ = 0 for all vectors
θ̃ of dimension (q − r). Consequently, the constrained minimization of
f(θ) is equivalent to an unconstrained minimization of the function

F (θ̃) = f(θs + Q θ̃) (3)

Having found an unconstrained local minimum of F , say θ̃k, a local
minimum of f(θ), subject to the constraint (1), is given by θs + Q θ̃k.

Any of the algorithms discussed above can be used to find an un-
constrained local minimum of F (θ). If one needs the gradient and the
Hessian of F , these are given, respectively, by

gF (θ̃) = Q′ gf (θs + Q θ̃) (4)

hF (θ̃) = Q′ hf (θs + Q θ̃) Q (5)
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To find the projection matrix Q, we follow a method described by Mc-
Cormick [1983, p. 265]. It is tried to find a (r, r) matrix RD and a (r, q−r)
matrix RI , where RD consists of r linearly independent columns of R
and RI consists of the remaining columns of R.1 The projection matrix
Q can then be calculated as

Q =

[
−
(
RD
)−1

RI

In−r,n−r

]
(6)

where In−r,n−r denotes an (n−r, n−r) identity matrix. In most cases this
approach to calculating the projection matrix implies an interchange of
the columns of R and, consequently, of the parameter vector. Information
about the construction of Q and the implied column interchange can be
found in the protocol file if requested with the prot1 option.

If convergence has been reached in the reduced parameter space, say
at θ̃k, and if it has been possible to calculate the covariance matrix in this
space, the covariance matrix for the constrained model in the original
space is calculated according to

Cov[θ̂] = QCov[θ̃k]Q′ (7)

This applies to all three options for covariance matrix calculation de-
scribed in 5.6.5). The covariance matrix is first calculated in the re-
duced parameter space and then projected (expanded) into the original
parameter space.

Syntax. The syntax to define equality constraints follows formula (1).
The basic key word is con to be used in the following way:

con = r11b1 ± · · · ± r1qbq = d1,

con = r21b1 ± · · · ± r2qbq = d2, (8)
...

con = rr1b1 ± · · · ± rrqbq = dr,

The di and rij values must be given as numerical constants (floating
point numbers); if zero, they can be omitted. The b1, b2, . . . , bq refer to
the model parameters and must be given as b1,b2,b3,..., independent
of how the model parameters might be called in the model description.

1All calculations are done by a function adopted from the routine LHHFTI published
by Lawson and Hanson [1974].
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The ordering must conform to the structure of the model’s parameter
vector; b1 refers to the first parameter, b2 refers to the second parameter,
and so on.

Note that using constraints might conflict with user-supplied starting
values. If there is no solution of the constraints with the given starting
values, TDA simply uses one of the feasible solutions as new starting
values. A message is then given in the standard output.

Example 1 To illustrate, we add the constraint x = −y to the func-
tion minimization command already used in Example 5.6.1-1. The new
command (see command file fmin3.cf) is

fmin( con = b1 + b2 = 0 ) = (x− 5)∧2 + (y + 6)∧2;

The solution is x = 5.5, y = −5.5.
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5.6.7 Possible Difficulties

There is no guarantee that the algorithms described in 5.6.2 will actu-
ally find a local maximum of the function. Several problems may occur
during the iterative process of function minimization, mainly as a conse-
quence of inappropriate starting values, numerical problems like round-
ing errors and overflows and underflows in function evaluations, or as a
consequence of an ill-conditioned Hessian matrix caused by collinearities
of covariates. Concentrating on the two types of Newton algorithms, we
shortly describe the problems that are recognized by TDA.

1. The Hessian matrix may not be positive definite as is requested for
a local minimum. In many cases this problem may be solved by one of
the modifications of the Newton algorithm described in 5.6.2. However,
it is quite possible that the algorithm does not finally reach a region
of negative curvature with a positive definite Hessian. In this case the
algorithm fails definitely and one should check the model specification
and/or try with some other starting values.

2. It is possible that the algorithm does not find a positive step size
to fulfill the Armijo conditions. Sometimes this problem can be solved
by defining a smaller value for the minimum step size constant, see the
smin parameter. Normally, one has to try with other starting values, or
to try with another algorithm.

3. Another problem is that the algorithm may be unable to decrease
the function value so far as is required by the convergence criterion.
For instance, it may not be possible to find a gradient with a norm
less than some very small tolerance. In most cases this problem is a
consequence of the limited accuracy of function evaluations and/or of
numerical underflows and overflows. Sometimes it may also happen that
the log-likelihood becomes positive. If this problem occurs one should
check the required accuracy for convergence or select another conver-
gence criterion.

4. The algorithms may fail because convergence could not be reached
within the predefined maximum number of iterations. Of course, it is
easily possible to increase this maximum using the mxit parameter. How-
ever, in most circumstances this can be taken as a serious hint that there
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is a problem with the model specification and/or the data.

5. Finally, the algorithm may give rise to senseless results if there is
high collinearity across some of the covariates. One should note that
such problems are not detected by TDA’s minimization algorithms. In
most cases, collinearity shows up in other problems, caused by an ill-
conditioned Hessian.

To help in diagnostics if the minimization procedure fails, one can request
a protocol of the iterations with the prot option, see 5.6.3. In addition, if
the program encounters numerical problems, it prints some information
about these problems into its standard output. The following types of
numerical problems are most important:
1 Numerical underflows or overflows in the evaluation of elementary

functions like exponential and logarithm.

2 Numerical underflows or overflows in the evaluation of the function
and/or its derivatives.

4 If during the iteration process the Hessian matrix is not always pos-
itive definite.

5 If problems occur in evaluating type 5 variables (containing the time
operator) while calculating the likelihood for transition rate models.

6 If problems occur in the calculation of probabilities that should have
values between 0 and 1.

7 Problems in the calculation of the incomplete gamma integral.

8 Problems in the calculation of the incomplete beta integral.

9 If problems occur during calculation of the covariance matrix.

10 If numerical integration cannot achieve the required accuracy.
None of these problems implies that the algorithm has failed. However,
the reliability of the results should be checked, then, by running the
procedure once more with different starting values.
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6. Statistical Procedures

This part contains the following sections.

6.1 Introduction

6.2 Elementary Descriptive Procedures

6.4 Concentration and Inequality

6.5 Describing Episode Data

6.6 Describing Sequence Data

6.7 Investigating Proximities

6.9 Least Squares Regression

6.10 Alternative Regression Methods

6.11 Maximum Likelihood Estimation

6.12 Quantal Response Models

6.14 Models for Count Data

6.16 Nonlinear Regression

6.17 Transition Rate Models

6.18 Regression Models for Events

6.19 Loglinear Models
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6.1 Introduction to Statistical Procedures

This chapter is intended to serve as a collection of introductory remarks
for the discussion of statistical procedures in subsequent sections. Cur-
rently, we have just a few remarks about missing values and case weights.

6.1.1 Missing Values

6.1.2 Case Weights
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6.1.1 Missing Values

The term missing value is used in two different ways. One meaning
refers to data generation. When the nvar command reads a data file, it
might not be able to find the expected data required to create the values
for a variable. These are then “missing values”, substituted by specific
numerical missing value codes as explained in 2.2. However, when the
data matrix has been created successfully, it only consists of numerical
values, and TDA no longer makes any distinction between valid and
“missing” values.

Consequently, there is no direct support for the second meaning of
the term missing value that refers to the input data given to a statistical
procedure. In principle, each statistical procedure should be given some
information about the character of its input data, whether they are “ex-
act”, have more or less errors, or are totally missing. Currently, TDA’s
statistical procedures do not conform to this requirement. The user is
responsible for the data that are given to the procedures. When there
are missing values, they must be excluded explicitly by appropriate case
selection commands.

We intend to deal with the missing value in a more satisfactory way
in a future version of TDA, based on a notion of set-valued variables. This
should allow to specify, for each variable, a range of possible values. And
we hope that we will be able to develop at least some basic statistical
procedures that can use such kind of input data.
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6.1.2 Case Weights

Many procedures in TDA are able to recognize case weights. For historical
reasons, there are two different approaches. Some command, as e.g. the
lsreg command, require a local definition of case weights; some other
commands require a definition of case weights with a separate command,
cwt. The syntax of the cwt command is

cwt = W;

where W is the name of a variable which must be contained in the current
data matrix. The values of W are then interpreted as weights for the cor-
responding rows of the data matrix. These values must be non-negative,
and the sum of weights for all cases in the data matrix, or cases selected
with the tsel command, must be strictly positive. If one of these con-
ditions is not met the program will terminate with an error message.
Alternatively, one can use the command as

cwt (wnorm=s) = W;

where s is a positive number. The weights are modified in such a way that
the sum of weights for the currently selected data matrix rows becomes
equal to s. When simply using

cwt (wnorm) = W;

the sum of weights becomes equal to the currently selected number of
cases. A specification of case weights remains active until substituted by
another cwt command, or explicitly turned off with the command

cwt = off;
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6.2 Elementary Descriptive Procedures

6.2.1 Mean and Range of Variables

6.2.2 Empirical Distribution Function

6.2.3 Quantiles

6.2.4 Frequency Tables

6.2.5 Aggregated Tables

6.2.6 Covariance and Correlation

6.2.7 Contingency Measures

6.2.8 Scatterplots
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6.2.1 Mean and Range of Variables

The dstat command is to request basic information about variables.
The syntax is shown in the following box.

dstat (

grp=..., group variables
fmt=..., print format, def. 10.4
df=..., write to output file
mppar=..., create matrix

) = varlist;

All parameters are optional. The command uses the variables specified
in varlist on its right-hand side or, if varlist is omitted, all currently
defined variables.

1. One can give a list of group variables with the parameter

grp = G1,G2,...,

Each variable on the right-hand side is then taken to define a group
consisting of all cases where the variable has a nonzero value, and all
calculations are done separately for each group.

2. Results are written into the standard output. The print format can
be controlled with the fmt parameter, default is fmt=10.4. If the name
of an output file is specified with the df parameter, the results are also
written into that output file.

3. The mppar parameter can be used to create a matrix that contains, in
each of its rows, the calculated statistics as described below. By default,
the matrix has 6 columns and the first column is zero. If there are groups,
then the first column will contain the corresponding group number.

4. For each variable the command calculates the following quantities:

1. the minimum value

2. the maximum value
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Box 1 Data file ds1.dat

1 1 -1 1.e-1

2 7 -1 1.e-2

3 1 -1 1.e-3

4 7 2 1.e-4

Box 2 Command file ds1.cf

nvar(

dfile = ds1.dat, # data file

X1 = c1,

X2 = c2,

X3 = c3,

X4 = c4,

);

dstat;

3. the mean value

4. the standard deviation

5. the total (sum of values)

These quantities are calculated for the currently selected cases in the
data matrix, optionally modified with the sel and grp parameters. The
command recognizes case weights if defined with the cwt command. The
mean is calculated as

M(x) = Σiwi xi

/
Σiwi

where wi is the weight for case i; without weights, wi = 1 for all cases.
The standard deviation is calculated as

S(x) =
√

Σiwi(xi −M(x))2
/

((Σiwi)− 1)

To calculate standard deviations, TDA uses a two-pass algorithm; first
the mean values are calculated, then the squared deviations from the
mean are accumulated.1

Example 1 To illustrate the dstat command, we use the data file
ds1.dat (Box 1) containing some arbitrary data. The command file,

1This is recommended in the literature studying numerical accuracy in algorithms
for simple descriptive statistics; see, e.g., Neely [1966], Chan and Lewis [1979].



6.2.1 mean and range of variables 3

Box 3 Part of standard output from ds1.cf

> dstat

-----------------------------------------------------

Descriptive statistics. Current memory: 148696 bytes.

Variable Minimum Maximum Mean Std.Dev. Sum of values

-----------------------------------------------------------------

X1 1.0000 4.0000 2.5000 1.2910 10.0000

X2 1.0000 7.0000 4.0000 3.4641 16.0000

X3 -1.0000 2.0000 -0.2500 1.5000 -1.0000

X4 0.0001 0.1000 0.0278 0.0484 0.1111

ds1.cf, is shown in Box 2, and part of the standard output is shown in
Box 3.
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6.2.2 Empirical Distribution Functions

This section describes the gdf command that can be used to calculate
marginal and joint distribution and survivor functions, based on possibly
incomplete (censored) data. The syntax of the command is shown in Box
1. Most parameters are optional. Required is the name of a variable to
be specified with the yl parameter, and the name of an output file to be
given on the right-hand side.

Input data must be defined for i = 1, . . . , n units. Each unit can
contribute observations for (a subset of) m dimensions. If available, yij

is the observation for unit i in dimension j. In general, each observation
consists of two parts

(yij , δij)

where yij is the observed value, and δij indicates whether the obser-
vation is not censored (δij = 1), or is right censored (δij = 0). The
corresponding data matrix variables can be specified with the yl and
cen parameters, respectively. The following combinations are possible.
1. Only observed values are specified with the yl parameter. Then all

observations are assumed to be exact with corresponding values.

2. Observed values are specified with the yl parameter and a censoring
indicator is specified with the cen parameter. An observations is
then interpreted as exact at yij if δij = 1 and is interpreted as right
censored if δij = 0.

By default, the command assumes a single dimension (m = 1) and n =
NOC units, where NOC is the number of cases in the current data matrix.
The grp parameter can be used to specify multivariate data. The syntax
is

grp = ID, L1,

where ID and L1 are names of data matrix variables. Each block of data
matrix rows where ID has identical values is interpreted as data for one
unit. Any values are possible and since the data matrix is always sorted
with respect to ID and L1, it is not required that blocks are contiguous.
The L1 variable must contain positive integers. The number of different

d060202.tex November 16, 1998
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Box 1 Syntax for gdf command

gdf (

opt=..., method, def. 1
1 = marginal calculation
2 = joint calculation, method 1
3 = joint calculation, method 2

prn=..., output option, def. 0
0 = distribution functions
1 = survivor functions
2 = expected values

yl=..., variable name for observed values
cen=..., variable name for censoring information
grp=ID,L1, specification of dimensions
sc=..., offset for domain (method 1 and 2), def. 0
n=..., number of boxes in grid (method 1), def. 100
mxit=..., maximal number of iterations (method 1), def. 20
tolf=..., tolerance for convergence (method 1), def. 0.001
d=..., delta specification (method 2), def. 0.1
fmt=..., print format for output file, def. 10.4
prot=..., protocol file with diagnostic information

) = fname;

Box 2 Example data to illustrate grp parameter

ID L1 YL D

----------------

1 1 3 1

1 3 5 1

1 4 4 0

2 3 0 1

5 1 7 0

2 4 1 0

integers found in this variable is interpreted as the number dimensions.
Again, it is not required that these numbers are contiguous. Each data
matrix row provides one observation for the unit given by the ID variable
and dimension given by the corresponding L1 variable.

To illustrate, consider the data in Box 2. In this example there are
three units providing six observations. The number of dimensions is m =
3. Dimensions are mapped to the values of the L1 variable in ascending
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order. Thus, dimension 1, 2, and 3 correspond, respectively, to L1 = 1, L1
= 3, and L1 = 4. The first unit (ID = 1) has observations for all three
dimensions. The observation is exact in the first and second dimension,
and right censored in the third dimension. Unit 2 contributes an exact
observation to the second dimension and a right censored observation to
the third dimension. The third unit (ID = 5) contributes a right censored
observation to the first dimension.

Marginal Distribution Functions

If opt = 1 (default), the command calculates marginal distributions,
separately for each dimension present in the input data. Assuming that
there are nj observations for the jth dimension, the data are:

(y1j , δ1j), . . . , (ynjj , δnjj)

Depending on prn, these data are used to calculate a distribution func-
tion (prn=0), a survivor function (prn=1), or expected values (prn=2).

Marginal EDF: Exact Observations

If the data for one dimension contain only exact observations, the com-
mand calculates a standard empirical distribution function,

Fj(yij) =
nj∑
i=1

I(Yj ≤ yij)

if prn = 0, or survivor function,

Sj(yij) = 1− Fj(yij)

if prn = 1. Here Yj denotes the variable in the jth dimension and refers
to the possible values yij , i = 1, . . . , nj . I() denotes the indicator func-
tion. In this case, if prn = 2, the expected values equal the observed
values.

Box 3 provides an illustration. Input data are given by the variable
YL. The command

gdf (yl=YL) = df0;

creates the output file df0, the command

gdf (yl=YL,prn=1) = ds0;
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Box 3 Illustration of calculations with exact observations

df0 (prn = 0) ds0 (prn = 1)

YL D Y F D Y S

-- ----------------------- -----------------------

1 1 -1.0000 0.1667 1 -1.0000 0.8333

7 1 1.0000 0.3333 1 1.0000 0.6667

-1 1 5.0000 0.5000 1 5.0000 0.5000

5 1 7.0000 0.8333 1 7.0000 0.1667

7 1 9.0000 1.0000 1 9.0000 0.0000

9

creates the output file ds0.1 The first column in the output files shows
the dimension, then follow the value of the variable (sorted in ascending
order) and the corresponding value of the distribution or survivor func-
tion. If the input data refer to more than one dimension, the output file
will contain the same information separately for each dimension.

Marginal EDF: Right Censored Observations

A second situation occurs if the input data, for one dimension, contain
both, exact and right censored observations. The command then uses the
standard Kaplan-Meier procedure to calculate a marginal distribution,
or survivor, function. Considering the jth dimension, the observations
for Yj are sorted in ascending order. If there are exact and right censored
observations for the same value of the variable, exact observations come
first, followed by right censored observations. The highest value of Yj is
always treated as not censored. Then, in the order from lowest to highest
values, the mass of each right censored observation is distributed over
all observations having higher values.

An example is given in Box 4. Input data are given by the variables
YL and DELTA. The command

gdf (yl=YL,cen=DELTA) = df1;

creates the distribution function. Adding the parameter prn = 1 creates
the corresponding survivor function.

1The data file for this and the following examples is gdf1.dat. The command file is
gdf1.cf. Both are contained in the TDA example archive.
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Box 4 Marginal distributions with right censored observations

df1 (prn = 0) ds1 (prn = 1)

YL DELTA D Y F D Y S

-------- ----------------------- -----------------------

3 1 1 1.0000 0.1667 1 1.0000 0.8333

3 0 1 3.0000 0.3750 1 3.0000 0.6250

2 0 1 4.0000 0.6875 1 4.0000 0.3125

1 1 1 5.0000 1.0000 1 5.0000 0.0000

4 1

5 1

Box 5 Expected values based on marginal distribution

de1 (prn = 2)

YL DELTA D Y CEN E

-------- --------------------------

3 1 1 3.0000 1 3.0000

3 0 1 3.0000 0 4.5000

2 0 1 2.0000 0 4.1250

1 1 1 1.0000 1 1.0000

4 1 1 4.0000 1 4.0000

5 1 1 5.0000 1 5.0000

Marginal EDF: Expected Values

If prn = 2, the gdf command calculates expected values based on the
marginal distributions. If an observation is exact its expected value
equals its observed value. If the observation is right censored, the com-
mand calculates

y∗ij = EFj (Yj |Yj > yij) =
∫ ∞

yij

y dFj

/ ∫ ∞

yij

dFj

where Fj is the Kaplan-Meier estimate of the marginal distribution func-
tion in the jth dimension.

To illustrate, consider the data in Box 5 (same as in Box 4). The
command is now

gdf (yl=YL,cen=DELTA,prn=2) = de1;

The resulting output file, also shown in Box 5, contains four columns. The
first column refers to the current dimension, the second column contains
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the observed values, and the third column shows the censoring status of
the observation. The last column contains the expected value. This will
equal the observed value if the observation is not censored, otherwise the
expected value as calculated from the Kaplan-Meier survivor function.
Note that with this option, the input data are not sorted. Note also that
the observation with highest value is always assumed to be uncensored.

Joint Distributions

We now discuss the calculation of joint distribution functions. This is
done separately for each marginal pattern which is found in the input
data. The word “marginal pattern” refers to a combination of dimen-
sions,

(d1, ..., dmk
) where 1 ≤ d1 < d2 < · · · < dmk

≤ m

m being the maximal number of dimensions as given by the input data.
For ease of notation, the following discussion refers to a full marginal
pattern, meaning that mk = m.

Now, let n denote the number of units for the marginal pattern. We
then have m observations for each unit, as follows:

(yi1, δi1), . . . , (yim, δim) i = 1, . . . , n

Based on these data, the command calculates marginal distributions (if
opt = 1) or joint distributions (if opt = 2 or opt = 3). Calculations
depend on whether the data contain right censored observations. The
contents of the resulting output file depend on the prn parameter. The
command calculates a distribution function if prn = 0, a survivor func-
tion if prn = 1, or expected values if prn = 2.

Joint Distribution: Exact Observations

If all observations are exact, the command calculates a standard m-
dimensional distribution function, defined as

F (y1, . . . , ym) =
n∑

i=1

m∏
j=1

I(Yj ≤ yi)

or the corresponding survivor function

S(y1, . . . , ym) =
n∑

i=1

m∏
j=1

I(Yj > yi)
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Box 6 Joint distribution with exact observations

ID L1 YL MP D1 D2 F Y1 Y2

------------ ------------------------------------------

1 1 1.0 1 1 2 0.2500 -1.0000 1.0000

1 2 2.0 1 1 2 0.5000 1.0000 2.0000

2 1 -1.0 1 1 2 0.5000 2.0000 1.0000

2 2 1.0 1 1 2 0.7500 3.0000 1.5000

3 1 3.0

3 2 1.5 MP D1 D2 S Y1 Y2

4 1 2.0 ------------------------------------------

4 2 1.0 1 1 2 0.0000 3.0000 1.5000

1 1 2 0.2500 2.0000 1.0000

1 1 2 0.0000 1.0000 2.0000

1 1 2 0.5000 -1.0000 1.0000

The functions are calculated, and tabulated in the output file, for all
data points in the input data.

To illustrate, consider the data shown in Box 6. There are four units,
all having observations for two dimensions. The joint distribution func-
tion, shown in the upper half of the right part of the box, was calculated
with the command

gdf (grp=ID,L1,yl=YL,opt=2,prn=0) = df3;

The corresponding survivor function was calculated with the command

gdf (grp=ID,L1,yl=YL,opt=2,prn=1) = ds3;

In both cases, the first column in the output file refers to the current
marginal pattern, followed by the dimensions (values of L1 variable)
that define this pattern. The next m columns contain the observations,
sorted in ascending or descending order. The final column contains the
corresponding value of the distribution or survivor function.

If there are only exact observations, and prn = 2, the output file will
simply contain the observations, a censoring indicator that always has
value 1, and expected values that equal the observed values. In this case,
the input data are not sorted.

Censored Observations, Method 1

We now consider a situation where the multivariate data contain right
censored observations. Unfortunately, there is no simple generalization
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of the 1-dimensional Kaplan-Meier procedure. Discussion in the litera-
ture has proposed several different approaches. The gdf command offers
two methods. The first one (selected with opt = 2) can be used with
observations which might be censored simultaneously in several dimen-
sions. The second method (selected with opt = 3) can only be used with
observations which are censored at most in one dimension. This section
describes the first method (opt = 2).

This method uses an iterative EM-like procedure that tries to find
a self-consistent estimate of the distribution function. In explaining the
procedure we refer, again, to a full marginal pattern. Data are then given
by

(yi1, δi1), . . . , (yim, δim) i = 1, . . . , n

In a first step, we calculate a domain as an m-dimensional interval

D = D1 × · · · ×Dm

where

Dj = ] min
i
{yij} − σ,max

i
{yij}+ σ]

By default, the offset is σ = 0. This implies that observations which have
an exact component on a left side of the domain, or a right censored
component on a right side of the domain, will not be used.2 In order
to include all observations one can specify a positive offset with the sc
parameter, see Box 1.

The iterative procedure is based on a partition of the domain into a
grid of boxes. The jth dimension is partitioned into qj intervals

ij(k) = ] lj(k), uj(k) ] k = 1, . . . , qj

These intervals, and the corresponding boxes, are treated as open on
the left side and closed on the right side. Since the number of boxes
rapidly increases in higher dimensions, we require the user to specify a
total number of boxes for the whole grid with the n parameter, default is
n = 100. The command then tries to find an integer q such that qm ≈ n
and sets

q1 = . . . = qm = q

2Corresponding values of the distribution function, or survivor function, will then be
-1, and expected values will then equal the observed (possibly censored) values.
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The minimum is q = 1, that is, the grid consists of only a single box.
Let now Bj = {1, . . . , qj}. Then, each

(k1, . . . , km) ∈ B1 × · · · ×Bm

refers to one box in the grid, namely

B(k1, . . . , km) = i1(k1)× · · · × im(km)

We now define for each observation (yij , δij) a subset

bj(yij , δij) ⊆ Bj

containing pointers to those boxes (in the jth dimension) where the
observation possibly has values. Explicitly, if the observation is exact,
the definition is

bj(yij , δij) =
{

k ∈ Bj | yij ∈ ij(k)
}

and if the observation is right censored, the definition is

bj(yij , δij) =
{

k ∈ Bj | ∃ δ > 0 : yij + δ ∈ ij(k)
}

Then, for each unit i,

b̄i = b1(yi1, δi1)× · · · × bm(yim, δim)

provides pointers to those boxes in the domain where unit i has, possibly,
an m-dimensional value. Of course, b̄i will be empty, if unit i has a
component not covered by the domain.

Using these notations, Box 7 shows the iterative algorithm.3 The
maximal number of iterations can be specified with the mxit parameter,
default is 20. Convergence is assumed if

max
k1,...,km

{ | f(k1, . . . , km)− f ′(k1, . . . , km) | } ≤ TOLF

where f ′() refers to the density from the previous iteration. By default,
TOLF = 0.001; other values can be specified with the tolf parameter.

Information about the number of iterations and the final value of
the convergence criterion is given in the standard output. In any case,

3The notation ‘+ =’ means that the expression on the right-hand side is added to
the expression on the left-hand side.
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Box 7 Iterative algorithm for joint distribution (method 1)

(1) ∀ (k1, . . . , km) ∈ B1 × · · · ×Bm : f∗(k1, . . . , km) = 0

(2) ∀ i ∀ (k1, . . . , km) ∈ b̄i : f∗(k1, . . . , km) +=
1

n | b̄i |
(3) ∀ (k1, . . . , km) ∈ B1 × · · · ×Bm : f(k1, . . . , km) = 0

(4) ∀ i ∀ (k1, . . . , km) ∈ b̄i :

f(k1, . . . , km) +=
1
n

f∗(k1, . . . , km)∑
(l1,...,lm)∈b̄i

f∗(l1, . . . , lm)

(5) end if convergence has been achieved, or the maximal
number of iterations has been reached.

(6) ∀ (k1, . . . , km) ∈ B1 × · · · ×Bm :
f∗(k1, . . . , km) = f(k1, . . . , km)

(7) continue with (3)

depending on prn, the gdf command finally calculates a distribution
function, a survivor function, or expected values. In order to explain the
calculation, let

kij = min { kj | kj ∈ bj(yij , δij) }

meaning that kij refers to the box where, in dimension j, observation yij

begins. The distribution function is then calculated using the formula

F (yi1, . . . , yim) =
∑

k1=1,...,ki1

· · ·
∑

km=1,...,kim

f(k1, . . . , km)

Correspondingly, calculation of the survivor function uses the formula

S(yi1, . . . , yim) =
∑

k1=ki1,...,q1

· · ·
∑

km=kim,...,qm

f(k1, . . . , km)

If prn = 2, the command calculates expected values. To explain this
option, let (yi1, . . . , yim) be one of the m-dimensional observations. The
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Box 8 Example data set (Pruitt [1993])

ID L1 Y CEN

---------------

1 1 1 0

1 2 6 1

2 1 2 0

2 2 4 1

3 1 3 0

3 2 5 0

4 1 4 1

4 2 3 1

5 1 5 1

5 2 2 0

6 1 6 1

6 2 7 1

7 1 7 0

7 2 1 0

8 1 8 1

8 2 8 1

expected value, in the jth dimension, will equal yij if this component is
not censored. Otherwise, it is calculated by∑

(k1,...,km)∈b̄i
zj(k1, . . . , km) f(k1, . . . , km)∑

(k1,...,km)∈b̄i
f(k1, . . . , km)

zj(k1, . . . , km) is the jth component of the mean value of all exact obser-
vations falling in box (k1, . . . , km) or, if the box does not contain exact
observations, equals the mean of ij(kj).

Example 1. For a first illustration we use some example data from
Pruitt [1993], shown in Box 8.4 In order to estimate a distribution func-
tion, we use the command

gdf(opt=2,prn=0,yl=Y,cen=CEN,grp=ID,L1,n=64,sc=0.5) = df5;

In this example, we have used a total number of 64 boxes and added
a small offset to the domain in order to cover all observations.5 Box 9
shows the resulting output file. Estimated expected values, calculated
with the prn=2 option are shown in Box 10.

4The data file is gdf2.dat, contained in the TDA example archive.
5The command file is provided as gdf2.cf.
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Box 9 Estimated distribution function

MP D1 D2 Y1 Y2 F

------------------------------------------

1 1 2 1.0000 6.0000 0.0000

1 1 2 2.0000 4.0000 0.0000

1 1 2 3.0000 5.0000 0.0001

1 1 2 4.0000 3.0000 0.1250

1 1 2 5.0000 2.0000 0.0000

1 1 2 6.0000 7.0000 0.6290

1 1 2 7.0000 1.0000 0.0000

1 1 2 8.0000 8.0000 1.0000

Box 10 Estimated expected values

MP D1 D2 Y1 (obs) Y2 (obs) CEN Y1 (est) Y2 (est)

-------------------------------------------------------------

1 1 2 1.0000 6.0000 0 1 5.6197 6.0000

1 1 2 2.0000 4.0000 0 1 5.5839 4.0000

1 1 2 3.0000 5.0000 0 0 6.6101 6.9849

1 1 2 4.0000 3.0000 1 1 4.0000 3.0000

1 1 2 5.0000 2.0000 1 0 5.0000 5.1561

1 1 2 6.0000 7.0000 1 1 6.0000 7.0000

1 1 2 7.0000 1.0000 0 0 7.8492 7.1540

1 1 2 8.0000 8.0000 1 1 8.0000 8.0000

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40

50

60

70

80

90

100

110

Figure 1 Illustration of observed data points and estimated
expected values. Estimation with marginal Kaplan-Meier pro-
cedure (x) and with joint estimation (method 1, n = 100 boxes).
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Example 2. For a second illustration, we create 100 data points

(yi1, yi2) i = 1, . . . , 100

where

yi1 = i, yi2 = i + ri

and ri are random numbers which are equally distributed in [−10, 10].
We then have randomly censored 13 of these data points in the second
dimension. The resulting data points are shown in Figure 1.

We then estimated expected values, first using a marginal Kaplan-
Meier procedure.6 The resulting estimated values are indicated in Fig-
ure 1 by cross (x) symbols. We then used the iterative procedure de-
scribed above to estimate expected values. The resulting estimated val-
ues are indicated in Figure 1 by � symbols. They obviously provide
somewhat better estimates.

Censored Observations, Method 2

We now describe an alternative approach (selected with opt = 3) that
can be used when the observations are censored in at most a single di-
mension. The basic idea is quite simple: we use a local Kaplan-Meier
procedure based on all observations that are available in one of the cen-
sored dimensions.

Box 11 explains the algorithm. It is controlled by parameters ∆j that
define the size of the subsets of the domain used for the local Kaplan-
Meier procedure. These parameters are calculated by using the parame-
ter d that can be specified by the user, see Box 1. Then

∆j = d Wj

where Wj denotes the width of the domain in dimension j. Default is
d = 0.1.

The algorithm results in densities, f(i), for all data points i that do
not contain censored observations. Depending on prn, they are finally
used to calculate a distribution function

F (yi1, . . . , yim) =
∑

(yk1,...,ykm)≤(yi1,...,yim)

f(k)

6The command file for data generation and estimation is provided as gdf3.cf in the
TDA example archive.
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Box 11 Algorithm for joint distribution (method 2)

(1) Sort observations (yi1, . . . , yim) in ascending order,
first wrt first component, then wrt second component,
and so on; in case of ties, exact observations precede
censored observations.

(2) for i = 1, . . . , n : f(i) = 1/n

(3) i = 1

(4) If (yi1, . . . , yim) is exact in all components,
continue with step (8).

(5) Let (yi1, . . . , yim) be censored in dimension j0.
Calculate an index set B(i, j0) containing indices of all
data points (yk1, . . . , ykm) for which:
a) ykj > yij

b) ∀ j 6= j0 : ykj is exact
c) ∀ j 6= j0 : | ykj − yij | ≤ ∆j0/2

(6) ∀ k ∈ B(i, j0) : f(k) +=
f(i)

|B(i, j0) |(7) f(i) = 0
(8) i += 1
(9) if i ≤ n continue with (4).

if prn = 0, or a survivor function

S(yi1, . . . , yim) =
∑

(yk1,...,ykm)>(yi1,...,yim)

f(k)

if prn = 1. These values are tabulated in the output file for all data
points. The data points are not sorted.

If prn = 2, the command calculates expected values. For each data
point (yi1, . . . , yim), if yij is exact, this will equal the corresponding
expected component. If yij is censored, the expected value is calculated
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Box 12 Estimated expected values (method 1 and method 2)

method 1 method 2

Y1 (obs) Y2 (obs) CEN Y1 (est) Y2 (est) Y2 (est)

--------------------------------------------------------

34.0000 27.3464 1 0 34.0000 37.6603 37.3177

36.0000 30.3996 1 0 36.0000 37.6603 38.0035

43.0000 15.3593 1 0 43.0000 46.2104 46.2348

45.0000 43.5366 1 0 45.0000 48.9264 48.4735

49.0000 50.6783 1 0 49.0000 54.3749 51.9167

68.0000 50.5112 1 0 68.0000 61.4348 71.7563

69.0000 47.4082 1 0 69.0000 61.4348 71.7563

73.0000 49.9009 1 0 73.0000 74.5214 73.0277

75.0000 65.2591 1 0 75.0000 74.5214 73.7913

79.0000 38.7495 1 0 79.0000 74.5214 79.1623

84.0000 53.5625 1 0 84.0000 82.3746 83.4225

85.0000 62.9593 1 0 85.0000 82.3746 85.3742

93.0000 33.8836 1 0 93.0000 99.9475 103.4777

by

ŷij =

∑
k∈B(i,j)ykjf(k)∑

k∈B(i,j)f(k)

For the definition of B(i, j) see Box 11. If this index set is empty, ŷij

will equal the observed value, yij .

Example 3. For an illustration, we use the 2-dimensional data from
example 2. There are 100 data points, 13 are censored in the second
dimension. Since the data points are censored in only a single dimension,
we can use both methods, 1 and 2. Box 12 shows the censored data points
and estimated expected values for their censored component.7 It is seen
that, in this example, both methods give quite similar estimates.

Example 4. If d = 1, the algorithm uses all observations (in the cen-
sored dimension) and becomes identical with a standard marginal Kaplan-
Meier procedure. For an illustration see command file gdf5.cf in the
TDA example archive.

7The command file is gdf4.cf.
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6.2.3 Quantiles

The syntax of the quant command is

quant (

fmt=..., print format, def. 7.2
df=..., output file
mppar=..., create matrix with quantiles

) = varlist;

The command calculates quantiles corresponding to the orders

0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.75 0.8 0.9

for the variables given on its right-hand side. The print format can be
controlled with the fmt parameter, default is fmt=7.2. The results are
written into the standard output and, additionally, to an output file if
requested with the df parameter.

The values of each variable, say X, are first sorted in ascending order,
x1 ≤ x2 ≤ . . . ,≤ xn. The pth order quantile is then calculated in the
following way:

a) If p ≤ 1/(n + 1), then: x1

b) If p ≥ n/(n + 1), then: xn

c) Otherwise: (1− (q − i))xi + (q − i)xi+1

Where q = p (n + 1) and i = b q c denotes the largest integer not
greater than q.

The mppar parameter has syntax

mppar = matrix name,

This creates a matrix with the specified name. The number of rows equals
the number of variables. The number of columns is 11; each row contains
the 11 quantiles for each variable.

d060203.tex December 12, 2001
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6.2.4 Frequency Tables

The commands freq, freq1, and freq2, can be used to print frequency
tables. In order to calculate these tables TDA uses an algorithm devel-
oped by Leathers [1977]. The syntax is shown in the following box.

freq (

maxcat=..., maximum number of categories, def. 1000
fmt=..., print format, def. 3.0
sc=1, contingency measures (only freq2)
tfmt=..., print format for contingency measures, def. 12.4
df=..., output file

) = varlist;

1. All variants of the freq command require a variable list on the right-
hand side. The freq command creates a joint frequency distribution for
all variables given on the right-hand side. The freq1 command creates
a separate frequency distribution for each of the variables. The freq2
command expects exactly two variable on the right-hand side and creates
a full two-dimensional table.

2. All variants of the freq command expect integer-valued variables. If
the cwt command has been used to define case weights the commands
create weighted frequency distributions.

3. The commands need to know in advance the maximum number of
categories in the (joint) frequency table. This can be controlled with the
maxcat parameter, default is maxcat=1000.

4. When using the freq or freq1 command, the print format for the
values of the variables can be controlled with the fmt parameter, default
is fmt=3.0 (must be an integer format).

5. The sc=1 parameter can be used with the freq2 command to request
the calculation of some contingency measures, see 6.2.7.

6. The frequency tables are written into the standard output. If an
output file is specified with the df parameter, they are also written into
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Box 1 Command file ds2.cf

nvar(

dfile = ds1.dat,

X1 = c1,

X2 = c2,

X3 = c3,

);

freq (

df = f.out,

) = X1,X2,X3;

Box 2 Part of standard output from ds2.cf

> freq(df=f.out,)=X1,X2,X3

-----------------------------------------------

Frequency tables. Current memory: 144678 bytes.

Maximum number of categories: 1000

Frequency distribution for variable(s): X1,X2,X3

Number of categories: 4

Index X1 X2 X3 Frequency Pct Cumulated Pct

------------------------------------------------------

1 1 1 -1 1.00 25.00 1.00 25.00

2 2 7 -1 1.00 25.00 2.00 50.00

3 3 1 -1 1.00 25.00 3.00 75.00

4 4 7 2 1.00 25.00 4.00 100.00

------------------------------------------------------

Sum 4.00 100.00

that output file.

Example 1 To illustrate the freq commands, we use again the data
file ds1.dat (see 6.2.1). The command file is ds2.cf, see Box 1. The
result of the freq command is shown in Box 2. In this example, there
is a three-dimensional frequency distribution. The first column, labelled
Index, counts the rows of the table; its last value is identical to the
number of different table elements. But note that only table elements
with a positive frequency are displayed. Then follow the values of the
variables identifying the table elements, and the corresponding frequen-
cies, given in absolute and percentage values; and finally the table shows
the cumulated frequencies, again in absolute and percentage values. In
this example, the table is also written into the output file f.out. Box 3
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Box 3 Standard output from command freq2=X2,X1

Frequency distribution for variable(s): X2 X1

Number of categories: 4

Frequency|

Percent |

Row Pct |

Col Pct | 1 | 2 | 3 | 4 | Total

----------------------------------------------------------

1 | 1.00 | 0.00 | 1.00 | 0.00 | 2.00

| 25.00 | 0.00 | 25.00 | 0.00 | 50.00

| 50.00 | 0.00 | 50.00 | 0.00 |

| 100.00 | 0.00 | 100.00 | 0.00 |

----------------------------------------------------------

7 | 0.00 | 1.00 | 0.00 | 1.00 | 2.00

| 0.00 | 25.00 | 0.00 | 25.00 | 50.00

| 0.00 | 50.00 | 0.00 | 50.00 |

| 0.00 | 100.00 | 0.00 | 100.00 |

----------------------------------------------------------

Total 1.00 1.00 1.00 1.00 4.00

25.00 25.00 25.00 25.00 100.00

illustrates the format of the frequency table if we use the freq2, instead
of the freq command.
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6.2.5 Aggregated Tables

For aggregating the values of a variable, and in particular for creating
histograms, one can use the atab command with syntax shown in the
following box.

atab (

x=..., definition of classes, no default
fmt=..., print format, def. 10.4
s=1, classes left open, def. s=0 (right open)
r=1, print only nonempty classes
mppar=..., write table into matrix

) = varlist;

varlist on the right-hand side must specify one, say X, or two, say X
and Y , variables. Also required is the x parameter to specify a partition
of the real line into classes for the X variable. The syntax is

x = x1, x2, . . . , xn

This defines n + 1 classes: (−∞, x1),[x1, x2), . . . , [xn,∞). Another pos-
sible syntax is

x = x1(d)x2

defining classes (−∞, x1),[x1 + id, x1 +(i+1)d), . . . , for i = 0, 1, . . . until
x2 is reached; an upper open class [x2,∞) is added. By default, classes
are closed on the left side and open on the right side. Using s=1 chooses
classes which are open on the left and closed on the right side.

Given such a partition of the real line, the program counts the fre-
quency of X and calculates its mean for each of these classes. If the
command provides a second variables, Y , then also the means of Y with
respect the classes defined by the X variable are calculated. Weighted
means will be used if case weights have been defined with the cwt com-
mand. Printing begins with the first non-empty class and ends with the
last non-empty class. By default, the output table contains all classes in
between. To suppress empty classes, one can set the r=1 parameter.
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Box 1 Example of an aggregated table

Aggregated table. Current memory: 148696 bytes.

X: X3 Minimum: -1.0000 Maximum: 2.0000

Y: X4 Minimum: 0.0001 Maximum: 0.1000

Lower Upper Frequency Weighted Mean(X) Mean(Y)

-----------------------------------------------------------------

-1.0000 -0.5000 3 3.0000 -1.0000 0.0370

-0.5000 0.0000 0 0.0000 0.0000 0.0000

0.0000 0.5000 0 0.0000 0.0000 0.0000

0.5000 1.0000 0 0.0000 0.0000 0.0000

1.0000 1.5000 0 0.0000 0.0000 0.0000

1.5000 2.0000 0 0.0000 0.0000 0.0000

2.0000 2.5000 1 1.0000 2.0000 0.0001

The mppar parameter has syntax

mppar = matrix name,

This creates a matrix with the specified name which contains the table
of aggregated values.

Example 1 To provide an illustration, we add the command

atab (x=-10(0.5)10) = X3,X4;

to command file ds1.cf (see 6.2.1). The result is shown in Box 1.
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6.2.6 Covariance and Correlation

The cov and corr commands can be used to calculate a covariance or
correlation matrix, respectively. The syntax is shown in the following
box.

cov (

fmt=..., print format, def. 7.4
df=..., output file
prn=..., data format in output file, def. 0
mpcov=..., create matrix

) = varlist;

corr (

fmt=..., print format, def. 7.4
df=..., output file
prn=..., data format in output file, def. 0
mpcov=..., create matrix

) = varlist;

prn = 0 lower triangle and main diagonal
prn = 1 full square matrix
prn = 2 column vector: lower triangle
prn = 3 column vector: lower triangle and main diagonal
prn = 4 column vector: full matrix

If no list of variables is given on the right-hand side, the commands use
all currently defined variables. The lower triangle, including the main
diagonal, of the resulting covariance or correlation matrix is written into
the standard output. The print format can be controlled with the fmt
parameter. Default is fmt=7.4. If the name of an output file is specified
with the df parameter, the matrix is also written into that file. The data
format depends on the prn parameter as indicated in the box above.

Calculation of the covariance matrix uses the formula

cov(x, y) = Σiwi(xi − x̄)(yi − ȳ)/(Σiwi − 1)
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Box 1 Standard output from corr command

Correlation matrix: corr

X1 X2 X3 X4

--------------------------------------

X1 1.0000

X2 0.4472 1.0000

X3 0.7746 0.5774 1.0000

X4 -0.8241 -0.5426 -0.3815 1.0000

with wi optional case weights, if defined with the cwt command. Default
is wi = 1. Calculation of the correlation matrix uses the formula:1

corr(x, y) =
Σiwi(xi − x̄)(yi − ȳ)√

Σiwi(xi − x̄)2Σiwi(yi − ȳ)2

The mppar parameter has syntax

mppar = matrix name,

This creates a matrix with the specified name which contains the covari-
ance, or correlation, matrix.

Example 1 To provide an illustration, we add the corr command,
without parameters, to command file ds1.cf (see 6.2.1). Box 1 shows
the standard output.

1The correlation coefficients are actually calculated in a two-step procedure, accord-
ing to algorithm P5 in Neely [1966, p. 498].
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6.2.7 Contingency Measures

The sc=1 parameter in the freq2 command (see 6.2.4) allows to request
a variety of contingency measures. Calculation is done as follows.

Assume a contingency table (fij) with r rows and c columns (when case
weights are defined with the cwt command these are weighted frequen-
cies) and define ri = Σjfij , cj = Σifij , n = Σijfij , and eij = ricj/n.
Calculations are only done with positive degrees of freedom: (r−1)(c−1).
Pearson’s χ2

P is calculated as

χ2
P = Σij

(fij − eij)2

eij

The likelihood ratio χ2
LR is calculated as

χ2
LR = 2Σijfij log

(
fij

eij

)
In both cases, prob is the corresponding value of the χ2 distribution
with (r− 1)(c− 1) degrees of freedom. Additional coefficients are calcu-
lated as follows (we use the formulas given in SPSS [1991], CROSSTABS
procedure):

Phi =

√
χ2

P

n

Cramer’s V =

√
χ2

P

n(min{r, c} − 1)

Contingency coefficient =

√
χ2

P

χ2
P + n

The Lambda coefficients are calculated as

λY |X =
Σi maxj{fij} −maxj{cj}

n−maxj{cj}

λX|Y =
Σj maxi{fij} −maxi{ri}

n−maxi{ri}
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λSY M =
Σi maxj{fij}+ Σj maxi{fij} −maxj{cj} −maxi{ri}

2n−maxj{cj} −maxi{ri}
Goodman and Kruskal’s τ is calculated as

τX|Y =
nΣijfij/cj − Σir

2
i

n2 − Σir2
i

τY |X =
nΣijfij/ri − Σjc

2
j

n2 − Σjc2
j

The uncertainty coefficients are

UX|Y =
Ux + Uy − Uxy

Ux
and UY |X =

Ux + Uy − Uxy

Uy

with

Ux = −Σi
ri

n
log
(ri

n

)
Uy = −Σj

cj

n
log
(cj

n

)
Uxy = −Σij

fij

n
log
(

fij

n

)
Calculation of Kendall’s τ and related measures uses the following quan-
tities:

Dr = n2 − Σir
2
i and Dc = n2 − Σjc

2
j

P = Σijfij (Σh<iΣk<jfhk + Σh>iΣk>jfhk)

Q = Σijfij (Σh<iΣk>jfhk + Σh>iΣk<jfhk)

Then

Kendall’s τb =
P −Q√
DrDc

Kendall’s τc =
min{r, c}(P −Q)
n2(min{r, c} − 1)

Gamma =
P −Q

P + Q

Somers’ DX|Y =
P −Q√

Dc

and DY |X =
P −Q√

Dr
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Box 1 Illustration of contingency measures

Contingency measures for table: X (X2) x Y(X1)

Number of cells with less than 5 elements: 8 (100.0 %)

Cells with expected frequency less than 5: 8 (100.0 %)

Degrees of freedom: 3

Chi-square (Pearson) 4.0000 prob: 0.2615

Chi-square (likelihood ratio) 5.5452 prob: 0.1360

Phi 1.0000

Cramer’s V 1.0000

Contingency coefficient 0.7071

Lambda (X dependent) 1.0000

Lambda (Y dependent) 0.3333

Lambda (symmetric) 0.6000

Goodman/Kruskal Tau (X dependent) 1.0000

Goodman/Kruskal Tau (Y dependent) 0.3333

Uncertainty coeff (X dependent) 1.0000

Uncertainty coeff (Y dependent) 0.5000

Kendall’s tau-b 0.4082

Kendall’s tau-c 0.5000

Gamma 0.5000

Somers’ D (X dependent) 0.3333

Somers’ D (Y dependent) 0.5000

Example 1 To illustrate, we use the command

freq2 (sc=1) = X2,X1;

with data file ds1.dat (see 6.2.1), the command file is ds2.cf. Part of
the standard output is shown in Box 1.
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6.2.8 Scatterplots

This section describes the scplot command that can be used to create
scatterplots, optionally with a regression curve. The syntax is shown in
the following box.

scplot (

opt=..., type of plot, def. 1
1 = only symbols
2 = sunflower plot
3 = lowess regression

s=..., symbol type for opt=1, def. 0
fs=..., symbol size for opt=1, def. 2 (mm)
nn=..., grid definition for opt=2, def. nn=1,1
fss=..., symbol size for opt=2, def. 2 (mm)
lt=..., line type for regression lines, def. 1
lw=..., line width for regression lines, def. 0.2 (mm)
sig=..., smoothing factor for opt=3, def. 0.5
d=..., smoothing factor for opt=3, def. 0.5
ns=..., smoothing factor for opt=3, def. 0.5
df=..., output from lowess regression
fmt=..., print format for df option, def. 10.4
sel=..., case select option
nc=..., no clipping if nc=1, def. 0

) = X,Y;

The command requires that a PostScript plot environment is available,
see 4.1. The commands also expects two variable names on the right-
hand side asumed to contain the x and y coordinates of the data points,
respectively. All other parameters are optional. By default, the command
uses all cases in the currently active data matrix. A subset of cases can
be selected with the

sel = expression,

Then only those data matrix rows are used where expression has a
nonzero value. Also by default, the command will only plot inside the
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Box 1 Command file scplot1.cf

psfile = scplot1.ps; output file

psetup(

pxlen = 90, # length of x axis in mm

pylen = 50, # length of y axis in mm

pxa = 0,3, # user coordinates on x axis

pya = -1,2.5, # user coordinates on y axis

);

plxa (sc=1,ic=10); plot x axis

plya (sc=1,ic=0); plot y axis

nvar( # create some random data

noc = 200,

X = rd(0,3),

Y = sin(X) + rd,

);

scplot( # using default opt = 1

s = 5, # symbol type

fs = 1, # symbol size

) = X,Y;

bounding box of the current coordinate system. The nc=1 parameter can
be used to allow for plots outside this box.

1. If opt=1 (default) the command plots a separate symbol for each data
point. This requires that a valid symbol is selected with the s parameter.
For available symbols see 4.4.2. The symbol size can be modified with
the fs parameter.

Command file scplot1.cf (Box 1) illustrates this option with some
random data. The s parameter selects the symbol type and fs=1 sets
the symbol size to 1 mm. Figure shows the resulting plot.

2. If the number of data points is large one sometimes gets a better
view of their density by using sunflower plots, see, e.g., Chambers et
al. [1983, p. 107], Schnell [1994, p. 94]. This option is selected with the
opt=2 parameter. In addition, one can use the nn and fss parameters.
The parameter

nn = nx, ny,

specifies the grid. The x axis is partitioned into nx intervals, the y axis
into ny intervals. The number of data points contained in each of the
resulting cells is represented by a single sunflower symbol that shows the
number of data points. The default size is 2 mm. The fss parameter can
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Figure 1 PostScript plot scplot1.ps, created with command
file scplot1.cf shown in Box 1.

0 1 2 3
-1
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Figure 2 PostScript plot scplot2.ps (sunflower plot), created
with command file scplot2.cf.

be used to specify another size.
To illustrate this option we use command file scplot2.cf, basically

identical with scplot1.cf, but the scplot command is now

scplot(opt=2, nn=15,10, fss=3) = X,Y;
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Figure 3 PostScript plot scplot3.ps (lowess regression
curve) created with command file scplot3.cf.

Figure 2 shows the resulting plot.

3. The opt=3 parameter can be used to add a regression curve to the scat-
terplot. The regression curve is calculated with the lowess algorithm
proposed by W. S. Cleveland, a procedure for robust locally weighted re-
gression. For an introduction see Chambers et al. [1983, p. 121]. TDA uses
the algorithm developed by W. S. Cleveland (distributed via the Internet
NETLIB). The algorithm can be controlled with three parameters.

1. σ, specified with sig=σ, should be a number between 0 and 1 and
determines the fraction of data points that is used to compute each
fitted value. As σ increases also the amount of smoothing increases,
and computation will take more time. By default, σ = 0.5.

2. ns, specified with ns=ns, determines the number of iterations in the
robust fit. If ns = 0 (default) there will be no iterations and the
algorithm calculates a “non-robust” regression curve.

3. δ, specified with d = δ, can be used to save computations. If δ = 0
(default) the algorithm performs complete computations. If δ > 0 it
only uses data points that are spaced (about) δ apart. Remaining
values are then calculated by linear interpolation.

To illustrate we use command file scplot3.cf. Again, basically identical
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with scplot1.cf, but the scplot command is now

scplot(opt=3, lw=0.3, s=5, fs=1) = X,Y;

opt=3 selects the lowess procedure with default parameters. lw=0.3
sets the line width to 0.3 mm. We have added the s=5 and fs=1 pa-
rameters to include a standard scatterplot. Otherwise, the command
would only plot the regression curve. (Of course, one can use the scplot
command several times, with different options, for the same PostScript
output file; and also add other plot objects.) Figure 3 shows the resulting
plot.
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6.2.9 Histogram Plots

This section describes the ploth command that can be used to create
and plot histograms. The syntax is shown in the following box.

ploth (

x=..., intervals (required)
w=..., variable for weights
dscal=..., scaling factor, def. 1.0
s=..., type of intervals, def. 0

0 : intervals are left closed
0 : intervals are right closed

ns=..., option for vertical lines, def. 0
0 : plot vertical lines
0 : don’t plot vertical lines

lt=..., line type, def. 1
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping if nc=1, def. 0
df=..., print histogram data to output file
fmt=..., print format for df option, def. 10.4

) = name of a variable;

The command requires a valid variable name on the right-hand side and
the specification of intervals with the x parameter which has syntax:

x = x1,x2,...,xn, or x = x1(d)xn,

It is required that x1 is not greater than the smallest value of the variable
and xn is not smaller than the greatest value of the variable. All other
parameters are optional. If the df option is used, the command writes
the following values into the output file:

1. Begin of interval

2. End of interval

3. Number of cases in interval
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Box 1 Command file dh1.cf

nvar( dh1.dat

dfile = dh1.dat, -------

X = c1, 1

); 3

psfile = dh1.ps; 4

psetup( 5

pxa = 0,8, 4

pya = 0,0.4, 7

); 1

plxa(sc=1);

plya(sc=0.1);

ploth(

x = 0,2,4,6,8,

df = df,

) = X;

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

Figure 1 PostScript plot dh1.ps, created with command file
dh1.cf shown in Box 1.

4. Frequency of these cases

5. Height of histogram box

As an illustration, the command file dh1.cf, shown in Box 1, creates the
plot shown in Figure 1.
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6.2.10 Density Plots

This section describes the plotd command that can be used to plot a
density function. The syntax is shown in the following box.

plotd (

x=..., sequence of evaluation points (required)
d=..., bandwidth, def. 1.0
k=..., selection of kernel, def. 1

1 : uniform
2 : triangle
3 : quartic
4 : Epanechnikov

dscal=..., scaling factor, def. 1.0
lt=..., line type, def. 1
lw=..., line width, def. 0.2 (mm)
gs=..., grey scale value, def. 1 (white)
nc=..., no clipping if nc=1, def. 0
df=..., print histogram data to output file
fmt=..., print format for df option, def. 10.4

) = name of a variable;

The command requires a valid variable name on the right-hand side and
the specification of a sequence of evaluation points with the x parameter
which has syntax:

x = x1,x2,...,xn, or x = x1(d)xn,

For each point x specified with the x parameter the command calculates

f̂(x) =
1
n

m∑
i=1

Kd(x, yi)

Here it is assumed that y1, . . . , ym are the values of the variable specified
on the right-hand side of the command. A curve connecting the values
of f̂(x) is plotted in the current coordinate system. If the df option is
used the x and f̂(x) values are also written into the specified output file.
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Box 1 Command file dh2.cf

nvar( dh1.dat

dfile = dh1.dat, -------

X = c1, 1

); 3

psfile = dh2.ps; 4

psetup( 5

pxa = 0,8, 4

pya = 0,0.6, 7

); 1

plxa(sc=1);

plya(sc=0.1);

plotd(

k = 2,

x = 0(0.1)8,

df = df,

) = X;

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1 PostScript plot dh2.ps, created with command file
dh2.cf shown in Box 1.

The user has a choice between four kernels. For a description of these
kernels see 6.10.2.

As an illustration, the command file dh2.cf, shown in Box 1, creates the
plot shown in Figure 1.
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6.4 Concentration and Inequality

This chapter is intended to describe commands that can be used to
calculate concentration and inequality measures. Currently, we have only
two sections.

6.4.2 Inequality Measures

6.4.3 Segregation Indices

d0604.tex April 21, 1998



6.4.2 inequality measures 1

6.4.2 Inequality Measures

In order to calculate some inequality measures one can use the ineq
command with syntax shown in the following box.

ineq (

fmt=..., print format, def. 10.4
df=..., output file
mppar=..., write parameter into matrix

) = varlist;

The command requires a list of variables on the right-hand side. The
other parameters are optional. The command creates a table, one line
for each variable specified in varlist, containing the following entries:

1. Name of the variable.

2. Number of valid cases. Note that the command uses only nonnegative
values of a variable; negative values are always regarded as missing
values.

3. Minimum value.

4. Maximum value.

5. Mean value:

M(x) = Σiwixi/w with w = Σiwi

xi are the valid (nonnegative) values of the variable; wi are case
weights which can be provided with the cwt command; otherwise all
wi = 1.

6. Standard deviation:

S(x) =
√

Σiwi(xi −M(x))2
/

((Σiwi)− 1)

7. The variation coefficient, defined as V(x) = S(x)/M(x).
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Box 1 Example of inequality measures

Inequality measures. Current memory: 148696 bytes.

Variable Cases Minimum Maximum Mean StdDev VCoeff Gini

---------------------------------------------------------------------

X1 4 1.0000 4.0000 2.5000 1.2910 0.5164 0.3333

X2 4 1.0000 7.0000 4.0000 3.4641 0.8660 0.5000

X3 1 2.0000 2.0000 2.0000 0.0000 0.0000 0.0000

X4 4 0.0001 0.1000 0.0278 0.0484 1.7410 0.9262

8. The Gini coefficient,1 calculated as

G(x) =
1

2 M(x)
ΣiΣj<iwiwj |xi − xj |

ΣiΣj<iwiwj

The fmt parameter can be used to change the print format for the table
entries; default is fmt=10.4. If the name of an output file is provided
on the right-hand side of the command, a copy of the table (without
header) is written into that file.

The mppar parameter has syntax

mppar = matrix name,

This creates a matrix with the specified name. The number of rows
equals the number of variables. Each row contains the quantities for the
corresponding variable.

Example 1 To provide an illustration, we add the command

ineq = X1,,X4;

to command file ds1.cf (see 6.2.1). The result is shown in Box 1.

1See, for instance, Kendall and Stuart [1977, p. 48].
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6.4.3 Segregation Indices

The segr command can be used to request the calculation of segregation
indices. For a discussion of such indices see, e.g., James and Taeuber
[1985], Deutsch et al. [1994]. The syntax of the command is shown in the
following box.

segr (

g=..., name of variable defining groups
fmt=..., print format, def. 10.4
df=..., output file
ptab=..., additional output file

) = varlist;

To explain this command, assume a sample of n individuals (cases) in
the current data matrix, and a variable G providing information about
membership of the individuals in one of two groups:

Gi =

 = 0 if individual i is in group 0
> 0 if individual i is in group 1
< 0 if no information (missing values)

This variable G must be provided with the g parameter in the segr
command. Further assume a set of classes (for instance, occupations),
and each individual belonging to one of these classes, indicated by an
integer variable X: individual i belongs to class j if Xi = j ≥ 0 (otherwise
there is a missing value). One or more of these X variables must be
specified on the right-hand side of the segr command.

Given these variables, the segr command creates a table, one line
for each X variable, containing the following entries:

1. Name of the X variable.

2. Number of classes, that is, the number of different nonnegative inte-
ger values in variable X.

3. Number of valid cases: N = number of cases with nonnegative values
in G and X.
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Box 1 Data file ds2.dat

G X1 X2 X3 X4

-------------

0 10 1 0 1

1 0 2 0 1

0 10 3 1 1

1 0 4 1 2

0 10 5 2 2

1 0 6 -1 2

1 0 7 2 2

4. Number of cases in group 0: F = number of valid cases with Gi = 0.

5. Number of cases in group 1: M = number of valid cases with Gi > 0.

6. The dissimilarity index, calculated as

D = 0.5 Σj

∣∣∣∣ Fj

F
− Mj

M

∣∣∣∣ = 0.5
ΣjNj |Fj/Nj − F/M |

FM/N

where Fj = number of valid cases belonging to group 0 and class j,
Mj = number of valid cases belonging to group 1 and class j, and
Nj = Fj + Mj .

7. The variance ratio (James and Taeuber 1985, p. 6), calculated as

VR =
ΣjNj(Fj/Nj − F/N)2

FM/N
=

ΣjNj(Mj/Nj −M/N)2

FM/N

8. The Gini index (James and Taeuber [1985, p. 5], Deutsch et al. [1994,
p. 134]), calculated as

G =
0.5
FM

ΣiΣjNiNj

∣∣∣∣ Fi

Ni
− Fj

Nj

∣∣∣∣
The table containing these entries is always written into the standard
output. If the name of an output file is given with the df parameter,
a copy of the table is written into that file. The fmt parameter can be
used to change the print format, default is fmt=10.4.

In addition, one can specify the name of a second output file with the
ptab parameter. For each X variable, it will contain a separate table
with the following entries:
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Box 2 Command file ds6.cf

nvar(

dfile = ds2.dat,

G = c1,

X1 = c2,

X2 = c3,

X3 = c4,

X4 = c5,

);

segr(

g=G,

ptab = tab,

) = X1,,X4;

Box 3 Part of output from command file ds6.cf

Segregation measures. Current memory: 152713 bytes.

Grouping variable: G

Variable Classes Cases Group_0 Group_1 D-Index V-Ratio Gini

---------------------------------------------------------------------

X1 2 7.00 3.00 4.00 1.0000 1.0000 1.0000

X2 7 7.00 3.00 4.00 1.0000 1.0000 1.0000

X3 3 6.00 3.00 3.00 0.0000 0.0000 0.0000

X4 2 7.00 3.00 4.00 0.4167 0.1736 0.4167

1. Number of classes, based on the current X variable.

2. Number of valid cases.

3. Number of cases in group 0.

4. Number of cases in group 1.

5. Contribution of the class to the dissimilarity index,
that is, |Fj/F −Mj/M | .

Example 1 To provide an illustration, we use data file ds2.dat, shown
in Box 1, and the command file ds6.cf (Box 2). Part of the standard
output is shown in Box 3.



6.5 describing episode data 1

6.5 Describing Episode Data

This chapter discusses some elementary descriptive procedures for episode
data. They require a valid episode data structure, see 3.3.2.

6.5.1 Life Tables

6.5.2 Kaplan-Meier Procedure

6.5.3 Survivor Function Quantiles

6.5.4 Comparing Survivor Functions

6.5.5 State Distributions
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6.5.1 Life Tables

The life table method allows to calculate nonparametric estimates of the
survivor function, the density function, and transition rates, for dura-
tions given in a set of episodes. (An extensive discussion of this method
has been given by Namboodiri and Suchindran [1987]; a compilation of
all commonly used formulas for the single transition case may be found in
Smith et al. [1970].) There are two drawbacks because it is necessary to
group the durations according to some intervals on the time axis. First,
results depend more or less on arbitrarily defined time intervals; and sec-
ond, the method should only be used if there is a relatively large number
of episodes so that estimates conditional for each interval are reliable.
Therefore, in most applications one normally prefers the Kaplan-Meier
procedure discussed in 6.5.2.

Given a valid definition of single episode data as explained in 3.3.2, one
can estimate life tables with the ltb command. The syntax is explained
in Box 1. The command needs the specification of an output file on the
right-hand side. The life tables are then written into this output file.
The print format can be specified with the fmt parameter; default is
fmt=7.5.

Time Periods. Life table estimation, like some other methods for
episode data, requires a specification of time periods (intervals) for the
process time axis that was used to define the episode data. This is done
by defining split points on the time axis

0 ≤ τ1 < τ2 < τ3 < . . . < τq

With the convention that τq+1 = ∞, there are q time intervals each
including the left limit, but not the right one.

Il = {t | τl ≤ t < τl+1} l = 1, . . . , q

Given these time intervals, calculation of life tables by TDA is always
done using episode durations. (This implies that the method cannot be
used with split episode data.) In the following discussion we will therefore
assume that all episodes have equal starting times at the origin, zero, of
a common time axis. In addition we will assume that the time intervals
start at zero, i.e. τ1 = 0.
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Box 1 Syntax for ltb command

ltb (

tp=..., time periods, no default
cfrac=..., fraction of censored cases that are counted

as part of the risk set, def. 0.5
grp=..., group indicator variables, def. without groups
fmt=..., print format for output file, def. fmt=7.5
ap=1, append data to end of output file

) = name of output file;

For the definition of time periods one must use the tp parameter in the
ltb command. The syntax is

tp = t1,t2,t3,...,tq,

where t1,t2,t3,...,tq are non-negative numbers in a strictly ascend-
ing order. If the first time point, t1, is greater than zero, TDA inserts
an additional interval beginning at zero and ending at t1. Alternatively,
one can use the syntax

tp = t1 (d) t2,

The expression is then expanded to provide the sequence t1, t1 + d,
t1 + 2d,..., until t2. It is possible to combine both ways of defining
time periods.

Given a valid definition of time periods, the calculation of life tables
depends on the input data.

1. If there are case weights defined with the cwt command, these weights
are used with all calculations. In particular with large data sets where
durations are heavily tied this is an useful option.

2. If the input data are partitioned into groups (see below), life table
estimation is done separately for the episodes in each group.

3. If there is more than one origin state, life table calculation is done
separately for each subset of episodes having the same origin state. Con-
sequently, life table calculation is always conditional on a given origin
state.
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4. If for a given origin state there is only a single destination state,
an ordinary life table is calculated; if there are two or more destination
states a so-called multiple-decrement life table is calculated.

It should be stressed that TDA always uses durations, calculated as the
difference between starting and ending times. Consequently, episode data
that have been split with the method of episode splitting cannot be used
as input for life table estimation. If one or more starting times in the
input data are not zero, TDA gives a warning message that the results
will be probably wrong.

Grouping Episodes. It is possible to partition a set of episodes into
groups. This can be done with the optional grp parameter in the ltb
command. The syntax is

grp = G1,G2,...,

where G1,G2,... are names of variables. These variables are then in-
terpreted as indicator variables defining groups. Each of the variables
defines a separate group consisting of all episodes (data matrix rows)
where the variable has a value not equal to zero.

Single Transitions. All formulas used in the calculation of single tran-
sition life tables are based on the quantities Il(l = 1, . . . , q).

El = the number of episodes with events in Il

Zl = the number of censored episodes ending in Il

defined for the intervals (time periods) Il(l = 1, . . . , q). The next im-
portant point is the definition of a risk set , Rl, for each of the time
intervals, that is the set of units (episodes) that are at risk of having
an event during the lth interval.1 To take into account episodes that are
censored during the interval this is done in two steps. First the number
of episodes, Nl, that enter the lth interval, is defined recursively by

N1 = N, Nl = Nl−1 − El−1 − Zl−1

In a second step one has to decide how many of the episodes that are
censored during an interval should be contained in the risk set for that
interval. We shall assume a constant ω (0 ≤ ω ≤ 1) for the definition

1We generally denote the risk set by the symbol R, the number of units contained
in the risk set by the symbol R.
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of the fraction of censored episodes that should be contained in the risk
set. The default value is ω = 0.5, but can be changed with the cfrac
parameter.2

The number of elements in the risk set is defined, then, by

Rl = Nl − ω Zl

Using these basic quantities, it is easy to define all other concepts used
in the life table setup. First the conditional probabilities of having an
event in the lth interval, ql, and for surviving the interval, pl, are

ql =
El

Rl
and pl = 1− ql

As an implication, one gets the following estimator for the survivor func-
tion3

G1 = 1, Gl = pl−1Gl−1

Having estimates of the survivor function, the density function is evalu-
ated approximately at the midpoints of the intervals as the first deriva-
tive

fl =
Gl −Gl+1

τl+1 − τl
l = 1, . . . , q − 1

Of course, if the last interval is open on the right side, it is not possible
to calculate the survivor function for this interval. Also, estimates of the
transition rate, rl, are calculated at the midpoints of the intervals. They
are defined by

rl =
fl

Ḡl
where Ḡl =

Gl + Gl+1

2

and this can also be written as

rl =
1

τl+1 − τl

ql

1− ql/2
=

1
τl+1 − τl

El

Rl − El/2

2Cf. the discussion given by Namboodiri and Suchindran [1987, p. 58].
3Note that the survivor function is calculated at the begin of each interval. Most
programs use this convention in the printout of life tables. An exception is SPSS; in
the life table output of SPSS the survivor function is given at the end of each interval.
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Box 2 Command file ltb1.cf for life table estimation

... reading input data file rrdat.1

... set up episode data with edef command

ltb (

tp = 0 (30) 500, # time periods: 0,30,60,...,300

) = ltb.1;

Finally, it is possible to approximately calculate standard errors for the
estimates of the survivor and density function, and of the transition
rates, by the formulas

SE (Gl) = Gl

[
l−1∑
i=1

qi

pi Ri

]1/2

SE (fl) =
ql Gl

τl+1 − τl

[
l−1∑
i=1

qi

piRi
+

pi

qiRi

]1/2

SE (rl) =
rl√
qlRl

[
1−

[
rl (τl+1 − τl)

2

]2]1/2

With large samples it may be assumed that the values of the survivor,
density and rate function, divided by their standard errors are approx-
imately standard normally distributed. It is possible, then, to calculate
confidence intervals.

Example 1 To illustrate life table estimation, we use the example data
discussed in 3.3.3. An example command file, ltb1.cf, is shown in Box
2. Its first part, reading the data file and defining single episode data, is
identical with command file ed1.cf (see 3.3.3). We simply add the ltb
command for life table estimation.

TDA’s standard output in response to the ltb command is shown in
Box 3. The table has a separate line for each life table, corresponding to
each set of episodes having the same origin state. In this example there
is only one set of episodes all having origin state 0. The table also shows
the number of episodes and an estimate of the median, calculated by
linear interpolation of the life table.

The life tables are written into the output file specified in the ltb
command. In this example, there is only a single life table. As shown in
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Box 3 Part of standard output from command file ltb1.cf

Life table calculation. Current memory: 220963 bytes.

Command: ltb(tp=0(30)500,)=ltb.1

SN Org Group Median Dest.States Episodes Weighted

--------------------------------------------------------

1 0 -- 47.28 1 600 600.00

--------------------------------------------------------

1 table(s) written to: ltb.1

Box 4, the table is in two parts. The first part shows the time intervals
and the basic quantities for each of the time intervals. The last column,
with header Prob, shows the quantities ql, estimates of the conditional
probability of having an event in the corresponding interval.

The second part shows again the time intervals and, in addition,
estimates of the survivor function, the density function and the transition
rate, each with its estimated standard errors. An estimate of the median
is calculated, if possible, by linear interpolation of the survivor function.

Example 2 If one defines two ore more groups of episodes, TDA calcu-
lates a separate life table for each group. An example is given in command
file ltb2.cf (not shown) where two groups (men and women) have been
defined.

Multiple-Decrement Life Tables. The concept of a life table can
be extended to the case of two or more transitions starting from the
same given origin state. The resulting life table is sometimes called a
multiple-decrement table.

The given origin state is, say, j ∈ O. The basic quantities are now:
Ejk,l, the number of episodes with a transition to the destination state k
in the lth time interval; Ej,l, the number of episodes with any transition
in the lth interval, and Zj,l, the number of episodes that are censored in
the lth interval.

Having these basic quantities, the number of episodes entering each
interval and the risk set for each interval are defined analogously to the
single transition case. First, the number of episodes entering an interval
may be defined again recursively by

Nj,1 = Nj , Nj,l = Nj,l−1 − Ej,l−1 − Zj,l−1

with Nj the set of all episodes with origin state j. The number of elements
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Box 4 Output file created by ltb1.cf

# Life table. SN 1. Origin state 0.

# Cases: 600 weighted: 600

# Start of Number Number Exposed D-State 1

# Interval Midpoint Entering Censored to Risk Events Prob

0.00 15.00 600 28 586.0 223 0.38055

30.00 45.00 349 23 337.5 113 0.33481

60.00 75.00 213 15 205.5 51 0.24818

90.00 105.00 147 16 139.0 25 0.17986

120.00 135.00 106 15 98.5 24 0.24365

150.00 165.00 67 5 64.5 9 0.13953

180.00 195.00 53 9 48.5 4 0.08247

210.00 225.00 40 5 37.5 3 0.08000

240.00 255.00 32 5 29.5 0 0.00000

270.00 285.00 27 7 23.5 2 0.08511

300.00 315.00 18 5 15.5 2 0.12903

330.00 345.00 11 1 10.5 2 0.19048

360.00 375.00 8 3 6.5 0 0.00000

390.00 405.00 5 4 3.0 0 0.00000

420.00 435.00 1 1 0.5 0 0.00000

# Start of Survivor D-State 1 D-State 1

# Interval Midpoint Function Error Density Error Rate Error

0.00 15.00 1.00000 0.00000 0.01268 0.00067 0.01567 0.00102

30.00 45.00 0.61945 0.02006 0.00691 0.00058 0.01340 0.00124

60.00 75.00 0.41205 0.02077 0.00341 0.00045 0.00944 0.00131

90.00 105.00 0.30979 0.01995 0.00186 0.00036 0.00659 0.00131

120.00 135.00 0.25407 0.01922 0.00206 0.00040 0.00925 0.00187

150.00 165.00 0.19217 0.01822 0.00089 0.00029 0.00500 0.00166

180.00 195.00 0.16535 0.01774 0.00045 0.00022 0.00287 0.00143

210.00 225.00 0.15172 0.01754 0.00040 0.00023 0.00278 0.00160

240.00 255.00 0.13958 0.01748 0.00000 ** 0.00000 **

270.00 285.00 0.13958 0.01748 0.00040 0.00027 0.00296 0.00209

300.00 315.00 0.12770 0.01790 0.00055 0.00037 0.00460 0.00324

330.00 345.00 0.11122 0.01900 0.00071 0.00047 0.00702 0.00493

360.00 375.00 0.09004 0.02045 0.00000 ** 0.00000 **

390.00 405.00 0.09004 0.02045 0.00000 ** 0.00000 **

420.00 435.00 0.09004 0.02045 0.00000 ** 0.00000 **

# Median duration: 47.28

contained in the risk set for the lth episode is defined by

Rj,l = Nj,l − ω Zj,l

ω has the same meaning as in the single transition case, it is the frac-
tion of the censored episodes assumed to be not at risk for an event
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in the interval. Next, one can define estimates of the basic conditional
probabilities

qjk,l =
Ejk,l

Rj,l
qj,l =

∑
k∈Dj

qjk,l pj,l = 1− qj,l

qjk,l is an estimate for the conditional probability of a transition to
destination state k in the lth episode, conditional on having no event
before. qj,l is the conditional probability of having any event in the lth
interval. And pj,l is the conditional probability of having no event in the
lth interval.

Using these conditional probabilities, an estimate of the overall sur-
vivor function4 is given by

Gj,1 = 1, Gj,l = pj,l−1Gj,l−1

Obviously, it is the same definition as in the single transition case and,
consequently, the overall survivor function could be estimated by col-
lapsing all different destination states into a single one.

Following the remarks given in 3.3.1 about alternative destination
states, the next step should be to get estimates for the destination-
specific subdistribution and subdensity functions and for the transition
rates. To do this, we can first write

qjk,l =
F̃jk,l+1 − F̃jk,l

Gj,l
(1)

with the meaning that qjk,l may be regarded as an estimate of the right-
hand side. This is obvious if one remembers the definition of the subdis-
tribution functions F̃jk, defined by

F̃jk,l = F̃jk(τl) = Pr (Tj ≤ τl, Dj = k)

It is the probability of a transition to destination state k up to the
beginning of the lth interval. Then, with the assumption that τ1 = 0,
it follows that F̃jk,1 = 0, and a simple manipulation of (1) gives the
following estimate of the subdistribution functions

F̃jk,l =
l−1∑
i=1

qjk,i Gj,i

4See the discussion of this concept in 3.3.1.
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Estimates of the subdensity functions f̃jk may be derived, then, by taking
an approximation to the first derivative at the midpoints of the intervals,
i.e. by

f̃jk,l =
F̃jk,l+1 − F̃jk,l

τl+1 − τl

And finally, one gets estimates of the transition rates by

rjk,l =
f̃jk,l

(Gjk,l + Gjk,l+1)/2

All destination-specific concepts add up to accordingly defined overall
concepts which are the result of an ordinary life table estimation where
all different destination states are collapsed into a single state.

Fj,l =
∑

k∈Dj

F̃jk,l

fj,l =
∑

k∈Dj

f̃jk,l

rj,l =
∑

k∈Dj

rjk,l

TDA commands to request a multiple-decrement life table are identical
to the single transition case. The output file containing the life table(s)
is defined with the ltb command, time periods are defined with the tp
command. In fact, whenever there are two or more different transitions
in the input data, TDA automatically calculates multiple-decrement life
tables.

Example 3 To illustrate the calculation of a multiple-decrement life
table we use our main example data with three alternative destination
states as defined in 3.3.3.5 Our example command file, ltb3.cf (not
shown), is almost identical to the command file ed2.cf that was used
in 3.3.3 to create episode data with three alternative destination states.
We simply add a ltb command to request life table estimation. TDA au-
tomatically recognizes that the input data consist of single episodes with
three alternative destination states and calculates a multiple-decrement
life table as described above.

5Many more examples of multiple-decrement life tables can be found in Namboodiri
and Suchindran [1987].
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6.5.2 Kaplan-Meier Procedure

Another method for nonparametric estimation of survivor functions and
its derivatives is the Kaplan-Meier [1958], also called product-limit method.
One of the advantages of this method, compared with the life table
method, is that it is not necessary to group the episode durations ac-
cording to arbitrarily defined time intervals. Instead, the product-limit
method is based on the calculation of a risk set at every point in time
where at least one event occurred. In this way the information contained
in a set of episodes is optimally used. The only drawback of this method
results from the fact that all episodes must be sorted according to their
ending (and starting) times, but with efficient sorting algorithms the
method can be employed with fairly large sets of episodes.

This section describes the product-limit estimation method and its
implementation in TDA. The options, depending on the type of input
data, are essentially the same as with the life table method.

1. If there are sample weights defined with the cwt command, these
weights are used in all calculations.

2. If the input data are split into groups, separate product-limit estimates
are calculated for each of the groups.

3. If there is more than a single origin state, one or more product-limit
estimates are calculated for each subset of episodes having the same
origin state.

4. If there is more than a single destination state, separate product-limit
estimates are calculated for each transition found in the input data.

The basic command to request product-limit estimation is ple. The syn-
tax is shown in Box 1. All parameters, except the name of an output file
on the right-hand side, are optional and will be explained below.

Single Transitions. We assume a sample of N episodes, all having the
same origin state and are censored or have the same destination state.
If groups are defined, it is assumed that all episodes belong to the same
group. For the moment we also assume that all episodes have starting
time zero. (This assumption is actually not necessary for product-limit
calculations with TDA. For instance, it is possible to perform product-
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Box 1 Syntax for ple command

ple (

grp=, group indicator variables, def. without groups
csf, compare survivor functions.
qo=, request table with quantiles, no default
qt=, request table with quantiles, no default
fmt=, print format for output file, def. fmt=7.5
ap=1, append data to end of output file.
prot=, protocol for test statistic, no default
pfmt=, print format for protocol file, def. pfmt=-19.11

) = name of output file;

limit estimations with a set of episode that are split into parts. Results
should be exactly the same before and after splitting a set of episodes.)

The first step is to consider the points in time where at least one of the
episodes ends with an event. There are, say, q such points in time.

τ1 < τ2 < τ3 < . . . < τq (1)

The second step is to define three basic quantities, all defined for l =
1, . . . , q, with the convention that τ0 = 0.

El = the number of episodes with events at τl

Zl = the number of censored episodes ending in [τl−1, τl)

Rl = the number of episodes in the risk set at τl, denoted Rl,
i.e. the number of episodes with starting time
less than τl and ending time ≥ τl

Note that the implied definition of the risk set allows the handling of
episodes with starting times greater than zero. Also note that the risk
set at τl includes episodes which are censored at this point in time. It
is assumed that a censored episode contains the information that there
was no event up to and including the ending time of the episode. As
is sometimes said, censoring takes place an infinitesimal amount to the
right of the observed ending time.

Given these quantities, the product-limit estimator of the survivor func-
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tion is defined as

Ĝ(t) =
∏

l:τl<t

(
1− El

Rl

)
(2)

This is a step function with steps at the points in time, τl. The commonly
used formula to calculate estimates of standard errors for the survivor
function is

SE(Ĝ(t)) = Ĝ(t)

[ ∑
l:τl<t

El

Rl (Rl − El)

]1/2

(3)

In addition to survivor function estimates, the product-limit method
gives a simple estimate of the cumulated transition rate.

Ĥ(t) = − log
(
Ĝ(t)

)
(4)

This is, again, a step function. It is especially useful for simple graphi-
cal checks of distributional assumptions about the underlying durations.
Some examples are given below.

Unfortunately, unlike life table estimation, the product-limit method
does not provide direct estimates of transition rates. Of course, it is
possible to get estimates by numerical differentiation of Ĥ(t), but this is
currently not supported by TDA.

Example 1 To illustrate product-limit estimation we replicate an ex-
ample given by Lawless [1982, p. 73].1 The data are remission times for
two groups of leukemia patients, one group treated with Drug 6-MP, the
other was given a placebo. The data file, rrdat.1, is shown in Box 2.
The first column gives the remission time in weeks. The second column is
the censoring status (0 if censored). The third column gives the number
of episodes (case weights). The fourth column is a group indicator (0 =
placebo, 1 = Drug 6-MP).

For product-limit estimation of a survivor function we use command
file ple1.cf shown in Box 3. The ple command specifies two groups.
The output file, ple.1 is shown in Box 4. It contains two tables, one
for each of the two groups. The first two columns are to simplify access
to the tables if they are used as data files. The first column assigns a
unique identification number to each table, the second column simply
counts the lines.

1The same data have been used by many other authors, for instance Lee [1980, p. 128].
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Box 2 Example data rrdat.2

C1 C2 C3 C4 C1 C2 C3 C4

6 1 3 0 1 1 2 1

6 0 1 0 2 1 2 1

7 1 1 0 3 1 1 1

9 0 1 0 4 1 2 1

10 1 1 0 5 1 2 1

10 0 1 0 8 1 4 1

11 0 1 0 11 1 2 1

13 1 1 0 12 1 2 1

16 1 1 0 15 1 1 1

17 0 1 0 17 1 1 1

19 0 1 0 22 1 1 1

20 0 1 0 23 1 1 1

22 1 1 0

23 1 1 0

25 0 1 0

32 0 2 0

34 0 1 0

35 0 1 0

Box 3 Command file ple1.cf for product-limit estimation

nvar(

dfile = rrdat.2, # data file

DUR [2.0] = c1, # duration;

CEN [1.0] = c2, # censoring status (1 = not censored)

WT [1.0] = c3, # case weight (number of individuals)

GRP [1.0] = c4, # group (0 = placebo, 1 = Drug 6-MP)

GRP1 [1.0] = GRP[0], # group 0

GRP2 [1.0] = GRP[1], # group 1

);

cwt = WT; # define case weights

edef(

org = 0, # origin state

des = CEN, # destination state

ts = 0, # starting time

tf = DUR, # ending time

);

ple ( # request product-limit estimation

grp = GRP1,GRP2, # define two groups

) = ple.1; # output file
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Box 4 Output file ple.1 created by command file ple1.cf

# SN 1. Transition: 0,1 - Product-Limit Estimation

# Group: GRP1

# Number Number Exposed Survivor Std. Cum.

# ID Index Time Events Censored to Risk Function Error Rate

0 0 0.00 0 0 21 1.00000 0.00000 0.00000

0 1 6.00 3 0 21 0.85714 0.07636 0.15415

0 2 7.00 1 1 17 0.80672 0.08694 0.21478

0 3 10.00 1 1 15 0.75294 0.09635 0.28377

0 4 13.00 1 2 12 0.69020 0.10681 0.37078

0 5 16.00 1 0 11 0.62745 0.11405 0.46609

0 6 22.00 1 3 7 0.53782 0.12823 0.62024

0 7 23.00 1 0 6 0.44818 0.13459 0.80256

# 0 8 35.00 0 5

# Median Duration: 22.42

# Duration times limited to: 23

# Cases: 18 weighted: 21

# SN 1. Transition: 0,1 - Product-Limit Estimation

# Group: GRP2

# Number Number Exposed Survivor Std. Cum.

# ID Index Time Events Censored to Risk Function Error Rate

1 0 0.00 0 0 21 1.00000 0.00000 0.00000

1 1 1.00 2 0 21 0.90476 0.06406 0.10008

1 2 2.00 2 0 19 0.80952 0.08569 0.21131

1 3 3.00 1 0 17 0.76190 0.09294 0.27193

1 4 4.00 2 0 16 0.66667 0.10287 0.40547

1 5 5.00 2 0 14 0.57143 0.10799 0.55962

1 6 8.00 4 0 12 0.38095 0.10597 0.96508

1 7 11.00 2 0 8 0.28571 0.09858 1.25276

1 8 12.00 2 0 6 0.19048 0.08569 1.65823

1 9 15.00 1 0 4 0.14286 0.07636 1.94591

1 10 17.00 1 0 3 0.09524 0.06406 2.35138

1 11 22.00 1 0 2 0.04762 0.04647 3.04452

1 12 23.00 1 0 1 0.00000 ** **

# Median Duration: 6.12

# Cases: 12 weighted: 21

The column labelled Time shows the points in time where at least
one event takes place. The number of events (episodes) is given in the
next column. Then follows the number of censored episodes with ending
times less than the actual value of the Time column and greater or equal
to the preceding value in the Time column. Given this information the
risk set, printed in the fifth column, is easily calculated. The last three
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Box 5 Part of output file ple.2

SN 1. Transition: 0,1 - Product-Limit Estimation

Number Number Exposed Survivor Std. Cum.

ID Index Time Events Censored to Risk Function Error Rate

0 0 0.00 0 0 600 1.00000 0.00000 0.00000

0 1 2.00 2 0 600 0.99667 0.00235 0.00334

0 2 3.00 5 1 597 0.98832 0.00439 0.01175

0 3 4.00 9 2 590 0.97324 0.00660 0.02712

0 4 5.00 3 0 581 0.96822 0.00717 0.03230

0 5 6.00 10 1 577 0.95144 0.00880 0.04978

0 6 7.00 9 0 567 0.93634 0.00999 0.06578

...................................................................

0 40 41.00 3 1 277 0.50585 0.02092 0.68152

0 41 42.00 1 1 273 0.50399 0.02093 0.68519

0 42 43.00 2 0 272 0.50029 0.02094 0.69257

0 43 44.00 5 1 269 0.49099 0.02096 0.71133

0 44 45.00 1 1 263 0.48912 0.02096 0.71514

0 45 46.00 2 0 262 0.48539 0.02097 0.72281

...................................................................

0 127 312.00 1 3 16 0.11980 0.01846 2.12190

0 128 326.00 1 1 14 0.11125 0.01902 2.19601

0 129 332.00 1 2 11 0.10113 0.01980 2.29132

0 130 350.00 1 1 9 0.08990 0.02054 2.40910

0 131 428.00 0 8

Median Duration: 43.03

Duration times limited to: 428

Cases: 600 weighted: 600

columns show estimates of the survivor function, its standard errors, and
the cumulated transition rate as defined above. If possible, an estimate of
the median is calculated by linear interpolation of the survivor function.
If the last episode is censored the survivor function does not go to zero;
in this case the last observed time is printed at the end of the table.

Example 2 Command file ple2.cf (not shown) performs product-
limit estimation with our main example data (rrdat.1). The command
file is basically identical to ltb1.cf (see 6.5.1), we simply substitute the
ltb command by

ple = ple.2;

Part of the output file, ple.2, is shown in Box 5.

Alternative Destination States. Product-limit estimation can easily
be generalized for the case of single episodes with two or more different
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Figure 1 Plot of pseudo-survivor functions for three destination
states, estimated with command file ple3.cf, based on our main
example data. Plot created with command file ple3p.cf.

destination states. Again, one beings with Nj episodes having the same
origin state j. Then, for each possible destination state k ∈ Dj , one looks
at the points in time, τjk,l, where at least one transition to destination
state k takes place. There are, say, l = 1, . . . , qjk such points in time.

Let Ejk,l denote the number of events at τjk,l, and let Rj,l denote the
risk set at the same point in time. Note that the risk set depends not on
the destination state, it is defined as in the single transition case as the
set of all episodes with origin state j, with a starting time less than τjk,l,
and with ending time equal to or greater than τjk,l. The product-limit
estimate of the pseudosurvivor functions may then be formally defined
by

G̃jk(t) =
∏

l:τjk,l<t

(
1− Ejk,l

Rj,l

)
(5)

Obviously, a calculation of this estimate can use the same algorithm as
in the single transition case. In the calculation for a specific destination
state one only has to treat all episodes that do not end in this destination
as if they are censored.

Example 3 Command file ple3.cf (also not shown) illustrates product-
limit estimation with multiple destination states. This command file uses
our main example data rrdat.1 and specifies single episodes with three
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alternative destination states. The command

ple = ple.3;

creates the output file ple.3 containing three separate tables, one for
each destination state. The resulting survivor functions are illustrated
in Figure 1. (The command file for the plot is ple3p.cf, contained in
the TDA example archive). When interpreting these curves, one should
remember that they represent pseudo-survivor functions; the overall sur-
vivor function results from multiplication (not addition).
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6.5.3 Survivor Function Quantiles

Output tables from the Kaplan-Meier procedure (see 6.5.2) are often
very long. A shorter way to present most of the information is by ta-
bles that only show the estimated survivor function for some predefined
quantiles. This is easily done with the qo option in the ple command.
The syntax is

qo = o1, o2, . . . , om,

where o1, o2, . . . , om are the orders of the quantiles. It is required that
1 > o1 > o2 > . . . > om > 0. Alternatively, one can use the syntax

qo = o1(d)o2,

to specify a sequence of orders with an increment d. Given this option
in the ple command, for each transition found in the input data a ta-
ble is printed summarizing the estimated survivor functions, or pseudo-
survivor functions, by the requested quantiles. The quantiles are esti-
mated by linear interpolation of the survivor function as given by the
product-limit method.

Instead of qo, one can use the qt option with syntax

qt = t1, t2, . . . , tm,

The values ti are then interpreted as time points and one gets tables
with the corresponding orders. In this case, it is required that 0 ≤ t1 ≤
t2 ≤ . . . ≤ tm.

When using the qo or qt option, the name of an output file in the ple
command is optional. The tables containing the quantiles are always
written into TDA’s standard output.
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Box 1 Table of quantiles, estimated with ple3.cf

Survivor Time

SN Org Des Function Quantile

------------------------------------

1 0 1 0.9000 30.0352

0.8000 85.0602

0.7000 233.8785

------------------------------------

1 0 2 0.9000 16.8749

0.8000 27.3090

0.7000 41.6187

0.6000 73.1997

0.5000 122.2409

0.4000 208.5655

------------------------------------

1 0 3 0.9000 22.6799

0.8000 47.1263

0.7000 75.7539

0.6000 131.5378

0.5000 215.9553

0.4000 321.9881

Example 1 To illustrate the qo option we use command file ple3.cf
(see 6.5.2) and add the command

ple (qo = 0.9 (0.1) 0.1) ;

The resulting table is shown in Box 1.
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6.5.4 Comparing Survivor Functions

Basically two different methods are available to compare survivor func-
tions. The first relies on the calculation of confidence intervals for each of
the survivor functions and then to check if they are overlapping or not.
This is possible both with the life table and the product-limit method.
Both methods provide estimates of standard errors for the survivor func-
tion. Another possibility is to calculate specific test statistics to compare
two or more survivor functions.

Defining Groups of Episodes. To make any comparisons there must
be two or more groups of episodes. This can be done with the grp option
in the ple command. The syntax is

grp = G1,G2,...,

with G1,G2,... names of variables contained in the data matrix. The
current set of episodes is then split into m groups with m the number
of indicator variables defined with the grp parameter. The first group,
defined by G1, contains all episodes where the value of this variable is
not zero, the second group is defined by G2 in the same way, and so on.

Confidence Intervals. Using the grp option in the ple command, one
gets a separate survivor function for each group. For each group the
output table also contains the estimated standard errors, SE(Ĝ(t)), of
the survivor function Ĝ(t). This allows the calculation of confidence in-
tervals, based on the assumption that (G(t) − Ĝ(t))/SE(Ĝ(t)) follows
asymptotically a standard normal distribution. For standard 95 % con-
fidence one would use

Ĝ(t)± 1.96 SE
(
Ĝ(t)

)
Example 1 To illustrate the comparison of survivor functions by using
confidence intervals, we continue with our main example data. Command
file ple5.cf (contained in the TDA example archive) estimates survivor
function separately for men and women. The resulting tables are writ-
ten into an output file ple.5. Another command file, ple5p.cf, is then
used to plot the two survivor functions and their confidence intervals.
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Figure 1 Survivor functions with confidence intervals for job
durations of men and women, based on main example data rrdat.1.
Plot created with command file ple5p.cf.

The resulting plot is shown in Figure 1. The survivor functions are very
similar in the first two years (the time axis is given in months), but there-
after the job durations of women are significantly shorter. The median
duration for men is 54.43 months, for women it is 35.61 months.

Construction of Test Statistics. Many different test statistics have
been proposed to compare two or more survivor functions. We describes
four which can be calculated with TDA; all are based on product-limit
estimates of survivor functions.

It is assumed that m groups have been defined which are not inter-
secting. The whole sample is implicitly defined as the set of all episodes
which are contained in one of these groups. Then, in exactly the same
way as explained in connection with the product-limit method, all cal-
culations are done for each transition in the whole sample separately.
Therefore we only consider a sample of episodes which have the same
origin state and are censored or have the same destination state. A sam-
ple, defined this way, consists of m groups and the following table can
be calculated.

τ1 R11 E11 R12 E12 . . . R1m E1m

τ2 R21 E21 R22 E22 . . . R2m E2m

...
τq Rn1 Eq1 Rq2 Eq2 . . . Rqm Eqm

(1)
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These are the basic quantities for product-limit estimation, for the whole
sample, and for each group separately. τ1 < τ2 < . . . < τq are the points
in time where at least one episode contained in the sample has an event.
Elg is the number of episodes contained in group g and having an event
at τl; Rlg is accordingly defined as the number of elements in the risk set
at τl for the episodes contained in group g, i.e., all episodes belonging
to group g which have starting time less than τl and ending times equal
to, or greater than, τl. Altogether, these quantities are sufficient for a
product-limit estimation in each of the m groups.

Given this, the four test statistics can be defined, they are called Sν

(ν = 1, . . . , 4). Because the calculations only differ in different weights,
we give their definition first. The weights are called W

(ν)
l , and they are

defined, for l = 1, . . . , q, by

W
(1)
l = 1

W
(2)
l = Rl (2)

W
(3)
l =

√
Rl

W
(4)
l =

l∏
i=1

Ri − Ei + 1
Ri + 1

The next step is to construct, for each of the four test statistics, one
(m)-vector U (ν) and one (m,m)-matrix V (ν). The definitions are1

U (ν)
g =

q∑
l=1

W
(ν)
l (Elg −Rlg

El0

Rl0
) (3)

V (ν)
g1g2

=
n∑

i=1

W
(ν)
l

2 El0 (Rl0 − El0)
Rl0 − 1

Rlg1

Rl0

(
δg1g2 −

Rlg2

Rl0

)
(4)

Finally, the test statistics are defined by

Sν = U (ν)′ V (ν)−1
U (ν) (5)

All of them follow, under the null hypothesis of no significant differences
between the group-specific survivor functions, a χ2-distribution with m−
1 degrees of freedom. Note that, accordingly, the rank of V (ν) is only

1δij is the Kronecker symbol which is one, if i = j, and otherwise is zero.
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Box 1 Comparing survivor functions with test statistics

Comparing survivor functions.

SN Org Des Test Statistic T-Stat DF Signif

--------------------------------------------------------------

1 0 1 Log-Rank (Savage) 3.1227 1 0.9228

1 0 1 Wilcoxon (Breslow) 2.6510 1 0.8965

1 0 1 Wilcoxon (Tarone-Ware) 2.9767 1 0.9155

1 0 1 Wilcoxon (Prentice) 3.0014 1 0.9168

m − 1. Therefore, one can use in the calculation of (5) a generalized
inverse or, without loss of generality, one can omit the last dimension.
TDA follows the latter of these two possibilities.2

Unfortunately, there is no uniform convention to name the different
test statistics.3 So we give the names used by TDA with some remarks
about other naming conventions. In the order given by (2) we have:

1. Log-Rank (Savage). Other names are Generalized Savage Test (An-
dreß 1985, p. 158). The same name is used by BMDP, with Mantel-Cox
added. SAS calculates this test statistics under the name Logrank .

2. Wilcoxon (Breslow). BMDP gives the name Generalized Wilcoxon
(Breslow), SAS uses only the label Wilcoxon.

3. Wilcoxon (Tarone-Ware). This test statistic was proposed by Tarone
and Ware [1977] and is named accordingly. It is also calculated by BMDP,
using the label Tarone-Ware.

4. Wilcoxon (Prentice). Finally, we have a test statistic explained by
Lawless [1982, p. 423] with reference to Prentice [1978]. Since it is some
type of a Wilcoxon test we use this name.

The csf option in the ple command (see 6.5.2) can be used to request
these test statistics. At least two groups must be specified with the grp
parameter. An output file is optional.

Example 2 For an illustration of the csf option we use some biomet-

2If there are any more rank deficiencies in the V -matrices, TDA will report this in
the standard output. If the prot option in the ple command is used to request a
protocol file, the U -vectors and V -matrices are written into this protocol file.
3See Budde and Wargenau [1984] who give an overview with references to some
software packages.



6.5.4 comparing survivor functions 5

rical data published in Kalbfleisch and Prentice [1980, p. 2].4 The data
file is rrdat.3, the command file is ple6.cf (not shown). It uses the
command

ple (csf,grp=Group1,Group2) ;

to request test statistics for a comparison of the survivor functions of
the two groups. Part of the resulting output is shown in Box 1.

4These data are also used in some examples in the SAS User’s Guide (Version 5,
1985, lifetest procedure).
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6.5.5 State Distributions

A simple way of describing a set of multi-episode data is to calculate
cross-sectional state distributions for a sequence of time points. This
can be done with the epsdat command.

epsdat (

t=..., sequence of time points.
ap=1, append new data to end of output file.

) = fname;

The command requires a valid episode data structure and depends on
whether single or multi-episode data are defined. The t parameter must
be used to provide a sequence of nonnegative time points (for an expla-
nation of the syntax see the tp parameter in 6.5.1.)

1. In the single episode case, the command calculates separately for each
time point a frequency distribution of the origin states of those episodes
which include the time point. (An episode includes a time point t if t
is greater than, or equal to the starting time and less than the ending
time.)

2. In the multi-episode case the command tries to find for each indi-
vidual (defined by the ID parameter) and each time point an episode
which includes the time point. Using then these episodes, the command
calculates a frequency distribution of its origin states.

The resulting frequency distributions are written into the output file
specified on the right-hand side of the command. If the ap=1 parameter
is used, the data are appended to the end of an existing file.

d060505.tex April 21, 1998
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Box 1 Command file ed5.cf

nvar(

dfile = ed1.dat, # data file

ID [1.0] = c1, # identification number

SN [1.0] = c2, # spell number

ORG [1.0] = c3, # origin state

DES [1.0] = c4, # destination state

TS [2.0] = c5, # starting time

TF [2.0] = c6, # ending time

);

edef(

ts = TS, # starting time

tf = TF, # ending time

org = ORG, # origin state

des = DES, # destination state

# id = ID,

# sn = SN,

);

epsdat( # write state distributions to d

t = 0(5)30, # time points

) = d;

Example 1 To illustrate the epsdat command we use the data file
ed1.dat (see 3.3.4). The command file ed5.cf (Box 1) is set up for
single episode data. By removing the comment characters in front of
the id and sn parameter, it specifies multi-episode data. The epsdat
command uses an abbreviation to define the sequence of time points

t = 0, 5, 10, 15, 20, 25, 30

The resulting output files, both for single and multi-episode data, are
shown in Box 2. The first column shows the sequence of time points.
Then follows, separately for each origin state in the input data, a column
showing the number of episodes, or number of individuals, being in the
corresponding state. The final column shows the number of episodes, or
number of individual, without a valid state at the corresponding time
point.
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Box 2 Output from epsdat command

Singe episode data:

# State distributions.

# Time 1 2 3 Total Missing

0.0000 1 1 0 2 3

5.0000 1 1 0 2 3

10.0000 0 2 0 2 3

15.0000 0 1 1 2 3

20.0000 1 0 1 2 3

25.0000 1 0 1 2 3

30.0000 1 0 0 1 4

Multi-episode data:

# State distributions.

# Time 1 2 3 Total Missing

0.0000 1 1 0 2 0

5.0000 1 1 0 2 0

10.0000 0 2 0 2 0

15.0000 0 1 1 2 0

20.0000 1 0 1 2 0

25.0000 1 0 1 2 0

30.0000 1 0 0 1 1



6.6 describing sequence data 1

6.6 Describing Sequence Data

This chapter describes some elementary commands that can be used to
get information about a set of sequences. They require the specification
of a sequence data structure as explained in 3.4.2.

6.6.1 Sequence Length and Gaps

6.6.2 General Characteristics

6.6.3 State Distributions

6.6.4 Pattern Matching
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6.6.1 Sequence Length and Gaps

Given a sequence, let si denote the time point of the first valid state
and ti the time point of the last valid state. si will be called the (valid)
starting time of the sequence, ti its (valid) ending time, and ti − si + 1
will be called the (valid) sequence length. Sequences may contain missing
(negative) values. If they occur before the valid starting time, or after
the valid ending time, they can normally be ignored. More problematic
are missing values between the starting and ending time. They will be
called internal gaps.

To provide basic information about starting and ending times, sequence
length, and internal gaps, TDA provides the command seqlg with syntax
shown in the following box.

seqlg (

sn=..., number of sequence data structure, def. 1
sel=..., expression for sequence selection
v=..., add variables ... to output file
dtda=..., request TDA description file

) = fname;

The right-hand side must provide the name of an output file, all other
parameters are optional.

1. The sn parameter can be used to select a sequence data structure.
As default, TDA uses the first of the currently defined sequence data
structures.

2. The sel parameter can be used to select sequences. The syntax is

sel = expression,

TDA then only uses sequences (cases) where expression evaluates to a
nonzero value.

3. The v = varlist parameter can be used to add the variables speci-
fied in varlist to the output file.
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Box 1 Illustration of seqlg command with data file seq.d1

starting ending sequence gap min gap max gap number

Case time time length length length length of gaps

1 0 7 8 0 0 0 0

2 0 7 8 2 2 2 1

3 1 7 7 1 1 1 1

4 0 5 6 0 0 0 0

5 0 7 8 0 0 0 0

4. The dtda parameter can be used to request an additional output
file containing an nvar command to read the data file created with the
seqlg command.

Example 1 To illustrate the information written into the output file,
we use the data file seq.d1 (see 3.4.2). Given that this data file has been
used to define sequence data, the command seqlg=d creates the output
file d shown in Box 1. The column “gap length” shows the total number
of internal time points with a missing state. The command file in the
example archive is seq9.cf.
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6.6.2 General Characteristics

To get some general information about a sample of sequences one can
use the seqgc command with syntax shown in the following box.

seqgc (

sn=..., number of sequence data structure, def. 1
sel=..., expression for sequence selection
v=..., add variables ... to output file
dtda=..., request TDA description file

) = fname;

The right-hand side must provide the name of an output file. All other
parameters are optional and have the same meaning as explained in 6.6.1

for the seqgl command.

To illustrate the information written into the output file, we use the data
file seq.d1 (see 3.4.2). Given that this data file has been used to define
sequence data, the command

seqgc (dtda = t) = d;

creates an output file, d, and an additional description file, t, both shown
in Box 1. (The command file in the example archive is seq9.cf.)
1. The first column contains the case number, written with a 6.0 print

format. (All other entries use a 4.0 print format.)

2. The second column records the individual sequence length, defined
as the number of time points from the first valid state until the last
valid state, that is, the valid sequence length. Of course, there might
be missing states in between.

3. It follows an information about the number of different states in the
individual sequences, not counting missing states.

4. Then comes the number of state changes (events), calculated for the
valid sequence length and including changes from and into a missing
state.
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Box 1 Illustration of seqgc command with data file seq.d1

1 8 3 4 1 4 3 0 1 2 2 0

2 8 3 4 2 3 1 2 1 2 1 1

3 7 2 2 4 2 0 1 1 1 0 1

4 6 2 1 2 4 0 0 1 1 0 0

5 8 3 4 1 4 3 0 1 2 2 0

nvar(

dfile = d,

noc = 5,

CASE <5>[8.0] = c1 , # case number

SLEN <2>[4.0] = c2 , # sequence length

NDS <2>[4.0] = c3 , # number of different states

NEV <2>[4.0] = c4 , # number state changes

DUR1 <2>[4.0] = c5 , # duration in state 1

DUR3 <2>[4.0] = c6 , # duration in state 3

DUR7 <2>[4.0] = c7 , # duration in state 7

DURM <2>[4.0] = c8 , # duration in missing state

NEP1 <2>[4.0] = c9 , # number of episodes in state 1

NEP3 <2>[4.0] = c10, # number of episodes in state 3

NEP7 <2>[4.0] = c11, # number of episodes in state 7

NEPM <2>[4.0] = c12, # number of episodes in missing state

);

5. The next entries show the number of time points, calculated for the
valid sequence length, that the individual sequence stays in the dif-
ferent states.

6. Then follows the total duration of internal gaps.

7. The next entries show the number of episodes, differentiated accord-
ing to their origin state.

8. Then follows the number of internal gaps.

9. And finally, any variables specified with the v parameter are added
to the individual records.
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6.6.3 State Distributions

To get information about the cross-sectional state distributions in a sam-
ple of sequences, one can use the seqsd command with syntax shown in
the following box.

seqsd (

sn=..., number of sequence data structure, def. 1
sel=..., expression for sequence selection
dtda=..., request TDA description file

) = fname;

The right-hand side must provide the name of an output file. All other
parameters are optional and have the same meaning as explained in 6.6.1

for the seqgl command.

Example 1 To illustrate the information written into the output file,
we use the data file seq.d1 (see 3.4.2). Given that this data file has been
used to define sequence data, the command

seqsd (dtda = t) = d;

creates an output file, d, and an additional description file, t, both shown
in Box 1. The command file in the example archive is seq9.cf.

Homogeneity of State Distributions. The homogeneity of state dis-
tributions can be assessed by a simple entropy measure (see, e.g., Theil
[1972]). Let Nt denote the number of individuals with a valid state at
time t, and ptj the proportion of Nt being in state j. Then, assuming
states j = 1, . . . , q, the entropy is defined by

Et = −
q∑

j=1

ptj log(ptj)

with the convention that 0 log(0) = 0. It follows that 0 ≤ Et ≤ log(q).
The entropy becomes zero if all individuals are in the same state, it takes
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Box 1 Illustration of seqsd command with data file seq.d1

0 1 1 2 4 1 5

1 1 4 0 5 0 5

2 0 4 1 5 0 5

3 3 1 0 4 1 5

4 2 3 0 5 0 5

5 1 3 0 4 1 5

6 1 0 2 3 2 5

7 1 1 2 4 1 5

nvar(

dfile = d,

noc = 8,

TIME <2>[6.0] = c1, # time

NST1 <2>[6.0] = c2, # cases in state 1

NST3 <2>[6.0] = c3, # cases in state 3

NST7 <2>[6.0] = c4, # cases in state 7

VALID <2>[6.0] = c5, # cases in valid states

NMISS <2>[6.0] = c6, # cases in missing state

TOTAL <2>[6.0] = c7, # total number of cases

);

Box 2 Syntax for seqen command

seqen (

sn=..., number of sequence data structure, def. 1
sel=..., expression for sequence selection
fmt=..., print format, def. 10.4
dtda=..., request TDA description file

) = fname;

its maximum value if the individuals are equally spread over the different
states.

To calculate these entropy measures, TDA provides the command
seqen with syntax shown in Box 2. The right-hand side must provide
the name of an output file. All other parameters are optional and have
the same meaning as explained in 6.6.1 for the seqgl command.
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Box 3 Illustration of seqen command, based on seq.d1

# Time N Entropy

0 4 1.0397

1 5 0.5004

2 5 0.5004

3 4 0.5623

4 5 0.6730

5 4 0.5623

6 3 0.6365

7 4 1.0397

Example 2 To illustrate the seqen command, we use again the data
file seq.d1 (see 3.4.2). Given that this data file has been used to define
sequence data, output of the seqen command is shown in Box 3. The
command file in the example archive is seq9.cf.
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6.6.4 Pattern Matching

Given a definition of sequence data, the seqpm command can be used to
find patterns in the sequences. The syntax is shown in the following box.

seqpm (

sn=..., number of sequence data structure, def. 1
ps=..., definition of patterns
df=..., test output file
nfmt=..., integer print format, def. 4
v=..., additional variables for output file
dtda=..., TDA description for output file

) = output file name;

The right-hand side must provide the name of an output file and the ps
parameter must be used for a definition of patterns. All other parameters
are optional. Patterns must be defined in the following way:

ps = [a1,a2,...],[b1,b2,...],...,

where each pair of square brackets specifies one pattern. The entries,
a1,a2,... and so on, can be one of the following:

1. Non-negative integers for valid states.

2. The character ‘?’ matches any single state.

3. The character ‘*’ matches any sequence of states.

4. The character ‘+’ matches any repeat of the previous state.

5. The character ‘-’ matches any sequence of identical states.

Note that the command only recognizes sequences that do not contain
missing values (negative state numbers).

The seqpm command creates an output file that will contain one record
for each sequence containing the following information:
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Box 1 Command file seqpm1.cf

nvar(

dfile = seq.d1,

ID = c1,

Y0 = c2,

Y1 = c3,

Y2 = c4,

Y3 = c5,

Y4 = c6,

Y5 = c7,

Y6 = c8,

Y7 = c9,

);

seqdef = Y0,,Y7;

seqpm(

ps = [-],[3,3],[3,*,3],

df = df,

dtda = t,

) = d;

Box 2 Output file from command file seqpm1.cf

ID LEN P1 P2 P3

----------------------

1 8 5 2 1

4 6 2 2 1

5 8 5 2 1

1. The sequence case id number.

2. The length of the sequence.

3. Finally, for each pattern, the number of matches.

In addition, one can add any variables to the output file with the

v = varlist,

parameter. Also, one can request a TDA description of the output file
with the dtda parameter.

Example 1 To illustrate the seqpm command we use data file seq.d1
as described in 3.4.2. The command file is shown in Box 1. The resulting
output file is shown in in Box 2.
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6.7 Investigating Proximities

This chapter is intended to deal with proximity data. There is currently
only a single section discussing the calculation of proximity measures for
sequence data.

6.7.2 Sequence Proximity Measures
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6.7.2 Sequence Proximity Measures

Regression models for events aim to describe the evolution of sequences
by focusing on transitions. As a complementary strategy, one can try to
describe whole sequences. This can be done in two different ways. One
can search for some interesting patterns in each sequence separately; or
one can compare all sequences in a given sample. In any case, one needs
a proximity measure to assess the similarity of sequences, or of sequences
with some pattern.

This chapter discusses a family of proximity measures for sequences
based on “optimal matching”. Basic information about this approach
can be found in Sankoff and Kruskal [1983]. Bock [1984] provides a short
introduction. A very useful source of mathematical insights and algo-
rithms is Waterman [1995]. For a discussion of sociological applications,
see Abbott [1983], [1995], Abbott and Hrycak [1990].

6.7.2.1 Optimal Matching

6.7.2.2 The seqm Command

6.7.2.3 Examples

6.7.2.4 Consecutive Indel Operations

6.7.2.5 Data-based Substitution Costs

6.7.2.6 Working with Large Samples

6.7.2.7 Comparing Parallel Sequences

d060702.tex April 21, 1998



6.7.2.1 optimal matching 1

6.7.2.1 Optimal Matching

We consider sequences of states which are elements of a finite state space,
say Y. S denotes the set of all finite sequences over Y, meaning that

if a ∈ S then a = (a1, . . . , an) with a1, . . . , an ∈ Y

n = |a| is the length of the sequence. We want to compare two sequences
a, b ∈ S, possibly with different lengths. The basic idea is to define some
elementary operations which can be used to sequentially transform one
sequence until it becomes equal to the other sequence. Let Ω denote the
set of basic operations and a[ω] the sequence resulting from a by applying
the operation ω ∈ Ω. Most applications consider just three elementary
operations:

• Insertion: a[ι] denotes the sequence resulting from a ∈ S by inserting
one new element (a state from Y) into the sequence a.

• Deletion: a[δ] denotes the sequence resulting from a by deleting one
element from this sequence.

• Substitution: a[σ] denotes the sequence resulting from a by changing
one of its elements into another state.

Of course, we can think of sequentially applying elementary operations to
a given sequence. Let a[ω1, ω2, . . . , ωk] denote the new sequence resulting
from a by applying first the elementary operation ω1, then ω2, and so
on until finally ωk. Then, given two sequences a, b ∈ S, we can ask for a
sequence of elementary operations which transforms a into b.

In general, there will be many such sequences of elementary opera-
tions which transform a into b. Now, the intuitive idea for developing
a distance measure for sequences is to look for the shortest sequence of
elementary operations which transform a into b. A slightly more general
approach is to evaluate the elementary operations by introducing c(ω)
= cost of applying the elementary operation ω ∈ Ω. We will assume that
0 < c(ω) <∞. The cost of applying a sequence of elementary operations
will be denoted by

c[ω1, ω2, . . . , ωk] =
k∑

i=1

c[ωi]

d06070201.tex April 21, 1998



6.7.2.1 optimal matching 2

Setting c[ ] = 0 for no operation, we can formally define

dΩ(a, b) = min
{

c[ω1, . . . , ωk] | b = a[ω1, . . . , ωk], ωi ∈ Ω, k ≥ 0
}

to measure the distance between the sequences a and b. This measure
is by definition nonnegative, and dΩ(a, b) = 0 only if a = b. Symmetry
does not automatically hold, but can be forced by equating insertion
and deletion costs, or by a slightly different definition: minimum cost
of transforming a into b or b into a. Whether the distance measure
will also be transitive, and thus constitutes a metric distance, depends
on the definition of the set of elementary operations, Ω. Transitivity
is automatically guaranteed for the simple case when there are only
insertions, deletions, and substitutions.

“Optimal matching” without further qualification normally means
referring to this simple distance measure based on Ω = {ι, δ, σ} resulting
in a metric distance. Of course, the distance measure also depends on
the definition of the cost functions c[ω]. These cost functions can be
arbitrarily defined with respect to the intended application. As a special
case, one can set

c[ι] = c[δ] = 1 and c[σ] = 2

The distance between two sequences a and b is then simply the num-
ber of indel operations (insertions and deletions) which are necessary to
transform one sequence into the other. For the procedure described in
6.7.2.2, this will be the default cost functions if not otherwise specified
by the user.

The set of elementary operations, Ω, can be extended in many differ-
ent ways. However, the current implementation in TDA offers only one,
but possibly important, extension: so-called indel functions that allow
deleting or inserting a series of consecutive states, see 6.7.2.4.

Basic Algorithm. If the elementary operations consist only of inser-
tions, deletions and substitutions, the distance measure can be calculated
with a simple dynamic programming method. To explain this method,
we follow Kruskal and Sankoff [1983], p. 266).1

Let Y denote the finite state space and φ an “empty state” which is

1See also Waterman [1995], pp. 192–194, and for an illustration of the algorithm,
Abbott and Hrycak [1990].
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not contained in Y. The cost functions are

w(x, y) = substitution cost, x, y ∈ Y
w(x, φ) = deletion cost, x ∈ Y
w(φ, y) = insertion cost, y ∈ Y

The expression[
x1 · · · xp

y1 · · · yp

]
(1)

is called an alignment if xi, yi ∈ Y ∪ {φ} and there is no column with
xi = yi = φ. The length of an alignment (i.e., the distance between the
two sequences) is defined by Σi w(xi, yi).

Now, let a = (a1, . . . , am) and b = (b1, . . . , bn) be two sequences
with states in Y. We say that (1) is an alignment between the se-
quences a and b if by inserting empty states into a it can be made
equal to x = (x1, . . . , xp) and in the same way b can be made equal to
y = (y1, . . . , yp). Given these definition, we can finally define the (stan-
dard) distance between a and b, denoted d(a, b), as the minimum possible
length of any alignment of these two sequences. Additional notation to
describe the algorithm is

ai = (a1, . . . , ai) , bj = (b1, . . . , bj) , and dij = d(ai, bj)

Using this notation, we need to calculate d(a, b) = dmn. This can be
done by calculating the elements of the (m + 1, n + 1) matrix

D =
(
dij

)
i = 0, . . . ,m; j = 0, . . . , n (2)

recursively in the following way. The first step is initializing the first row
and first column of this matrix:

d0,0 = 0
d0,j = d0,j−1 + w(φ, bj) j = 1, . . . , n
di,0 = di−1,0 + w(ai, φ) i = 1, . . . ,m

All other elements of D can then be calculated by using three predeces-
sors. The recurrence relation is:

dij = min

 di−1,j + w(ai, φ)
di−1,j−1 + w(ai, bj)
di,j−1 + w(φ, bj)
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Having calculated all elements of D, one finally finds the required dis-
tance in the element dmn.

Computation time for this algorithm, and storage requirements, are
proportional to mn. In the TDA implementation, the matrix D is defined
for single precision floating point numbers, and the required memory is
4L2 bytes, L being 1 plus the maximum sequence length in the input
data.
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6.7.2.2 The seqm Command

The TDA command to request optimal matching of sequences is seqm,
with syntax shown in Box 1. The right-hand side must provide the name
of an output file. All other parameters are optional.

Selecting alignments. There are two basic options which can be se-
lected with the m parameter.

1. If m=1 (default), the seqm command uses a single sequence data struc-
ture. If not otherwise specified with the sn parameter, the first of the
currently defined sequence data structures will be used. As default, an
alignment for each pair of sequences in the selected sequence data struc-
ture is calculated. If there are n sequences, there will be n(n − 1)/2
alignments, and the output file will contain one record for each align-
ment.

There are two options to restrict the number of alignments. The r
parameter can be used to request a random selection of alignments (see
6.7.2.6). Another possibility is to use only some specified sequences for
comparison. This can be requested with the parameter

cn = i1, i2, . . . , im,

where i1, i2, . . . , im are the case numbers of some sequences in the data
matrix. Then, all sequences of the selected sequence data structure are
only compared with these selected sequences resulting in a total number
of nm alignments. In this case, the output file will contain n records,
each containing m distances.

2. Alternatively, one can use the m=2 option for pairwise optimal match-
ing of sequences taken from two sequence data structures. In this case,
the parameter

sn = k1, k2,

must be used to specify the two sequence data structures, and it is re-
quired that the two sequence data structures have the same state space
(see 6.7.2.7).

Preprocessing sequences. Before alignment of any two sequences,
they are shifted to a common process time axis: t = 1, 2, 3, . . . , L, where
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Box 1 Syntax for seqm command

seqm (

m=..., selection of method, def. 1
sn=..., selection of sequence data structure(s), def. 1
icost=..., indel cost specification
scost=..., substitution cost specification
rr=1, use common sequence length
sm=..., option for preprocessing sequences
r=..., random selection of sequences
s=..., print sequence of distances, or LCS
cn=..., compare with specified sequences
max=..., alignment restriction
tfmt=..., print format for distances, def. 5.2
v=..., add variables ... to output file
dtda=..., create TDA description file
df=..., create test output file
tst=..., additional test options
fmt=..., print format for test output file

) = fname;

L is the maximum sequence length. As default, only sequences with a
positive length and without internal gaps will be compared. This can be
changed with the sm parameter. There are three options:

• sm=1 Internal gaps will be disregarded, that is, they will simply be
skipped in preparing a sequence for comparison with another one.

• sm=2 Each contiguous subsequence of identical states is substituted
by a single occurrence of that state.

• sm=1,2 This selects sm=1 and sm=2.

The tst parameter (explained below) can be used to check whether the
selected option has the desired effect.1

As mentioned in 6.7.2.1, optimal matching does not require that
sequences have equal length. As an option (rr=1), one can restrict the

1Of course, any other preprocessing of sequences can be done before inputting the
data to the program, or using TDA’s operators to change variables. For example,
Dijkstra and Taris [1995] have proposed a method which only takes into account
states that appear in both sequences to be compared. Whether this makes sense is
questionable, see the comments by Abbott [1995a].
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alignment to the common sequence length. Then, if li is the length of
sequence i and lj is the length of sequence j, the alignment procedure
uses only the common sequence length min{li, lj}.

Specifying indel cost. The default distance measure is d(a, b), based
on a set of elementary functions, Ω, only consisting of insertions, dele-
tions, and substitutions. Insertion and deletion costs are always identical
and called indel cost. The default indel cost is 1, and the default substi-
tution cost is 2. The alignment, then, amounts to calculating the longest
common subsequence (LCS).

Indel cost can be changed with the icost parameter. There are three
possible ways to specify alternative definitions. Using

icost = α,

with some nonnegative real value α, indel cost will be equal to α. Al-
ternatively, indel costs can be specified as a sequence of values for the
common time axis. This option requires that the user first defines a (1, L)
or (L, 1) matrix containing the indel cost values; L being the maximal
sequence length in the selected sequence data structure.2 Assuming that
such a matrix has been defined and named M, one can use the parameter

icost = M,

to request using the values from this matrix.
As a third possibility, one can extend the set of operations, Ω, to

allow for simultaneously inserting or deleting contiguous subsequences
consisting of one or more states, based on a linear indel cost function

g(l) = α + β (l − 1) with α, β ≥ 0

l being the length of the subsequence. The extension will be effective if
the user specifies this cost function with the parameter

icost = α, β,

This extension will be explained and illustrated in 6.7.2.4. Note that the
max parameter to restrict the possible alignments is not effective when
using an extended distance measure.

Specifying substitution cost. Given two sequences a = (a1, . . . , am)
and b = (b1, . . . , bn), default substitution cost is w(ai, bj) = 2, if ai 6= bj ;

2See 5.1.2 for commands to define matrices.
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substitution cost for identical states is always zero. Some alternative
definitions can be selected with the parameter

scost = n,

If n = 1, substitution cost is calculated as the absolute difference w(ai, bj)
= | ai−bj | . If n = 2, substitution cost will be derived from the frequency
of transitions in the sequences, see 6.7.2.5.

Alternatively, one can define a complete substitution cost matrix
with the mdef command for defining matrices, see 5.1.2. This must be a
(ns, ns) matrix, ns being the number of states in the selected sequence
data structure. Given that such a matrix M = (mij) has been defined,
one can use the parameter

scost = M,

to request that this matrix shall be used, meaning that w(ai, bj) = mij .
Remember that the states occurring in a sequence data structure are
always sorted in ascending order and then mapped to internal state
numbers 0, 1, . . . , ns − 1. The ordering of substitution cost values in the
matrix M must correspond to these internal state numbers. In any case,
one should check the specification of indel and substitution cost with the
test output option explained below.

Restricted alignment. The max parameter can be used to restrict the
alignment procedure. This option will be explained in 6.7.2.6.

Output options. By default, the output file will contain a separate
record for each alignment. If n is the number of sequences, the number
of records will be n(n−1)/2, if m=1, and n, if m=2. This might be different
if the r parameter is used to request a random selection of alignments,
or if the cn parameter is used to request alignments with some fixed
reference sequences.

By default, each record of the output file will contain the case num-
bers of the sequences, their length and the value of the distance measure.
The print format for the distance measure can be controlled with the
tfmt parameter, default is tfmt=5.2.

The s parameter can be used to modify the printing of distances. If
s=0 (default), only the final distance, d(a, b), between any two sequences
a = (a1, . . . , am) and b = (b1, . . . , bn) is written into the output file.
Alternatively, with s=1, one gets all sequentially calculated distances
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d(ai, bj) (see the definition in 6.7.2.1), meaning that each record of the
output file will contain the sequential distances

d(ai, bi) for i = 1, . . . ,min {m,n}
d(am, bj) for j = m + 1, . . . , n

d(ai, bn) for i = n + 1, . . . ,m

This option is useful for sequentially comparing sequences. The sequence
of distances, d(ai, bi), can be interpreted as showing how the distance
between a and b evolves over time.

When using default cost functions, one can alternatively request a
printing of the longest common subsequences with the s=2 parameter.

In addition, one can use the v=varlist parameter to add variables
to the output data file. Values of the variables specified in varlist will
be written into the output file for both sequences which take part in
the alignment. To see which variables have been written into the output
file, one can request an additional data description file with the dtda
parameter.

Test output. The df parameter can be used to request an additional
test output file. By default, this file will provide information about the
set up of indel and substitution cost. Additional information can be
requested with the parameter

tst = i, j, . . .,

where i, j, . . . are integers in the range 1, . . . , 3. The meaning is as follows.

1 This option prints the initial D matrix into the test output file.
2 This option prints the sequences into the test output file. This should

be helpful in checking whether the sm parameter has the desired effect.
3 Using this option, for each alignment of two sequences, the matrix D,

defined in (2) above, is written into the test output file. (Additional
matrices will be written into the test output file when working with
an extended distance measure.) Illustration will be given in 6.7.2.3.
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6.7.2.3 Examples

This section illustrates the seqm command with some examples. We use
very small example data files in order to easily check what the command
is doing.

Example 1 We begin with the four sequences shown in Box 1. A com-
mand file, seqm1.cf, is shown in Box 2. This command file first reads
the data file and defines a sequence data structure and then requests
optimal matching with the seqm command. Only the dtda parameter
is used to request a description of the output file. All other parameters
have default values.

Standard output from the command file is shown in Box 3. The com-
mand has performed pairwise alignment of the four sequences using de-
fault indel and substitution cost. The command has created two files, a
data file (seqm1.d) and a description file (seqm1.tda) that describes the
variables in the data file. Both files are shown in Box 4.

To add variables to the output file, one can use the v parameter.
For example, if adding the parameter v=Y1,,Y5 to the seqm command
in seqm1.cf, the output file would contain 10 additional variables (the
variables Y1,...,Y5 for both sequences).

Box 1 shows a second data file, seqm.d1a, which is basically identical
with seqm.d1 but where the sequences are differently placed on the time
axis. Since, as default, TDA uses only sequences without internal gaps
and skips leading missing values, using this second data file will give
identical results when used for optimal matching. (See the command file
seqm1a.cf in the example archive.)

The data file seqm1.d in Box 4 only shows the final distance for each
alignment. The s=1 option can be used to get information about how
the distances evolve during process time. Adding this parameter to the
seqm command would result in the output file shown in Box 5.
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Box 1 Example sequence data files

Data file: seqm.d1 Data file: seqm.d1a

0 0 0 0 0 -1 0 0 0 0 0 -1 -1 -1

0 0 1 0 0 -1 -1 0 0 1 0 0 -1 -1

0 0 0 1 0 -1 -1 -1 0 0 0 1 0 -1

0 0 1 1 0 -1 -1 -1 -1 0 0 1 1 0

Box 2 Command file seqm1.cf

nvar(

dfile = seqm.d1,

Y{1,5} = c1,

);

seqdef = Y1,,Y5;

seqm(

dtda = seqm1.tda,

) = seqm1.d;

Box 3 Standard output from seqm1.cf

Sequence proximity measures. Current memory: 260732 bytes.

Optimal matching.

Using sequence data structure 1.

Number of states: 2. Max sequence length: 5

Default indel cost: 1.

Default substitution cost: 2.

Starting alignment procedure.

Number of sequences (cases): 4

Sequences with zero length or internal gaps: 0

Sequences used for alignment: 4

Number of alignments: 6

6 record(s) written to output file: seqm1.d

Maximum distance between sequences 4 and 1: 4

TDA description written to: seqm1.tda
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Box 4 Output files created by seqm1.cf

Output file: seqm1.d

-----------------------------

2 1 5 5 2.00

3 1 5 5 2.00

3 2 5 5 2.00

4 1 5 5 4.00

4 2 5 5 2.00

4 3 5 5 2.00

TDA description file: seqm1.tda

-------------------------------

nvar(

dfile = seqm1.d,

noc = 6,

SEQ1N <5>[6.0] = c1 , # sequence A case number

SEQ2N <5>[6.0] = c2 , # sequence B case number

SEQ1L <2>[6.0] = c3 , # sequence A length

SEQ2L <2>[6.0] = c4 , # sequence B length

DIST <4>[5.2] = c5 , # distance

);

In the first example we have used default indel and substitution cost and
optimal matching is then basically identical to calculating the longest
common subsequences (LCS). This allows to use the s=2 parameter to
request a printing of the LCS. To illustrate, adding the parameter s=2
to command file seqm1.cf will create the output files shown in Box 6.

The additional variables in the output file show the length of the
LCS and its values. If the LCS is shorter than the maximal sequence
length, the remaining columns are filled with missing values (-1). Note
the simple relationship

length of longest common subsequence =
1
2

(m + n− d(a, b))

where d(a, b) the the optimal matching distance when using default cost
functions; m and n denote the length of the first and second sequence,
respectively.
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Box 5 Illustration of s=1 option (seqm1b.cf)

Data file

-----------------------------------------------------

2 1 5 5 0.00 0.00 2.00 2.00 2.00

3 1 5 5 0.00 0.00 0.00 2.00 2.00

3 2 5 5 0.00 0.00 2.00 2.00 2.00

4 1 5 5 0.00 0.00 2.00 4.00 4.00

4 2 5 5 0.00 0.00 0.00 2.00 2.00

4 3 5 5 0.00 0.00 2.00 2.00 2.00

Description file

-----------------------------------------------------

nvar(

dfile = ...,

noc = 6,

SEQ1N <5>[6.0] = c1 , # sequence A case number

SEQ2N <5>[6.0] = c2 , # sequence B case number

SEQ1L <2>[6.0] = c3 , # sequence A length

SEQ2L <2>[6.0] = c4 , # sequence B length

DIST1 <4>[5.2] = c5 , # distance, time 1

DIST2 <4>[5.2] = c6 , # distance, time 2

DIST3 <4>[5.2] = c7 , # distance, time 3

DIST4 <4>[5.2] = c8 , # distance, time 4

DIST5 <4>[5.2] = c9 , # distance, time 5

);
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Box 6 Illustration of s=2 option (seqm1c.cf)

Data file

-------------------------------------------------

2 1 5 5 2.00 4 0 0 0 0 -1

3 1 5 5 2.00 4 0 0 0 0 -1

3 2 5 5 2.00 4 0 0 1 0 -1

4 1 5 5 4.00 3 0 0 0 -1 -1

4 2 5 5 2.00 4 0 0 1 0 -1

4 3 5 5 2.00 4 0 0 1 0 -1

Description file

-------------------------------------------------

nvar(

dfile = ...,

noc = 6,

SEQ1N <5>[6.0] = c1 , # sequence A case number

SEQ2N <5>[6.0] = c2 , # sequence B case number

SEQ1L <2>[6.0] = c3 , # sequence A length

SEQ2L <2>[6.0] = c4 , # sequence B length

DIST <4>[5.2] = c5 , # distance

LCSL <2>[4.0] = c6 , # length of LCS

LCS1 <2>[2.0] = c7 , # LCS t=1

LCS2 <2>[2.0] = c8 , # LCS t=2

LCS3 <2>[2.0] = c9 , # LCS t=3

LCS4 <2>[2.0] = c10 , # LCS t=4

LCS5 <2>[2.0] = c11 , # LCS t=5

);
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Box 7 Sequence data file seqm.d2

-1 1 1 -1 2

2 2 -1 -1 2

1 1 2 2 -1

Box 8 Command file seqm2.cf

nvar(

dfile = seqm.d2,

Y{1,5} = c1,

);

seqdef = Y1,,Y5;

seqm(

sm = 1,

df = seqm2.tst,

tst = 2,

dtda = seqm2.tda,

) = seqm2.d;

Example 2 To illustrate the preprocessing of sequences, we use the
data file seqm.d2 in Box 7. The first two sequences contain internal
gaps. Without preprocessing these sequences, there would be only one
valid sequence and the seqm command would perform no alignments.

As explained in 6.7.2.2, there are two preprocessing options. The first
one, sm=1, simply skips internal gaps. This has been done with command
file seqm2.cf in Box 8. This command file also requests a test output file,
seqm2.tst, shown in Box 9. This file shows the set up of cost functions
(in this example we have again default indel and substitution cost), and
since we have used the tst=2 option, it also shows the sequences actually
used for alignment. In this example, there are three pairs of sequences
for three alignments.

The lower part of Box 9 illustrates how the sequences would look like
if we had used both preprocessing options, sm=1,2. Each consecutive
subsequence of identical states is then substituted by a single occurrence
of that state.
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Box 9 Test output file created by seqm2.cf

Optimal matching test output file.

Number of states: 2

Max sequence length: 5

Indel cost

1 1 1 1 1

Substitution cost

0 2

2 0

Sequence A (case number 2)

2 2 2

Sequence B (case number 1)

1 1 2

Sequence A (case number 3)

1 1 2 2

Sequence B (case number 1)

1 1 2

Sequence A (case number 3)

1 1 2 2

Sequence B (case number 2)

2 2 2

Sequences used for alignment if sm=1,2

--------------------------------------

Sequence A (case number 2)

2

Sequence B (case number 1)

1 2

Sequence A (case number 3)

1 2

Sequence B (case number 1)

1 2

Sequence A (case number 3)

1 2

Sequence B (case number 2)

2
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Box 10 Sequence data file seqm.d3

4 5 6 7 7 7 7 7

1 1 2 3 4 5 6 -1

Box 11 Command file seqm3.cf

nvar(

dfile = seqm.d3,

Y{1,8} = c1,

);

seqdef = Y1,,Y8;

mdef(SCOST,10,10) =

0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,

0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3, 0.4,

0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2, 0.3,

0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1, 0.2,

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0, 0.1,

0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0;

seqm(

icost = 1,

scost = SCOST,

df = seqm3.tst,

tst = 2,3,

dtda = seqm3.tda,

) = seqm3.d;

Example 3 To illustrate user-defined cost functions we use an example
given by Abbott and Hrycak ([1990], p. 179). The data file, seqm.d3 (Box
10), consists of two sequences.

Box 11 shows the command file, seqm3.cf. Indel cost is simply 1
(actually the default); substitution cost is defined by a matrix, SCOST.
One should note how this matrix is used. The state space for the two
sequences is {1, 2, 3, 4, 5, 6, 7}. These states are mapped to internal state
number {0, 1, 2, 3, 4, 5, 6}. The matrix element SCOST(i, j) corresponds
to the internal state numbers i− 1 and j − 1.

Command file seqm3.cf also requests a test output file with options
tst=2,3. Part of this test output file is shown in Box 12. The files shows
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Box 12 Part of test output file from seqm3.cf

Sequence A (case number 2)

1 1 2 3 4 5 6

Sequence B (case number 1)

4 5 6 7 7 7 7 7

D Matrix

0 1 2 3 4 5 6 7 8

------------------------------------------------------

B 4 5 6 7 7 7 7 7

------------------------------------------------------

0 A | 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

1 1 | 1.00 0.30 1.30 2.30 3.30 4.30 5.30 6.30 7.30

2 1 | 2.00 1.30 0.70 1.70 2.70 3.70 4.70 5.70 6.70

3 2 | 3.00 2.20 1.60 1.10 2.10 3.10 4.10 5.10 6.10

4 3 | 4.00 3.10 2.40 1.90 1.50 2.50 3.50 4.50 5.50

5 4 | 5.00 4.00 3.20 2.60 2.20 1.80 2.80 3.80 4.80

6 5 | 6.00 5.00 4.00 3.30 2.80 2.40 2.00 3.00 4.00

7 6 | 7.00 6.00 5.00 4.00 3.40 2.90 2.50 2.10 3.10

the sequences used in the alignment (requested by tst=2) and, in ad-
dition, the matrix D used in the dynamic programming algorithm (see
6.7.2.1).
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6.7.2.4 Consecutive Indel Operations

In the default alignment procedure, deleting (or inserting) a subsequence
consisting of l elements (states) would cost l times the elementary dele-
tion (or insertion) cost. It is sometimes desirable that the deletion (or
insertion) cost of such an operation is a more general function of l. Ex-
tending the basic algorithm to allow for this modification of the distance
measure is quite possible but requires, in general, much more compu-
tational effort. See Kruskal and Sankoff [1983, pp. 296–299], Waterman
[1995, pp. 194–197]. In general, computation time would be proportional
to n3 (n being the (common) sequence length), instead of n2 for the ba-
sic algorithm. However, if the cost function for multiple indels is linear
in l, the basic algorithm can easily be extended to remain proportional
in n2. This section is restricted to this special case.

To explain the extended procedure, we follow Waterman [1995, p. 195].
The terminology follows the introduction in 6.7.2.1. The two sequences
for alignment are a = (a1, . . . , am) and b = (b1, . . . , bn). The substitu-
tion cost is given by w(ai, bj), and the indel cost function for deleting or
inserting a subsequence of l states is assumed to be linear:

g(l) = α + β(l − 1) α, β ≥ 0

dij = (ai, bj) denotes the optimal distance for the subsequences ai =
(a1, . . . , ai) and bj = (b1, . . . , bj). The basic recurrence relation is then

dij = min

 di−1,j−1 + w(ai, bj)
min1≤l≤i {di−l,j + g(l)}
min1≤k≤j {di,j−k + g(k)}

The first of these three possibilities amounts to substituting ai by bj ;
the second results from deleting the last l elements in ai; and the third
results from deleting the last k elements in bj .

In addition to the matrix D = (dij), the algorithm needs two more
matrices: E = (eij) and F = (fij); all with dimension (m + 1, n + 1).
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The algorithm is defined as follows. First there is an initialization:1

d0,0 = e0,0 = f0,0 = 0
di,0 = g(i), ei,0 = g(i) + α for i = 1, . . . ,m

d0,j = g(j), f0,j = g(j) + α for j = 1, . . . , n

The recurrence relation is

eij = min {di,j−1 + α, ei,j−1 + β}
fij = min {di−1,j + α, fi−1,j + β}
dij = min {di−1,j−1 + w(ai, bj), eij , fij}

To see that the algorithm works correctly, one needs to show that

eij = min
1≤k≤j

{di,j−k + g(k)}

fij = min
1≤l≤i

{di−l,j + g(l)}

The proof is by induction over j for the first equation, and over i for the
second equation. To illustrate with the first equation, it certainly holds
for j = 1. Then, for an arbitrary j > 1:

min
1≤k≤j

{di,j−k + g(k)} =

min {di,j−1 + g(1), min
2≤k≤j

{di,j−k + g(k)}} =

min {di,j−1 + g(1), min
2≤k−1≤j

{di,(j−1)−(k−1) + g(k − 1) + β}} =

min {di,j−1 + g(1), min
1≤k≤j−1

{di,(j−1)−k + g(k) + β}} =

min {di,j−1 + α, ei,j−1 + β} = eij

In the same way, one can show the second equation.

Syntax. As explained in 6.7.2.2, this extension of the basic distance
measure can be selected by specifying an indel cost function with the
parameter

icost = α, β,

where α ≥ 0 and β ≥ 0.

1This is slightly different from Waterman’s formulation ([1995, p. 195], but necessary
for general α and β.
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Box 1 Sequence data file seqm.d4

Sequence 1 0 0 0 0 0 0

2 0 1 0 0 0 0

3 0 1 1 0 0 0

4 0 1 1 1 0 0

5 0 1 1 1 1 0

Box 2 Command file seqm4.cf

nvar(

dfile = seqm.d4,

Y{1,6} = c1,

);

seqdef = Y1,,Y6;

seqm(

icost = 1,0.5,

df = seqm4.tst,

tst = 2,3,

dtda = seqm4.tda,

) = seqm4.d;

Box 3 Illustration of results for different indel cost functions

default icost = 1,0.5 icost = 1,0

-------------- -------------- --------------

2 | 2 2 | 2 2 | 2

3 | 4 2 3 | 3 2 3 | 2 2

4 | 6 4 2 4 | 4 3 2 4 | 2 2 2

5 | 8 6 4 2 5 | 5 4 3 2 5 | 2 2 2 2

------------ ------------ ------------

1 2 3 4 1 2 3 4 1 2 3 4

Example 1 To illustrate linear indel cost functions, we use the exam-
ple data file seqm.d4 in Box 1. The command file is shown in Box 2. Box
3 shows the calculated distances for three different indel cost functions.
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6.7.2.5 Data-based Substitution Costs

The distance measure for sequences heavily depends on the specifica-
tion of substitution and indel cost and, in general, there are only few
guidelines. One finally has to find a specification of cost functions that is
appropriate for the specific application. One should therefore investigate
the behavior of different specifications at least for a subset of “typical”
or easily interpretable sequences.

As a starting point, one can use the default cost functions where indel
cost = 1, and substitution cost = 2. The alignment of two sequences
provides then the longest common subsequence and, as mentioned in
6.7.2.3, there is a simple relationship between the distance and the length
of the longest common subsequence. This option is an interesting starting
point because it makes a substitution equivalent to two indel operations
(a deletion followed by an insertion), both cost the same.

This shows that the alignment will depend, in particular, on the
relation between indel and substitution cost. If substitution cost is higher
than the cost of two indel operations, the algorithm will never chose
substitutions. It has been suggested, therefore, to set indel cost equal to,
or slightly higher, than substitution cost, see Abbott [1990, p. 155]. But
as a consequence, the algorithm will then primarily use substitutions and
might not be able to fully exploit the possibilities of indel operations.

Further complications arise if the set of elementary operations is
extended to include consecutive indel operations, see 6.7.2.4. In this
case, the cost of inserting or deleting l consecutive elements is g(l) =
α+β(l− 1) and one has to find reasonable values for α and β. For some
sociological applications, it might be a good idea to set α equal to the
highest substitution cost and 0 < β < α.

For some applications, it might also be worthwhile to derive substi-
tution cost from the frequency of transitions in the given sequence data.
To explain this idea, let us assume a sample of i = 1, . . . , n sequences

yi = (yi1, . . . , yiT )

where the elements are valid states in the state space Y = {1, . . . , q}, or
are (negative) missing values.
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We can then define:

Nt(x) = # of sequences being in state x at t

Nt,t′(x, y) = # of sequences being in state x at t

and in state y at t′

Using these quantities, there are several possibilities to define substitu-
tion cost. The intuition is that two states are less different when there
are, in the given data set, less transitions from one state into the other.

Time-independent substitution cost. The most simple way of using
the information about transitions would be to ignore the time structure
and, using

p(x, y) =
∑T−1

t=1 Nt,t+1(x, y)∑T−1
t=1 Nt(x)

define substitution cost by

w(ai, bj) =
{

2− p(ai, bj)− p(bj , ai) if ai 6= bj

0 if ai = bj

Then 0 ≤ w(ai, bj) ≤ 2, and substitution cost directly reflects the cumu-
lated transitions across states. If there are many transitions from ai to
bj (both directions), substitution cost is low, and vice versa.

This definition of substitution cost can be requested with the parameter
scost=2; it is easily calculated and does not require additional storage
space. If requested, a test output file will show the corresponding sub-
stitution cost matrix which, in turn, can be used to find an appropriate
indel cost function.

Example 1 To illustrate this option, we use data file seqm.d4 that
was introduced in 6.7.2.3. There are two states, 0 and 1; p(0, 1) = 4/15
and p(1, 0) = 4/10. Therefore, w(0, 1) = w(1, 0) = 4/3. See command
file seqm5.cf in the TDA example archive.
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6.7.2.6 Working with Large Samples

Pairwise comparison of n sequences requires n(n − 1)/2 alignments. If
n is big, say greater than 1000, the computational burden becomes pro-
hibitive, in particular with long sequences, since computing time is ap-
proximately proportional to the square of the sequence length.

Consider, for example, n = 1000 sequences with length 100 and 10
different states. On a SparcStation 10/30, using the current implemen-
tation of the alignment algorithm, 100 alignments need about 4 seconds.
In this example, n(n − 1)/2 = 499500, and the total time to calculate
these distances would be about 5.5 hours. For n = 2000, computing time
would already be more than 22 hours. However, in many social science
applications, the number of sequences (cases) is several thousand and the
calculation of all pairwise distances is no longer feasible. We therefore
shortly discuss three possible ways to reduce the computational burden
if the number of sequences is large.

Random selection. The easiest way is to select a random subsample
and calculate all pairwise distances for the sequences in the subsample.
Since this is easily done by a random select statement when reading the
input data, a separate option in the seqm command is not necessary.

It could be preferable, however, to randomly select pairs of sequences
from the full sample. To provide this option, the seqm command offers the
r parameter (only with m=1). The syntax is r=m, where m is the number
of desired alignments. The algorithm to randomly select approximately
m pairs of sequences is shown in Box 1.

Predefined sequences for comparison. It sometimes may make sense
to compare all sequences with only a few predefined sequences. This
might be sensible if one already has some ideas about “typical” sequences
to be used for comparison. The seqm command provides for this strategy
by its cn parameter to select a set of sequences for comparison.

Alternatively, one can try a two-step procedure. In a first step, find
two sequences having a large distance based on randomly selected pairs
of sequences. This can be done since as part of its standard output,
TDA prints the case numbers of those two sequences which have the
largest distance. Then, in a second step, compare all sequences with
these two sequences. The resulting distances can then be plotted in a
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Box 1 Random selection of pairs of sequences

for (i = 2,...,n) {

for (j = 1,...,i - 1) {

r = random number between 0 and 1

if (r < m / (n (n - 1) / 2))

calculate distance between sequences i and j;

else

skip;

}

}

two-dimensional coordinate system.

Restricted alignment. Another strategy to reduce the computational
burden is to restrict the possible alignments of sequences, see Kruskal
and Sankoff [1983, pp. 276–281]. Given two sequences, a = (a1, . . . , am)
and b = (b1, . . . , bn), the algorithm described in 6.7.2.1 requires the
recursive calculation of an (m+1, n+1) matrix D = (dij); dij being the
optimal distance between the subsequences ai and bj .

The idea is to calculate only a part of this D matrix, for instance,
only elements with | i − j | ≤ K. In effect, this excludes some possible
alignments from consideration; but this might be justifiable not only
for computational reasons but also with respect to the application. As
discussed by Kruskal and Sankoff [1983], p. 278], a suitable formula that
covers the case of unequal sequence lengths is∣∣∣∣ i

m + 1
− j

n + 1

∣∣∣∣ ≤
K

1√
2

[
m + 1
n + 1

+
n + 1
m + 1

]/√
(m + 1)2 + (n + 1)2

(In the special case that m = n, this reduces to | i− j | ≤ K.) The seqm
command provides this option with the max parameter. The syntax is
max=K with an integer K ≥ 1. Then only that part of the D matrix is
calculated and used to find an optimal alignment where the indices are
in the range given by the above mentioned formula. For a variety of other
approaches to restrict the alignment of sequences, see the discussion in
Kruskal and Sankoff [1983].
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6.7.2.7 Comparing Parallel Sequences

Sometimes one is interested in comparing pairs of sequences where each
pair of sequences is defined simultaneously for each case in the input
data. A typical application would be a comparison of partners living
together in some relationship. This can be done with the m=2 option.

The option requires to specify two sequence data structures with the
parameter sn=k1, k2. There are then two sequences for each case in the
input data to be compared and the result will be written into the output
file. Given n cases, the output file will contain just n records.

A useful additional option is provided by the s=1 parameter pro-
viding information about how the distance between the two sequences
evolves over time. This could be useful, for instance, for a dynamical
investigation of homogamy.
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6.9 Least Squares Regression

This chapter deals with least squares regression. Available commands
are described in the following subsections.

6.9.1 The lsreg Command to be used for linear OLS regression.

6.9.2 Regression with Censored Data describes the lsreg1 command
that can be used when observations of the dependent variable
are right censored. Note that this is currently only an experi-
mental command.

d0609.tex December 23, 1999



6.9.1 the lsreg command 1

6.9.1 The lsreg Command

The discussion of least squares estimation in this section is confined to
cross-section data. There is a single dependent variable, Yi, and a vector
of exogenous (non-stochastic) covariates, Xi, for cases i = 1, . . . , n. For
ease of notation, Xi is taken as a row vector including a constant one to
provide an intercept term in the regression model. As an option one can
suppress the intercept, see below.

An ordinary least squares (OLS) model can be written as

Yi = Xiβ + εi i = 1, . . . , n

β is the parameter vector with length equal to the number of covariates
in Xi. εi is the residual for individual i. The same model may be written
in matrix notation as

Y = Xβ + ε (1)

With m covariates, X is an (n, m) matrix, Y and ε are both vectors of
length n, and β is a vector of length m.

A least squares estimate of the parameter vector β is found by min-
imizing the Euclidean norm of the residuals as a function of the model
parameters, i.e.

‖ε‖ =

(
n∑

i=1

ε2i

)1/2

→ min (2)

The solution, if existent, is found by

β̂ = (X ′X)−1 X ′Y (3)

where X ′ is the transpose of X. A unique solution exists if X has full
column rank; this implies that n ≥ m.

Several different algorithms can be used to solve (2). TDA’s main al-
gorithm to solve least squares problems is based on algorithms published
by Hanson and Haskell [1982]. These algorithms extend earlier work of
Lawson and Hanson [1974], providing, in particular, the possibility to
solve the least squares problem with linear equality and inequality con-
straints. A variety of other algorithms is discussed in Späth [1992].
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Box 1 Syntax for lsreg command

lsreg (

ni=1, if without intercept, def. ni=0
lsecon=..., equality constraints, see 6.9.1.2
lsicon=..., inequality constraints, see 6.9.1.2
dgrp=..., estimate dummy variables with constraints
tfmt=..., print format for results, def. tfmt=10.4
s=1, use robust covariance matrix, def. s=0
df=..., print data to an output file
fmt=..., print format for df option, def. 10.4
dtda=..., TDA description file for df option
ppar=..., print estimated coefficients to output file
pcov=..., print covariance matrix to output file
pres=..., print residuals to output file
mfmt=..., print format for pcov and pres option
mplog=..., write norm of residuals into matrix
mppar=..., write estimated parameters into matrix
mpcov=..., write estimated covariance matrix

into matrix

) = varlist;

Command Description. The command for least squares regression is
lsreg. Its syntax is

lsreg (parameter) = varlist;

The optional parameters are described below, a summary is given in
Box 1. The right-hand side must provide a list of variables for the re-
gression. It is a comma-separated list of variable names that must be
given in the following form:

Y1, X1, X2, . . . , Xm

First comes the name of the dependent variable, then follow names of
independent variables. There must be at least one variable name.

1. As default, the model specification contains an intercept term. Using
the parameter ni=1 estimates a model without an intercept.

2. The parameters lsecon and lsicon can be used to specify parameter
constraints and will be explained in 6.9.1.2.
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3. The dgrp parameter can be used to specify sets of dummy variables
to be estimated as deviations from a weighted mean, see 6.9.1.3.

4. Results of model estimation are written into the standard output.
The print format can be controlled with the tfmt parameter, default is
tfmt=10.4. A description of the output is given below in Example 1.

5. The data used for model estimation can be written into an output
file with the parameter

df = name of an output file,

If there are n cases and m independent variables, the output file will
contain n records. Each record has m + 1 entries, first the independent
variables and finally the dependent variable. The print format can be
controlled with the fmt parameter, default is fmt=10.4. In connection
with the df parameter one can request an additional output file with the
dtda parameter containing a TDA description of the data file.

6. The parameter

ppar = name of an output file,

can be used to write the estimated model coefficients (and standard
errors) into an output file. The print format is determined by tfmt.

7. As default, calculation of standard errors uses the least squares co-
variance matrix

σ̂2 (X ′X)−1

where σ̂2 is the estimated variance of residuals. Optionally, one can use
the parameter s=1 to request a “robust” covariance matrix as proposed
by White [1980]. The covariance matrix is then calculated as

(X ′X)−1 (X ′ diag{e2
i }X) (X ′X)−1

where diag{e2
i } is an (n, n) diagonal matrix containing the squared re-

siduals.1

1There are also other proposals for defining a robust covariance matrix, see Greene
[1992, p. 250]. The TDA example archive contains a command file, lsreg12.cf, that
can be used to replicate the example given there. The command file lsreg12a.cf

contains a TDA matrix procedure for calculating White’s robust covariance matrix.
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Box 2 Command file lsreg1.cf

nvar(

dfile = lsreg1.dat, # data file

Height = c1,

Weight = c2,

);

lsreg(

pcov = cov, # write covariance matrix to cov

ppar = par, # write parameter to par

df = df, # write data to df

pres = res, # write residuals to res

) = Weight,Height; # variables

8. The parameter

pcov = name of an output file,

can be used to write the estimated covariance matrix into an output file.
This will depend on the s parameter. The print format can be controlled
with the mfmt parameter, default is mfmt=12.4.

9. The pres parameter can be used to request an additional output file
with regression residuals, see 6.9.1.1.

Example 1 To illustrate the output of the lsreg command, we use a
simple example from SAS/STAT User’s Guide, Vol. 2, p. 1354. The data
file, lsreg1.dat, contains two variables, Weight, and Height. Box 2
shows the command file, lsreg1.cf.

The nvar command reads the data file and defines the two variables,
Weight and Height. Then follows the lsreg command for least squares
regression. Weight is the dependent and Height is the independent vari-
able. The command contains parameters to write for additional output
files. Standard output from the lsreg command is shown in Box 3. It
begins with information about the variables and number of cases. Then
follows some information about the least squares solution.

1. The rank of the least squares data matrix is the rank of the matrix
X in (1). For a full rank situation, it should be equal to the number of
independent variables, including (if not suppressed) the intercept. If the
data matrix is rank deficient, TDA’s least squares algorithm calculates
a solution based on a generalized inverse. This solution is not unique. A
warning message is then written into the standard output.
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Box 3 Part of standard output from command file lsreg1.cf

Least squares regression.

Variables (cross-section)

-------------------------

Y : Weight

X1 : Height

Equality constraints: 0

Inequality constraints: 0

Reading data. Cases: 19

Data written to: df

Rank of least squares data matrix: 2

Norm of least squares residuals: 46.287

Degrees of freedom: 17

Sum of squared residuals: 2142.49

Variance of residuals: 126.029

Squared multiple correlation: 0.770507

Adjusted: 0.757007

F-statistic: 57.0763

Level of significance: 0.999999

Covariance matrix written to: cov

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept -143.0269 32.2746 -4.4316 0.9996

2 1 Height 3.8990 0.5161 7.5549 1.0000

Parameter estimates written to: par

Residuals written to: res

2. Then follows the norm of the least squares residuals, see (2).

3. The degrees of freedom is the number of rows minus the number of
linear independent columns in the data matrix X.

4. The sum of squared residuals, sr, is calculated as the square of the
norm of the residuals.

5. The variance of the residuals is sr/d, that is, the sum of squared
residuals divided by the number of degrees of freedom.
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6. The squared multiple correlation is calculated as

R2 =
sq − sr

sq
where sq = syy −

sysy

n
, sy = Σyi, syy = Σy2

i

yi (i = 1, . . . , n) are the values of the dependent variable. The adjusted
R2 is only calculated if the number of degrees of freedom, d, is positive.
The formula is

R2
adj = 1− (n− 1)(1−R2) / d

7. The value of the F -statistic is calculated as

F =
R2/(m− 1)
(1−R2)/d

given that the data matrix has full column rank and there is a positive
number of degrees of freedom. m is the number of independent vari-
ables, including the intercept. The significance level is the value of the
F -distribution, at F , with m− 1 and d degrees of freedom.

8. Finally, the lsreg command prints a table with estimated coefficients,
β̂j , and standard errors, σ̂j . If the model is specified without constraints,
standard errors are only calculated if the data matrix has full column
rank and there is a positive number of degrees of freedom. The sig-
nificance is calculated as 2 t(β̂j/σ̂j , d) − 1 from the t-distribution with
d degrees of freedom. As described above, standard errors depend on
the type of covariance matrix. As default, TDA uses the standard OLS
covariance matrix. If using the s=1 parameter, calculation of standard
errors is based on White’s [1980] robust covariance matrix.
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6.9.1.1 Residuals

When using the lsreg command for least squares regression, the pres
parameter can be used to request an additional output file containing
regression residuals. The syntax is

pres = name of an output file,

The number of records in the output file equals the number of data ma-
trix cases used for the regression. Each record of the output file contains
the following entries.
1. The case number.

2. Values of the independent variables Xi1, . . . , Xim used in the regres-
sion model, including (if not suppressed) a constant 1 for the inter-
cept.

3. The value of the dependent variable, Yi.

4. The estimate of the dependent variable, Ŷi.

5. The residual, ei = Yi − Ŷi.

6. The leverage value, hii, i.e., the diagonal elements in X(X ′X)−1X ′.

7. An estimate for the standard deviation of the residual, SD(ei), cal-
culated as

SD(ei) = σ̂
√

1− hii

σ̂ is the estimated standard deviation of residuals.

8. The standardized residuals, ei/ SD(ei).
The output file can be used as a data input file in subsequent calls of TDA

to investigate and plot residuals; some header lines describe the variables.
The print format can be controlled with the mfmt parameter, default is
mfmt=12.4. Leverage values and standard deviations for residuals are
only calculated if there is a valid estimate for the covariance matrix,
otherwise the corresponding columns in the output file will contain the
value -1.
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6.9.1.2 Parameter Constraints

The least squares problem described in 6.9.1 can be modified by im-
posing constraints for the model parameters, often called restricted least
squares. Our discussion will be confined to two kinds of linear constraints.
First, equality constraints which may be written

Rβ = d (1)

where R is an arbitrary (nr,m) matrix and d is a vector of length nr.
Second, there may be inequality constraints which can be written

Uβ ≥ h

with U an arbitrary (nu,m) matrix and h a vector of length nu. In both
cases, the constraints are assumed to be non-stochastic.

Taking into account the possibility of linear equality and/or inequal-
ity constraints, a general least squares problem may be written as R

X

U

β
.=

 d

Y

h

 } nr

} nx

} nu

(2)

nr is the number of equations to be satisfied exactly, nx (equal to n
as used in the introductory section) is the number of equations to be
satisfied in a least squares sense, and nu is the number of inequality
constraints. The symbol .= is used to denote an equality, a least squares,
and an inequality relation, respectively. Some of the many possible com-
binations are shortly discussed.

1. If nx > 0 and nr = nu = 0, the general system (2) reduces to a
standard regression approach without constraints. TDA tries to calculate
the standard OLS solution as defined in 6.9.1. A unique solution exists
if nx ≥ m and X has full column rank, m. If X has less than full column
rank, many solutions exist that equally well minimize the norm of the
residuals. TDA gives one of these solutions. In any case, the program
provides information about the rank of X. Due to limited numerical
accuracy, this is actually a pseudo rank.
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2. If nr > 0 and nx = nu = 0, one has a simple system of linear
equations. If nr = m and R has full column rank, m, there is exactly one
solution. If nr < m there may be a unique solution, or a set of different
solutions, or the equations may be contradictory. If the solution is not
unique, TDA provides just one. In any case, one gets information about
the number of independent rows in R and about whether the system is
contradictory or not. If nr > m the system is solved in a least squares
sense.

3. If nu > 0 and nx = nr = 0, one has a pure system of inequali-
ties. Again, there may be a unique solution (unique in the sense of a
solution vector with minimal Euclidean length), there may exist many
(linear independent) solutions, or the inequalities may be contradictory.
If possible, TDA calculates a solution with minimal norm.

4. If nx > 0, nr > 0, and nu = 0, one has a least squares problem
with equality constraints. To find a solution of this problem is tried in
two steps. First, it is tried to solve the equality constraints. If there is
no, or exactly one, solution, the least squares equations are ignored. If
the solution space has a positive dimension, the least squares problem
is reformulated in this solution space and an optimal solution, based on
the least squares equations, is determined. Of course, a unique solution
is not guaranteed if X is rank deficient.

5. If nx > 0, nu > 0, and nr = 0, one has a least squares problem
with inequality constraints. To find an optimal solution the system of
inequalities must not be contradictory. In addition, the rank of the least
squares equations must be at least equal to the dimension of the solution
space of the inequality constraints.

6. Finally, if nx > 0, nr > 0, and nu > 0, one has a least squares
problem with both, equality and inequality constraints. Again, it is tried
to find a solution by first solving the system of equality constraints.
The remaining problem is reformulated, then, in the solution space of
the equality system. If this solution space has positive dimension, the
algorithm proceeds in the same way as explained above.

Specification of constraints. TDA uses all rows of the data matrix to
build the least squares problem, Xβ ∼= Y ; constraints are only added if
defined explicitly. Following (2), the syntax to define equality constraints
is

lsecon = ri0 b0 ± ri1 b1 ± . . .± rin bn = di (3)
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rij and di are floating point numbers to be used as the coefficients of the
matrix R and the vector d, respectively. The bj are key words and must
be given as b0,b1,... There must be a separate lsecon parameter for
each equality constraint. If rij is zero, the term can be omitted. b0 can
only be used if the model contains an intercept term.

Analogously, the syntax for the specification of inequality constraints is

lsicon = ui0 b0 ± ui1 b1 ± . . .± uin bn = hi (4)

with uij and hi, respectively, the coefficients of the U matrix and the h
vector, see (2).

Covariance matrix. Given a regression model with nr equality con-
straints,1 the least squares estimator is the solution of

(Y −Xβ)′(Y −Xβ)→ min s.t. Rβ = d

The solution can be found by using an nr vector, λ, of Lagrangian mul-
tipliers, i.e. by minimizing

L(β, λ) = (Y −Xβ)′(Y −Xβ) + 2 λ′(Rβ − d)

In matrix notation, the first-order conditions can be written[
X ′X R′

R 0

] [
β
λ

]
=

[
X ′Y

d

]
(5)

We shall assume that there is a unique solution, (β̂, λ̂)′, i.e. that the
matrix on the left-hand side has full rank, m + nr. This implies that the
equality constraints are linearly independent. As pointed out by Greene
and Seaks [1991], it is not required that also X has full rank. As an
implication of the first-order conditions, one finds that

X ′X(β̂ − β) = X ′ε−R′λ̂

This shows that, if the unrestricted least squares estimator exists (X has
full rank), then β̂ is an unbiased estimator of β,

β̂ − β = (X ′X)−1X ′ε− (X ′X)−1R′λ̂

1 A covariance matrix is only calculated if there are no inequality constraints. Deriva-
tion of stochastic properties for models with both, equality and inequality constraints
is difficult; see, for instance, Judge et al. [1988, chap. 20]. So we shall currently not
discuss the case of inequality constraints.
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Box 1 Data file lsreg2.dat

X1 X2 Y

------------

1 0 1

0 1 1

1 1 1

Box 2 Command file lsreg2.cf

nvar(

dfile = lsreg2.dat,

X1 = c1,

X2 = c2,

Y = c3,

);

lsreg (

ni=1, # without intercept

lsecon = b1 + b2 = 6,

lsicon = b1 = 2,

lsicon = b2 = 2,

) = Y,X1,X2; # variables

and the covariance matrix of β̂ may be derived2 as

Var[β̂] = σ2
[
I − (X ′X)−1R′ [R(X ′X)−1R′]−1

R
]
(X ′X)−1

As shown by Greene and Seaks [1992], there is a more general formulation
of the covariance matrix of β̂ which does not require that the unrestricted
least squares estimator exists. Using W to denote the matrix on the left-
hand side of (5), it follows that

Var
[

β̂

λ̂

]
= W−1Var

[
X ′Y

d

]
W−1

= W−1

[
σ2X ′X 0

0 0

]
W−1

It is only required that W has full rank. The formula may be further
simplified as shown by Greene and Seaks [1991].

2See, e.g., Johnston [1972, p. 158].
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Box 3 Part of standard output from command file lsreg2.cf

Least squares regression. Current memory: 144677 bytes.

Variables (cross-section)

-------------------------

Y : Y

X1 : X1

X2 : X2

Model without intercept.

LSECon: 1 b1 + 1 b2 = 6

LSICon: 1 b1 = 2

LSICon: 1 b2 = 2

Equality constraints: 1

Inequality constraints: 2

Reading data. Cases: 3

Covariance matrix not calculated.

Rank of reduced least squares data matrix: 1

Norm of least squares residuals: 5.74456

Rank of equality constraints: 1

Norm of residuals of equality constraints: 0

Sum of squared residuals: 33

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 1 X1 3.0000 --- --- ---

2 1 X2 3.0000 --- --- ---

Example 1 To illustrate constrained least squares we consider the fol-
lowing example:

β1 + β2 = 6
β1

∼= 1
β2

∼= 1
β1 + β2

∼= 1
β1 ≥ 2

β2 ≥ 2

The data correspond to example 51 in Späth [1992, p. 322]. In this ex-
ample, nr = 1, nx = 3, and nu = 2. Box 2 shows the command file



6.9.1.2 parameter constraints 6

lsreg2.cf that can be used to find a solution, Box 3 shows part of the
standard output. Since the rank of the reduced least squares matrix is
less than 2, there are no standard errors.
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6.9.1.3 Dummy Variables

Let D1, . . . , Dk denote a complete set of dummy variables, meaning that
for each case in the data set exactly one of these variables takes the
value 1. Since the intercept column is linear dependent on this set of
dummy variables, one normally has to drop one of them that creates the
reference category. Using parameter constraints provides an alternative.
One can keep the full set of dummy variables and add the constraint∑

j

wjDjβj = 0

with wi some set of weights; wi > 0, Σiwi = 1, and βj the regression
parameters corresponding to the dummy variables Dj . This can be spec-
ified with the lsecon parameter.

As discussed by Haisken-DeNew and Schmidt [1997], a reasonable
approach for many applications is to define the weights to be the pro-
portion of cases in the respective category. This is supported by the dgrp
parameter in the lsreg command. The syntax is

dgrp = [DL1],[DL2],...,

and DL1, DL2, and so on are namelists containing dummy variables which
are part of the set of independent variables used in the currently specified
regression model. For each of these namelists TDA calculates the propor-
tion of cases in each dummy variable and creates an equality constraint
using these proportions as weights. Up to 20 sets of dummy variables can
be specified on the right-hand side of the dgrp parameter. For example,
assume that the lsreg command specifies the variables

lsreg (parameter) = Y, D1, D2, D3, D4, U1, U2, U3, X1, . . .;

where DL1 = {D1, D2, D3, D4} and DL2 = {U1, U2, U3} are two sets of
dummy variables. Given then the parameter

dgrp = [DL1],[DL2],

TDA creates two equality constraints:

d1D1β1 + d2D2β2 + d3D3β3 + d4D4β4 = 0

d06090103.tex April 21, 1998



6.9.1.3 dummy variables 2

Box 1 Command file lsreg3.cf

nvar(

dfile = lsreg3.dat,

G = c2,

Y = c3,

NE = c4,

NC = c5,

SO = c6,

WE = c7,

Y2 = Y * Y,

);

nlist(

DL = NE,NC,SO,WE,

);

lsreg (

dgrp = [DL],

tfmt = -14.6,

) = G,Y,Y2,DL;

and

u1U1γ1 + u2U2γ2 + u3U3γ3 = 0

with di and ui the proportion of cases in the corresponding category.
The regression model is then estimated by using these constraints (in
addition to any constraints explicitly defined with the lsecon and/or
lsicon parameters).

Information about the dummy variables and the corresponding pro-
portion of cases is written into the standard output. In addition, as
proposed by Haisken-DeNew and Schmidt [1997], TDA calculates, sep-
arately for each group of dummy variables, a dispersion measure. If Di

denotes the index set for the ith set of dummy variables, this dispersion
measure is calculated as√∑

j∈Di

wj (β̂2
j − σ̂2

j )

where wj are the weights of the dummy variables and β̂j and σ̂j are the
corresponding parameter and standard error estimates.

Example 1 To illustrate the dgrp parameter, we replicate an example
given in Haisken-DeNew and Schmidt [1997]. The data file, lsreg3.dat,
contains information about gasoline demand in four different regions
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Box 2 Standard output from lsreg3.cf

Least squares regression. Current memory: 268781 bytes.

Processing dgrp option.

Group selection: [DL]

Variable cases weight

-------------------------------

NE 12 0.2500

NC 12 0.2500

SO 12 0.2500

WE 12 0.2500

Equality constraints: 1

Inequality constraints: 0

Reading data. Cases: 48

Rank of reduced least squares data matrix: 6

Norm of least squares residuals: 3.50111

Rank of equality constraints: 1

Norm of residuals of equality constraints: 0

Degrees of freedom: 42

Sum of squared residuals: 12.2578

Variance of residuals: 0.291852

Squared multiple correlation: 0.973878

Adjusted: 0.970768

Idx Wave Variable Coeff Error Coeff/E

-----------------------------------------------------------------

1 - Intercept 1.045236e+00 1.978744e-01 5.282321e+00

2 1 Y 7.778210e-04 2.982920e-05 2.607583e+01

3 1 Y2 -1.332484e-08 7.953897e-10 -1.675260e+01

4 1 NE -7.873645e-01 1.351198e-01 -5.827160e+00

5 1 NC -3.929084e-02 1.351144e-01 -2.907968e-01

6 1 SO 4.296827e-01 1.351670e-01 3.178902e+00

7 1 WE 3.969727e-01 1.350824e-01 2.938745e+00

DGroup weighted adj. stand. dev.

---------------------------------

[DL] 4.718767e-01
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and is taken from Suits [1984].1 The variables are G (gasoline demand),
Y (income), and four dummy variables for regions (NE,NC,SO,WE).

Box 1 shows the command file lsreg3.cf. The lsreg command
specifies a simple regression model with dependent variable G. The in-
dependent variables are Y, Y squared, and the four dummy variables.
As requested by the dgrp option, these dummy variables are treated as
a complete set and a corresponding constraint is added to the model
specification.

Box 2 shows the standard output. In this example, there are 12 cases
in each region, so all weights are equal to 0.25 and the equality constraint
is simply

0.25 NE + 0.25 NC + 0.25 SO + 0.25 WE = 0

1The same data were used by Greene and Seaks [1991].
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6.9.2 Regression with Censored Data

This section describes the lsreg1 command that can be used for least
squares estimation when dependent variables refer to possibly right cen-
sored observations. Note that the current implementation is experimental
and not yet finished.

The command is intended to estimate parameters for several regression
equations simultaneously. The basic model consists of n regression equa-
tions

Y1 = x1β1 + ε1

Y2 = x2β2 + ε2

...
Yn = xnβn + εn

Yj is the dependent (random) variable in the jth regression equation, xj

is a (1,m) vector of given covariates, and εj is the corresponding residual.
It is assumed that, for each dimension j = 1, . . . , n, observations are
given in the following way:

yj1 δj1 xj,11 · · · xj,1m

yj2 δj2 xj,21 · · · xj.2m

...
...

...
...

yjnj
δjnj

xj,nj1 · · · xj,njm

nj is the number of observations for the jth regression equation (dimen-
sion). yji is the ith observed value for dependent variable Yj ; δji is a
corresponding censoring indicator: if δji = 1, yji is assumed to be an
exactly observed value, if δji = 0, yji is assumed to be a right censored
observation.

Box 1 shows the syntax for the lsreg1 command. Most parameters
are optional. Required is the name of the dependent variable (yl param-
eter) and the name of a variable containing the censoring information
(cen parameter).

1. How the command estimates model parameters depends on the se-
lected option (opt parameter). Available options will be explained below.
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Box 1 Syntax for lsreg1 command

lsreg1 (

opt=..., calculation of expected values, def. 1
1 = based on marginal Kaplan-Meier
2 = based on joint distribution, method 1
3 = based on joint distribution, method 2

yl=..., name of dependent variable
cen=..., variable name for censoring information
ni=1, if without intercept, def. ni=0
grp=ID,L1, specification of dimensions
mxit=..., maximal number of iterations, def. 20
tolp=..., tolerance for convergence, def. 0.0001
sc=..., offset for domain (method 1 and 2), def. 0
n=..., number of boxes in grid (method 1), def. 100
mxitl=..., maximal number of iterations (method 1), def. 20
tolf=..., tolerance for convergence (method 1), def. 0.001
d=..., delta specification (method 2), def. 0.1
tfmt=..., print format for results, def. 10.4
prot=..., protocol file for diagnostic information
ppar=..., print estimated parameters to output file
pres=..., print data and residuals to output file
fmt=..., print format for pres option, def. 10.4
dtda=..., TDA description file for pres option

) = varlist (indep. variables);

2. Independent variables can be specified on the right-hand side. If no
variables are given, the command estimates a model where each regres-
sion equation only contains a single intercept. By default, an intercept is
added to each regression equation. The ni = 1 parameter can be used
to suppress intercepts. Of course, the command then needs at least one
independent variable.

3. By default, the command assumes a single regression equation where
each row in the current data matrix provides one observation for this
regression equation (n = 1, n1 = NOC). The grp parameter can be used
to specify two or more regression equations. The syntax is

grp = ID, L1,

where ID and L1 are names of data matrix variables. Each block of data
matrix rows where ID has identical values is interpreted as data for one
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unit of observation. Any values are possible and since the data matrix is
always sorted with respect to ID and L1, it is not required that blocks are
contiguous. The L1 variable must contain positive integers. The number
of different integers found in this variable is interpreted as the number
of regression equations (dimensions). Again, it is not required that these
numbers are contiguous. Each data matrix row provides one observation
for the regression equation specified by the corresponding value of the
L1 variable. (For an illustration, see the description of the gdf command
in 6.2.2.)

4. Resulting parameter estimates are written into the standard output,
the print format can be specified with the tfmt parameter. Parameter
estimates are also written to an output file when an output file name is
given with the ppar parameter.

5. A further output file can be requested with the pres parameter. This
file will then contain a copy of the data, expected values of the dependent
variables, given the data, and residuals. A description of the variables
contained in this file can be requested with the dtda parameter. The
print format can be controlled with the fmt parameter.

6. The remaining parameters are used to control the iterative estima-
tion procedure and depend on which option is selected with the opt
parameter. They will be explained below.

Estimation Procedure

The estimation procedure is a multivariate generalization of an approach
originally proposed by Buckley and James [1979]. Assume the data are
given by

X =



x1,11 · · · x1,1m

...
...

x1,n11 · · · x1,n1m

...
...

xn,11 · · · xn,1m

...
...

xn,nn1 · · · xn,nnm


y =



y1,1

...
y1,n1

...
yn,1

...
yn,nn


δ =



δ1,1

...
δ1,n1

...
δn,1

...
δn,nn


Ignoring censoring, standard OLS estimation would result in

β̂ = (X ′X)−1X ′y
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Box 2 Iterative algorithm for parameter estimation

(1) b = (X ′X)−1X ′y

(2) e = y −Xb

(3) calculate new values for dependent variable:

y∗ji =
{

yji if not censored
conditional expectation, based on data and e

(4) b∗ = (X ′X)−1X ′y∗

(5) check convergence: max
k

{
| b∗k − bk |

max{b∗k, 1}

}
≤ TOLP

(6) end if convergence has been achieved, or the maximal
number of iterations has been reached.

(7) b = b∗, continue with step (2)

These parameter estimates are then used as starting values for an itera-
tive procedure where, in each iteration, censored observations are substi-
tuted by their conditional expectations, given the data and the current
values of the parameter estimates. Box 2 shows the basic steps of the
iterative algorithm.

A problem only occurs in step (3) where we have to calculate expected
values for the censored observations, conditional on data and current
values of model parameters. The proposal made by Buckley and James
[1979] was to use

y∗ji = δjiyji + (1− δji) EF̂j
(Yj |Yj > yji, xji, bj , ej) (1)

where bj and ej refer, respectively, to the current parameter estimates
and residuals for the jth regression equation, and F̂j is the Kaplan-Meier
estimate of the distribution function of these residuals. For censored
observations, the conditional expectation is then calculates by

EF̂j
(Yj |Yj > yji, xji, bj , ej)

= EF̂j
(xjibj + εj | yji − xjibj < εj ≤ yji − xjibj , xji, bj)

= xjibj + EF̂j
(εj | yji − xjibj < εj ≤ yji − xjibj , xji, bj)

= xjibj +
∫ ∞

yji−xjibj

e dF̂j

/ ∫ ∞

yji−xjibj

dF̂j
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This method to calculate conditional expectations for censored obser-
vations is implemented as the default option (opt = 1) of the lsreg1
command. The tolerance, TOLP, can be specified with the tolp param-
eter, the maximal number of iterations with the mxit parameter.
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6.10 Alternative Regression Methods

While least squares regression is most often used in applied work, there
are many alternative approaches, see, e.g., Birkes and Dodge [1993]. This
chapter is intended to discuss some of these alternatives. Currently, we
have the following sections.

6.10.1 L1-Norm Regression

6.10.2 Nonparametric Regression
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6.10.1 L1-Norm Regression

An obvious alternative to least squares regression is to minimize ab-
solute deviations, instead of squared deviations. This is called L1 norm
regression. See, e.g., Dielman and Pfaffenberger [1982], Birkes and Dodge
[1993, ch. 4]. For a comprehensive bibliography see Dielman [1984]. Given
a sample of data, (yi, xi), where xi is a row vector of covariates, a linear
L1 norm regression will find parameter estimates by minimizing

n∑
i=1

| yi − xiβ | −→ min

The TDA command to solve this problem is called l1reg, its syntax is
shown in Box 1. The command uses a linear programming algorithm
developed by Barrodale and Roberts [1974]. For an extensive discussion
of this and related algorithms see also Späth [1987]. The syntax for the
l1reg command is

l1reg (parameter) = varlist;

The right-hand side must provide a list of variables for the regression. It
is a comma-separated list of variable names that must be given in the
following form:

Y1, X1, X2, . . . , Xm

First comes the name of the dependent variable, then follow names of
independent variables. The l1reg command can only be used with cross-
sectional data.

The solution of the L1 norm regression problem is not necessarily
unique. Information is given in the programm’s standard output. It may
also happen that the algorithm is not able to find a solution. If successful,
the l1reg command prints a table with estimated parameters into the
standard output.

In order to calculate standard errors TDA follows the advice of Birkes
and Dodge [1993, p. 63], See also Dielman and Pfaffenberger [1982]. The
steps are as follows.
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Box 1 Syntax for l1reg command

l1reg (

ni=1, if without intercept, def. ni=0
tfmt=..., print format for results, def. 10.4
df=..., print data to an output file
fmt=..., print format for df option, def. 10.0
ppar=..., print estimated coefficients to output file
pcov=..., print unscaled covariance matrix to output file
pres=..., print residuals to output file
mfmt=..., print format for pcov and pres option, def. 12.6
mplog=..., write norm of residuals into matrix
mppar=..., write estimated parameters into matrix
mpcov=..., write unscaled covariance matrix

into matrix

) = varlist;

Box 2 Data file l1reg4.dat

Y X1 X2

----------

37 4 22

40 6 24

48 6 18

44 9 20

50 11 15

51 12 9

1. The residuals, êi = yi− ŷi, are calculated and the non-zero residuals
are sorted in ascending order. Further calculations are only done if
the number of non-zero residuals, m, is at least 2.

2. Let k1 and k2 denote integers corresponding to (m+1)/2−
√

m and
(m + 1)/2 +

√
m, respectively. TDA then calculates

τ =
√

m (ê(k2) − ê(k1))
4

The value of τ is reported in the standard output.

3. If the data matrix, X, has full column rank, standard errors are
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Box 3 Command file l1reg4.cf

nvar(

dfile = l1reg4.dat,

Y = c1,

X1= c2,

X2 = c3,

);

l1reg = Y,X1,X2;

Box 4 Part of standard output from l1reg4.cf

L1-norm regression.

Variables (cross-section)

-------------------------

Y : Y

X1 : X1

X2 : X2

Solution is unique

Rank of data matrix: 3

Sum of absolute deviations: 9.7619

Number of non-zero residuals: 3

Tau: 3.7218 [calculated from residuals: -1.16667,7.42857]

Pseudorank of data matrix: 3

Norm of least squares residuals: 5.7642

Degrees of freedom: 3

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept 32.7143 16.8621 1.9401 0.8523

2 1 X1 1.5952 0.9462 1.6860 0.8096

3 1 X2 -0.0952 0.5537 -0.1720 0.1256

calculated as

S.E.(βj) = τ
√

diag{(X ′X)−1}j

4. Levels of significance are calculated by using a t-distribution with
n − k degrees of freedom where n is the number of data points and
k the number of covariates.

Example 1 To illustrate we replicate an example discussed in Birkes
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and Dodge [1993, p. 66]. The command file is l1reg4.cf, see Box 3. Part
of the standard output is shown in Box 4.



6.10.2 nonparametric regression 1

6.10.2 Nonparametric Regression

This section describes the npreg command for nonparametric regression
with a single independent variable. The syntax is shown in Box 1. The
right-hand side must provide exactly two variable names; the first one
will be used for the dependent variable, the second one for the indepen-
dent variable. Also required is the name of an output file, to be specified
with the df parameter, and a list of values for the independent variable
to be specified with the x parameter (see below). All other parameters
are optional.

General Approach

Consider a 2-dimensional variable (X, Y ). We seek for a regression

x −→ Representation of {Pr(Y = y |X = x)}

that assigns to each value in the range of X a representation of the
conditional distribution of Y given x. Our general approach will be to
consider intervals

[xj − d/2, xj + d/2] for j = 1, . . . ,m

and calculate a representation of the conditional distribution of Y for
each interval separately. The interval width, d > 0, can be specified
with the d parameter. The list of values, xj , must be specified with the
parameter

x = x1, . . . , xm

Alternatively, one can use the syntax

x = a(b)c

The expression on the right-hand side will then be expanded into

xj = a + (j − 1)b for j = 1, 2, . . .

as long as xj ≤ c. The output file will contain a separate record for each
value xj . The information provided will be described below, separately
for each option.
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Box 1 Syntax for npreg command

npreg (

opt=..., method selection, def. 1
1 : smoothed means
2 : smoothed quantiles
3 : smoothed frequencies

k=..., type of kernel (if opt=1), def. 1
1 : uniform
2 : triangle
3 : quartic
4 : Epanechnikov

d=..., band width, def. d = 1.0
x=..., list of points for x axis (required)
df=..., output file (required)
fmt=..., print format, def. 10.4
dtda=..., TDA description of output file
sel=..., optional case selection

) = Y,X;

Conditional Means

If opt = 1, the npreg command calculates conditional mean values:

xj −→ E(Y |X ∈ [xj − d/2, xj + d/2])

The calculation depends on the kernel selected with the k parameter.
By default, k=1, the npreg procedure uses a uniform kernel and simply
calculates the mean of all values of Y where the corresponding value of
X is in the interval [xj − d/2, xj + d/2]. In this case, the command also
calculates the conditional standard deviation of Y . Each record of the
output file will contain the following entries:

1. The record number j (records are j = 1, . . . ,m).

2. The value of xj .

3. Number of observations in [xj − d/2, xj + d/2].

4. Mean of X in [xj − d/2, xj + d/2].

5. Mean of Y in [xj − d/2, xj + d/2].

6. Standard deviation of Y in [xj − d/2, xj + d/2].
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Alternative Kernels

When estimating conditional means (opt=1) one can use the k parameter
to select one of the following kernel functions.1

1. Uniform:

Kd(x, xi) := I(|x− xi | ≤ d/2)
1
d

2. Triangle:

Kd(x, xi) := I(|x− xi | ≤ d/2)
2
d

(
1− |x− xi |

d/2

)
3. Quartic:

Kd(x, xi) := I(|x− xi | ≤ d/2)
15
8d

(
1−

(
x− xi

d/2

)2
)2

4. Epanechnikov:

Kd(x, xi) := I(|x− xi | ≤ d/2)
3
2d

(
1−

(
x− xi

d/2

))2

Given one of these kernels and assuming data given by (Xi, Yi), for i =
1, . . . , n, the conditional mean is calculated as

Ê(Y |X = x) =
∑n

i=1 Kd(xj , Xi)Yi∑n
i=1 Kd(xj , Xi)

Note that calculation of the conditional standard deviation of the de-
pendend variable is always based on a uniform kernel.

Conditional Quantiles

If opt = 2, the npreg command calculates conditional quantiles:

xj −→ Qp(Y |X ∈ [xj − d/2, xj + d/2])

This is done for

p = 0.1, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.9

Each record of the output file will contain the following entries:

1See, e.g., Härdle [1991] for a discussion of kernel-based regression methods.



6.10.2 nonparametric regression 4

1. The record number j (records are j = 1, . . . ,m).

2. The value of xj .

3. Number of observations in [xj − d/2, xj + d/2].

4. Mean of X in [xj − d/2, xj + d/2].

5. Then follow the conditional quantiles (11 values corresponding to
the list of p-values given above).

Conditional Frequencies

If opt = 3, the npreg command sorts the values of the dependent vari-
able in ascending order, say

y∗1 , . . . , y∗K

and then calculates conditional frequencies

xj −→ Pr(Y = y∗k |X ∈ [xj − d/2, xj + d/2])

for k = 1, . . . ,K. Each record of the output file will contain the following
entries:

1. The record number j (records are j = 1, . . . ,m).

2. The value of xj .

3. Number of observations in [xj − d/2, xj + d/2].

4. Mean of X in [xj − d/2, xj + d/2].

5. Then follow K entries containing the proportions

Pr(Y = y∗k |X ∈ [x− d/2, x + d/2])

Example 1 To illustrate we replicate an example discussed by Härdle
[1991, p. 124]. Box 2 shows the command file. The first nvar command
creates the data, defined by the function

yi = sin(2πx3
i )

3 + εi for i = 1, . . . , 256

where the xi are uniformely distributed in [0, 1], and εi is normally dis-
tributed with σ2 ≈ 0.1. A scatterplot of the data is shown in Figure 1.



6.10.2 nonparametric regression 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.2

-0.7

-0.2

0.3

0.8

1.3

1.8

Figure 1 Plot created with npreg1.cf (Example 1).

The function used to create the data (omitting the noise) is shown by a
dashed line.

Then follows the npreg command. We have selected conditional means
(opt=1) with a quartic kernel (k=3), interval width is d = 0.1. The esti-
mated values are written into an output file, d.out. Finally, the current
data matrix is cleared, a new data matrix is created by reading the data
file d.out, and the regression line is put as an additional plot object into
the plot output file. Figure 1 shows the estimated regression line as a
solid curve.
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Box 2 Command file npreg1.cf

nvar( # creates some random data

noc = 256,

X = rd,

E = 0.32 * rdn,

Z = sin(2 * pi * X * X * X),

Y = Z * Z * Z + E,

);

psfile = npreg1.ps; plot output file

psetup(

pxlen = 90, # length of x axis in mm

pylen = 50, # length of y axis in mm

pxa = 0,1, # user coordinates on x axis

pya = -1.2,1.8, # user coordinates on y axis

);

plxa (sc=0.1,ic=0); plot x axis

plya (sc=0.5,ic=0); plot y axis

plot( # scatterplot

s=5,

fs = 0.5,

lw = 0,

) = X,Y;

# plot the function without noise

plotf (rx=0(0.01)1,lw=0.3,lt=5) = ss = sin(2 * pi * x * x * x),

fn = ss * ss * ss;

npreg( # nonparametric regression

opt = 1, # conditional means

k = 3, # quartic kernel

d = 0.1,

df = d.out,

x = 0(0.01)1,

dtda = t,

) = Y,X;

clear; # delete data matrix

nvar( # read data created by npreg command

dfile = d.out,

X = c2 , # x value

YM = c5 , # mean of Y

);

plot(lw=0.5) = X,YM; plot regression curve
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6.11 Maximum Likelihood Estimation

Estimation of many models in TDA is based on maximum likelihood. In
general, this requires finding the maximum of the model’s likelihood by
an iterative procedure. This chapter begins with a short introduction and
then explains TDA’s fml command that can be used to maximize user-
defined log-likelihood functions. For an introduction to the mathematical
and algorithmic background see 5.6 on function minimization.

6.11.1 Introduction

6.11.2 The fml Command

d0611.tex April 21, 1998
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6.11.1 Introduction

The starting point of ML estimation is a hypothesis involving the distri-
bution of a random vector, say Y . The hypothesis is parametric, meaning
that it depends on an unknown parameter vector, say θ = (θ1, . . . , θq)′,
but is otherwise known. This allows to derive the distribution of Y ,
depending on θ. For any choice of θ, the hypothesis implies a specific
density of Y , say f(y, θ).

Evaluation of the hypothesis is based on a set of observations of Y . We
shall assume that there is a random sample of i = 1, . . . , n independent
observations yi, realizations of corresponding sample variates, Yi. Given
the sample of observations, its likelihood and log-likelihood are defined
by

L(y1, . . . , yn, θ) =
n∏

i=1

f(yi, θ) (1)

`(y1, . . . , yn, θ) =
n∑

i=1

log (f(yi, θ))

The ML principle simply states that a good estimator of θ can be found
by maximizing this likelihood or, equivalently, the log-likelihood func-
tion. We will denote this estimator by θ̂n.

The existence of the maximum likelihood estimator can be shown
under very general conditions, see, e.g., White [1982]. However, the esti-
mator is not necessarily unique. This depends on the hypothesis (model)
used to derive the likelihood function and cannot be shown in general.
If, for instance, the likelihood function contains two linear dependent
variables, there is no longer a unique maximum. In what follows we will
assume that the likelihood function has a unique global maximum.

Justification of the ML estimator is often based on asymptotic con-
siderations. To investigate its properties, the estimator is interpreted as
a function of the sample variates

θ̂n = θ̂n(Y1, . . . , Yn) (2)

and it is assumed that there is a density of Y , say g(y), according to which
the observed data have been generated. The problem is to compare g(y)
with f(y, θ̂n), the estimated density based on maximum likelihood.
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Standard maximum likelihood theory is based on the assumption that
the family of distributions, given by f(y, θ), contains as a special case
the unknown distribution which has generated the data. Consequently,
there is a true parameter vector, say θ◦, so that g(y) = f(y, θ◦). Given
this assumption, it can be shown under very general conditions that θ̂n

is a consistent estimator of θ◦.
However, in almost all practical work it is very difficult, or impossible,

to justify the assumption of a correct model specification. An interest-
ing justification of the ML estimator for situations where it is unknown
whether the assumption of a correct model specification holds has been
given by White [1982]. With reference to Akaike [1973], he shows how
ML estimation can be interpreted, then, as a method to minimize our
ignorance about the distribution that has generated the data.1 The rea-
soning is based on the Kullback-Leibler Information Criterion (KLIC),
defined by

I(g, f, θ) = E [log(g(Y )/f(Y, θ))] (3)

with expectation taken with respect to g(y). Given that I(g, f, θ) has a
unique minimum, say θ∗, it can be shown that θ̂n is a strongly consis-
tent estimator for θ∗.2 Furthermore, if there exists a θ◦ so that g(y) =
f(y, θ◦), it follows that θ∗ = θ◦.

This generalization of the classical ML approach has an important
implication for the question how to find an appropriate estimate of the
limiting distribution of θ̂n. In any case, as shown by White, the difference
θ̂n − θ∗ follows asymptotically a normal distribution with mean zero:

√
n(θ̂n − θ∗) A∼ N(0,∆) (4)

However, there are different ways to estimate the covariance matrix, ∆.
To show the alternatives, we shall use the following definitions.

Jn(θ) =

[
n∑

i=1

∂ log(f(Yi, θ))
∂θj

∂ log(f(Yi, θ))
∂θk

]
j,k=1,...,q

(5)

Hn(θ) =

[
n∑

i=1

∂2 log(f(Yi, θ))
∂θj ∂θk

]
j,k=1,...,q

1Of course, there is no way to transcend the horizon defined by assuming that at
least one member of f(y, θ) comes close to g(y).
2Actually some additional but very mild assumptions are required, see White [1982].
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J(θ) =
[
E
{

∂ log(f(Y, θ))
∂θj

∂ log(f(Y, θ))
∂θk

}]
j,k=1,...,q

(6)

H(θ) =
[
E
{

∂2 log(f(Y, θ))
∂θj ∂θk

}]
j,k=1,...,q

These are symmetrical (q, q) matrices. Jn(θ)/n is the sample mean, and
J(θ) is the expectation (again taken with respect to g(y)) of the outer
product of the gradient of the log-likelihood; and Hn(θ)/n is the sample
mean, and H(θ) is the expectation of the Hessian of the log-likelihood.

Given these definitions, the covariance matrix of the limiting distri-
bution (4) is:3

∆ = H(θ∗)−1J(θ∗)H(θ∗)−1 (7)

and, furthermore,

n Hn(θ∗)−1Jn(θ∗)Hn(θ∗)−1 a.s.−→ ∆ (8)

This shows that the left-hand side of (8) which is based on sample means
provides a consistent estimator of the covariance matrix, ∆.

This holds true even if the model is not correctly specified. There-
fore, the left-hand side of (8) is sometimes called a robust covariance
estimator. On the other hand, the classical ML approach can be shown
to be a special case. One needs the assumption that there is a θ◦ so that
g(y) = f(y, θ◦) and some additional regularity conditions. It follows,
then, that θ∗ = θ◦ and

−H(θ◦) = J(θ◦) and ∆ = −n H(θ◦)−1 = n J(θ◦)−1 (9)

Summing up, there are three different ways to approximate the covari-
ance matrix of an ML estimator. In TDA, this can be selected with the
ccov parameter as follows:4

Jn(θ̂n)−1 if ccov = 1 (10)

−Hn(θ̂n)−1 if ccov = 2 (11)

Hn(θ̂n)−1Jn(θ̂n)Hn(θ̂n)−1 if ccov = 3 (12)

3If the log-likelihood has a maximum it can be assumed that, at least in a neighbor-
hood of this maximum, the matrices defined in (6) are negative definite.
4Note that the program calculates estimated covariance matrices for θ̂n − θ∗.



6.11.1 introduction 4

For some models, the ccov option is not yet implemented and TDA

then uses the default, that is, ccov=2. In any case, the ccov parameter
is independent of the numerical algorithm used to maximize the log-
likelihood. Having found a (local) maximand, θ̂n, of the log-likelihood
with whatever method, TDA uses this estimate of the parameter vector
in an additional evaluation of the log-likelihood and its derivatives to
calculate the requested covariance estimator.
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6.11.2 The fml Command

TDA offers the fml command to find parameter estimates for a user-
defined log-likelihood. The syntax and all parameters are the same as in
the fmin command described in 5.6.1. The only difference is that the
default scaling factor is -1 for the fml command, while it is +1 for the
fmin command. The fml command needs a log-likelihood function on
its right-hand side. Its defintion must follow the syntax for functions
explained in 5.3.1.

Example 1 To illustrate, we use our standard example data set for
episode data and estimate a simple exponential model (see 6.17.2.1).
The command file, fml1.cf, is shown in Box 1. The nvar command
reads the episode data file rrdat.1 and defines variables. Then comes the
edef command to define an episode data structure. The rate command
estimates an exponential transition rate model using TDA’s standard ML
procedures. Then, the same model is estimated with the fml command.
Part of the standard output is shown in Box 2. The TDA example archive
contains a second example, fml2.cf, where the same model is estimated
by using numerical integration for the cumulated transition rate.
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Box 1 Command file fml1.cf

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

# define additional variables

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1,

DUR [3.0] = TF - TS + 1,

);

edef( # define single episode data

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

rate(

xa(0,1) = COHO2,COHO3,W,

) = 2;

fml (

xp = -4,0,0,0, # starting values

) = rate = exp(a0 + COHO2 * a1 + COHO3 * a2 + W * a3),

l1 = if(DES,log(rate),0),

fn = l1 - rate * DUR;
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Box 2 Part of standard output from fml1.cf

ML estimation of user-defined model.

Function definition:

rate = exp(a0+COHO2*a1+COHO3*a2+W*a3)

l1 = if(DES,log(rate),0)

fn = l1-rate*DUR

Function will be summed over 600 data matrix cases.

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Got starting values from xp parameter.

Idx Parameter Starting value

1 a0 -4.0000

2 a1 0.0000

3 a2 0.0000

4 a3 0.0000

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2475.44

Norm of final gradient vector: 1.10499e-11

Last absolute change of function value: 3.30667e-15

Last relative change in parameters: 5.84648e-07

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 a0 -5.0114 0.0843 -59.4446 1.0000

2 a1 0.5341 0.1120 4.7686 1.0000

3 a2 0.6738 0.1152 5.8472 1.0000

4 a3 0.5065 0.0942 5.3746 1.0000

Log likelihood (starting values): -2578.9484

Log likelihood (final estimates): -2475.4383
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6.12 Quantal Response Models

This chapter deals with models for a dependent variable with two or
more discrete categories. The models can be used with cross-sectional
and pooled panel data.

6.12.1 The qreg Command

6.12.2 Binary Logit and Probit

6.12.3 Ordinal Logit and Probit

6.12.4 Multinomial Logit

6.12.5 Multivariate Probit
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6.12.1 The qreg Command

A single command, qreg, is used to estimate all quantal response models.
The syntax is shown in Box 1. The command expects a list of variables
on the right-hand side, other parameters are optional.

Cross-section data. For cross-section data, the variables on the right-
hand side of the command should be specified as

qreg (parameter) = Y,X1, X2, ...;

First comes the name of the dependent variable, then follow the names
of independent variables. If the list of independent variables is empty,
the model is estimated with a single parameter for an intercept.

Panel data. The qreg command can also be used with panel data based
on a horizontal data organization, see 3.2. Assuming w waves, variables
must be specified in the following order:

qreg (parameter) = Y1, . . . , Yw,

X11, . . . , X1w,

X21, . . . , X2w,

. . . ,

Xm1, . . . , Xmw;

Using panel data requires to specify the number of waves with the nw pa-
rameter. By default, nw=1, that is, the command expects cross-sectional
data.

As a general convention, cases are considered valid if the dependent
variable has a non-negative value. This allows to use unbalanced panel
data. If variable Yt for wave t has a negative value for individual i, this
wave-specific data is omitted from the likelihood. For panel data, an
additional option is provided by the pmin parameter. If pmin=k, the like-
lihood only includes individuals who have valid data for at least k waves.
Default is pmin=1. The number of different categories in the dependent
variable is calculated from the set of non-zero values found in at least
one of these variables. These values are always taken as integers and then
sorted in ascending order. The smallest integer is taken as the reference
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Box 1 Syntax for qreg command

qreg (

m=..., model selection, def. 1
1 = binary logit
2 = binary probit
3 = ordinal logit
4 = ordinal probit
5 = multinomial logit
6 = multivariate probit
7 = conditional logit
8 = simultaneous binary probits

ni=1, if without intercept, def. 0
nq=..., number of categories if m=5
nw=..., number of waves, def. 1
pmin=..., minimum number of valid wave data, def. 1
tfmt=..., print format for results, def. 10.4
ppar=..., print estimated coefficients to output file
pcov=..., print covariance matrix to output file
res=..., additional output options
mfmt=..., print format for pcov option, def. 12.4
df=..., print data to an output file
dtda=..., TDA description of output file
fmt=..., print format for df option, def. 10.4
opt=..., model-specific options, def. 1
nhp=..., control of numerical integration, def. 6
eps=..., accuracy of numerical integration, def. 10−6

mplog=..., write loglikelihood value into matrix
mppar=..., write estimated parameters into matrix
mpcov=..., write covariance matrix into matrix
mpgrad=..., write gradients into matrix

) = varlist;

category. The maximum number of categories can be specified with the
maxcat parameter; default is maxcat=100.

Additional options. Model estimation is done with the maximum like-
lihood method. Most parameters discussed in 5.6.1 for the fmin com-
mand can also be used for the qreg command. This includes the selection
of a minimization algorithm and parameter constraints.
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1. Results of model estimation are written into the standard output.
The print format can be controlled with the tfmt parameter, default is
tfmt=10.4. For a description of the output see the examples given in
subsequent sections.

2. The parameter

ppar = name of an output file,

can be used to write the estimated model coefficients (and standard
errors) into an output file. The print format is determined by tfmt.

3. By default, the covariance matrix is calculated from the matrix of
second derivatives of the log-likelihood function. One can use the ccov
parameter to require an alternative calculation procedure; see the dis-
cussion in 5.6.5 and 6.11.1.

4. The parameter

pcov = name of an output file,

can be used to write the estimated covariance matrix into an output file.
The print format can be controlled with the mfmt parameter, default is
mfmt=12.4.

5. The data used for model estimation can be written into an output
file with the df parameter. For most models, the output file will then
also include estimated probabilities for each individual case. Using the
dtda parameter provides a description of the output file corresponding
to the syntax of TDA. The print format can be controlled with the fmt
parameter.

6. Some of the additional parameters are model-specific and will be
explained in the corresponding sections.
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6.12.2 Binary Logit and Probit

This section describes simple logit and probit models for cross-sectional
or pooled panel data. It is assumed that the dependent variable, Y , has
only two possible values, Y ∈ {0, 1}. The 0-1 coding is actually only used
to ease notation, any other non-negative integer values may be used.
TDA always sorts the categories of the dependent variable in ascend-
ing order, the sorted categories are then mapped to 0 and 1. Choosing
category 0 to be the reference category, the modeling approach is

Pr (Y = 1 | x) = F (x;β) (1)

F is a suitably chosen function depending on a parameter vector β and
a (row) vector of covariates, x. For each possible realization of these
covariates, the model implies an estimate of the probability that the
dependent variable takes the value 1.

The function F can be specified in many different ways; each specifi-
cation results in a different type of model. Most commonly, the specifi-
cation is in terms of a cumulative distribution function; this guarantees
its values to be in the range of zero to one, required for an interpretation
as probabilities. If the distribution function has only a single parame-
ter, the dependence on covariates is modeled by a single predictor, most
commonly assumed to be linear, i.e., xβ. Of course, in principle it would
also be possible to use more general distribution functions with two or
more parameters and then linking covariates differently to all of these
parameters.

Two choices of F are most popular. One is the distribution function
of the logistic distribution

F (y) =
exp(y)

1 + exp(y)

Choosing this distribution function leads to a logit model:

Pr (Y = 1 | x) =
exp(xβ)

1 + exp(xβ)
(2)

Another popular choice is the standard normal distribution function

Φ(x) =
∫ x

−∞
φ(u) du with φ(u) =

1√
2 π

exp(−1
2

u2) (3)
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-4 -3 -2 -1 0 1 2 3 4
0

1

Figure 1 Normal and logistic distribution functions.

Choosing the normal distribution function to specify (1) leads to a probit
model:

Pr (Y = 1 | x) = Φ(xβ) (4)

Both distributions are very similar as can be seen in Figure 1.1 The solid
and dashed lines show the standard logistic and the standard normal
distribution functions, respectively. The difference is mainly due to a
different variance. The standard logistic distribution has variance π2/3.
A normal distribution function with this variance is plotted as a dotted
line in Figure 1.

However, in both models it is not possible to include explicitly a sepa-
rate parameter for the variance. Taking Φ(xβ/σ) in (4), or exp(σxβ)/(1+
exp(σxβ)) in (2), shows that σ is not identified. In both, the logit and
probit model, the parameter vector β is identified only up to a multi-
plicative scalar.

Maximum Likelihood Estimation. Using yi to denote observed val-
ues of the dependent variables, the likelihood of a sample of observations
can be written

L =
N∏

i=1

Pr (Yi = 1 | xi)yi Pr (Yi = 0 | xi)1−yi (5)

Case weights will be used if defined with the cwt command.

1The plot was created with command file plot-bin.cf contained in the TDA example
archive.
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Logit Model. Inserting the logit specification (2) and taking logarithms
gives the log-likelihood of the logit model:

` =
N∑

i=1

yi log
{

exp(xiβ)
1 + exp(xiβ)

}
+ (1− yi) log

{
1

1 + exp(xiβ)

}

=
N∑

i=1

yi xiβ − log {1 + exp(xiβ)}

This log-likelihood is well behaved (globally concave) and can be maxi-
mized easily with the standard Newton algorithm. The first and second
derivatives with respect to the components of the parameter vector, β,
are

∂`

∂βj
=

N∑
i=1

{
yi −

exp(xiβ)
1 + exp(xiβ)

}
xij

∂2`

∂βj ∂βk
=

N∑
i=1

− exp(xiβ)
(1 + exp(xiβ))2

xij xik

Here it is assumed that there are j = 1, . . . ,m covariates, xij being the
jth covariate for individual i. If the model is specified to include an
intercept (default), xi1 is a constant one.

Probit Model. Inserting the probit specification (4) into (5) and taking
logarithms gives the log-likelihood for the probit model:

` =
N∑

i=1

yi log {Φ(xiβ)}+ (1− yi) log {1− Φ(xiβ)}

The first and second derivatives with respect to the model parameters
are

∂`

∂βj
=

N∑
i=1

{
yi

φ(xiβ)
Φ(xiβ)

− (1− yi)
φ(xiβ)

1− Φ(xiβ)

}
xij

∂2`

∂βj ∂βk
=

N∑
i=1

{
yi

φ(xiβ)
Φ(xiβ)

[
−xiβ −

φ(xiβ)
Φ(xiβ)

]
+

(1− yi)
φ(xiβ)

1− Φ(xiβ)

[
xiβ −

φ(xiβ)
1− Φ(xiβ)

]}
xij xik
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Box 1 Data file qr1.dat

D W R

---------

1 9 0

1 1 1

2 10 0

2 2 1

3 6 0

3 4 1

4 5 0

4 5 1

5 4 0

5 8 1

6 2 0

6 8 1

7 10 1

As in (3), φ denotes the standard normal density function; xij denotes
the observed value of the jth covariate for the ith individual.

Implementation. Both, the binary logit and probit model can be es-
timated with the qreg command; the m=1 parameter selects the logit
model, the m=2 parameter selects the probit model.

Model estimation is done by maximum likelihood as described above.
The default algorithm is mina=5 (Newton I). It is possible to use the ccov
option to select a specific type of covariance matrix calculation; default
is ccov=2, that is, the covariance matrix is create from the Hessian of
the log-likelihood. The parameter vector, and accordingly the first and
second derivatives of the log-likelihood, is organized as

β1 . . . βm

with m the number of covariates. As default, the first parameter is added
automatically as an intercept. The ni=1 option can be used to estimate a
model without an intercept. Since the log-likelihood for the simple logit
and probit models is globally concave, starting values for its iterative
maximization are, in most cases, not critical. As a default, TDA sets all
starting values to zero.

Example 1 To illustrate estimation of logit and probit models, we use
a small example data set taken from the SAS User’s Guide (Version 6, vol.
II, p. 1340). The data file, qr1.dat, is shown in Box 1. Each row of the
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Box 2 command file qr1.cf

nvar(

dfile = qr1.dat,

Dose = c1,

Weight = c2,

Response = c3,

Log10Dose = log(Dose) / log(10),

);

cwt = Weight; use case weights

qreg = Response,Log10Dose; logit model

qreg (m=2) = Response,Log10Dose; probit model

# fml command to estimate same logit model

fml = xb = beta0 + Log10Dose * beta1,

fn = Weight * (Response * xb - log(1 + exp(xb)));

# fml command to estimate same probit model

fml = pxb = nd (beta0 + Log10Dose * beta1),

fn = Weight * (Response * log(pxb) +

(1 - Response) * log(1 - pxb));

data file corresponds to a group of individuals with the stimulus variable
recorded in Log10Dose, the response variable recorded in Response, and
the number of individuals given in Weight.

The command file qr1.cf, shown in Box 2, estimates a logit and a
probit model. First this is done with the qreg command, then with TDA’s
fml command that requires a user-defined log-likelihood (see 6.11.2).
Part of the standard output of the qreg commands is shown in Box 3
(logit model) and Box 4 (probit model).

Standardized Effect Coefficients. As described by Long [1987], to
ease interpretation of estimation results of binary (and multinomial) logit
models, it is helpful to calculate standardized effect coefficients, defined
by

standardized effect of jth covariate = exp(β̂j σ̂(Xj))

σ̂(Xj) is the standard deviation of covariate Xj . A calculation of these
standardized effects can be requested with the parameter

res = 1,
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Box 3 Part of standard output from qr1.cf (logit model)

Model: binary logit.

Variables (cross-section)

-------------------------

Y : Response

X1 : Log10Dose

Checking available data (pmin=1)

Number of cases with valid data: 13

Categories of dependent variable.

Maximum number of categories: 100

Index 0 1 (Weighted)

Category 0 1 Observations

---------------------------------------------

Wave 1 N 36.00 38.00 74.00

Pct 48.65 51.35

Using case weights defined by: Weight

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 2

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -37.1107

Norm of final gradient vector: 1.5979e-10

Last absolute change of function value: 9.82354e-12

Last relative change in parameters: 7.41904e-06

Idx Cat Term Variable Coeff Error C/Error Signif

-----------------------------------------------------------------

1 1 I Intercept -3.2246 0.8861 -3.6393 0.9997

2 1 X Log10Dose 5.9702 1.4492 4.1197 1.0000

Log likelihood (starting values): -51.2929

Log likelihood (final estimates): -37.1107
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Box 4 Part of standard output from qr1.cf (probit model)

Model: binary probit.

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -37.2804

Norm of final gradient vector: 3.44131e-07

Last absolute change of function value: 2.0696e-08

Last relative change in parameters: 0.00030733

Idx Cat Term Variable Coeff Error C/Error Signif

-----------------------------------------------------------------

1 1 I Intercept -1.8127 0.4493 -4.0341 0.9999

2 1 X Log10Dose 3.4181 0.7455 4.5847 1.0000

Log likelihood (starting values): -51.2929

Log likelihood (final estimates): -37.2804

Box 5 Standardized coefficients (logit model)

Standardized coefficients.

Idx Cat Term Variable Coeff Exp(C) Exp(C*SD) Std.Dev.

--------------------------------------------------------------------

1 1 I Intercept -3.2246 0.0398 1.0000 0.0000

2 1 X Log10Dose 5.9702 391.5761 1.0000 0.0000

To illustrate, adding this command to command file qr1.cf creates the
table shown in Box 5. Standardized effects are only calculated for cross-
sectional input data (nw=1).

Estimated Probabilities. The df parameter can be used to request an
output file that contains the data used for model estimation and, in ad-
dition, the estimated probabilities. An illustration is given in Box 6. The
columns labelled PROB0 and PROB1 contain the estimated probabilities
for Y to take the values 0 and 1, respectively, conditional on the corre-
sponding values of the covariates, calculated as F (xβ) and 1 − F (xβ),
respectively.

The column labelled PROB is the probability for the actually observed
value of the dependent variable. The data in Box 6 have been created
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Box 6 Illustration of df and dtda parameters

Contents of file requested by dtda parameter

nvar(

dfile = df,

noc = 13,

CaseID [6.0] = c1 ,

Wave [2.0] = c2 ,

Response [10.4] = c3 ,

Log10Dose [10.4] = c4 ,

Weight [10.4] = c5 ,

PROB [10.4] = c6 ,

PROB0 [10.4] = c7 ,

PROB1 [10.4] = c8 ,

);

Contents of file requested by df parameter

1 1 0.0000 0.0000 9.0000 0.9618 0.9618 0.0382

2 1 1.0000 0.0000 1.0000 0.0382 0.9618 0.0382

3 1 0.0000 0.3010 10.0000 0.8065 0.8065 0.1935

4 1 1.0000 0.3010 2.0000 0.1935 0.8065 0.1935

5 1 0.0000 0.4771 6.0000 0.5929 0.5929 0.4071

6 1 1.0000 0.4771 4.0000 0.4071 0.5929 0.4071

7 1 0.0000 0.6021 5.0000 0.4086 0.4086 0.5914

8 1 1.0000 0.6021 5.0000 0.5914 0.4086 0.5914

9 1 0.0000 0.6990 4.0000 0.2792 0.2792 0.7208

10 1 1.0000 0.6990 8.0000 0.7208 0.2792 0.7208

11 1 0.0000 0.7782 2.0000 0.1945 0.1945 0.8055

12 1 1.0000 0.7782 8.0000 0.8055 0.1945 0.8055

13 1 1.0000 0.8451 10.0000 0.8607 0.1393 0.8607

by adding the parameters

df = name of an output file,

dtda = name of an output file,

to the qreg command for a logit model (see command file qr1a.cf, not
shown).
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6.12.2.1 Grouped Data

Assume that the sample consists of m groups and the ith group has ni

members. Let yi denote the number of members in group i who have
Y = 1. The likelihood may then be written as

L =
m∏

i=1

(
ni

yi

)
pyi

i (1− pi)ni−yi (1)

where pi is the probability for Y = 1 in group i, see Collett [1991, p. 57].
If one not just observes ni and yi, but also group-specific vectors of
covariates, say xi, one might go on and model the dependence of pi on
xi. For example, using a logit specification, one can assume

pi =
exp(xiβ)

1 + exp(xiβ)

The model is easily estimated with the qreg command using either in-
dividual or grouped data. For example, with grouped data, one can use
a data structure like

Y W X

1 yi xi

0 ni − yi xi

...
...

...

to be repeated for each group. The model is estimated by defining case
weights with cwt = W and then using the command

qreg (parameter) = Y,X;

Given that the data are clustered into groups it may also make sense to
estimate a multilevel model, see, e.g., Collett [1991, p. 207]. One approach
is by including a random effect into the model specification. Using again
a logit model, one might write

pi =
exp(xiβ + ziγ)

1 + exp(xiβ + ziγ)

d06120201.tex April 21, 1998
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Box 1 Data file qr5.dat

Y N S X Y N S X Y N S X Y N S X

----------- ----------- ----------- ------------

10 39 0 0 5 6 0 1 8 16 1 0 3 12 1 1

23 62 0 0 53 74 0 1 10 30 1 0 22 41 1 1

23 81 0 0 55 72 0 1 8 28 1 0 15 30 1 1

26 51 0 0 32 51 0 1 23 45 1 0 32 51 1 1

17 39 0 0 46 79 0 1 0 4 1 0 3 7 1 1

10 13 0 1

where zi is a random number drawn from some distribution and γ an
additional model parameter. In order to make the model estimable, one
needs an assumption about the distribution of the random effects. As-
suming a density, say φ(z), one can then try a marginal likelihood ap-
proach:

L =
m∏

i=1

∫ ∞

−∞

(
ni

yi

)
pyi

i (1− pi)ni−yiφ(zi) d@, zi (2)

For a discussion of this model where it is assumed that φ is a standard
normal density, see Collett [1991, pp. 207–212].

Example 1 While it is not possible to use the qreg command for mul-
tilevel models one can try to set up the likelihood directly and then use
the fml command, see 6.11.2. To illustrate this approach we use an ex-
ample from Collett [1991, p. 211]. The data are shown in Box 1. There
are 21 groups. N is the number of group members, and Y is the number
of individuals with Y = 1. S and X are covariates (four categories).

The command file is qr5.cf, shown in Box 2. The first fml command
uses the likelihood (1). Since the likelihood is well-behaved, there is no
need to specify starting values (as default, all are zero), and one can use
TDA’s default Newton algorithm for function minimization. First and
second derivatives are automatically calculated as discussed in 5.3.2.
Box 3 shows part of the standard output. As can be seen from this
output, convergence is reached in four iterations.

To estimate a random effects model is far more difficult since we then
need numerical integration and do not know much about the behavior of
the likelihood. The second fml command in command file qr5.cf uses a
direct translation of the likelihood shown in (2). Creating the marginal
likelihood is done with the intn operator that uses Hermite integration
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Box 2 Command file qr5.cf

nvar(

dfile = qr5.dat,

Y = c1,

N = c2,

S = c3,

X = c4,

SX = S * X,

);

# standard logit model

fml = xb = beta0 + S * beta1 + X * beta2 + SX * beta3,

ee = bc(N,Y) * (exp(xb)^Y) / ((1 + exp(xb))^N) ,

fn = log(ee);

# logit model with random effects

fml(

mina = 4,

xp = -0.5582,0.1459,1.3182,-0.7781,0.1, # starting values

) = xb = beta0 + S * beta1 + X * beta2 + SX * beta3,

ee = intn(7,bc(N,Y) * (exp(xb+t*gam)^Y)/((1 + exp(xb+t*gam))^N) ),

fn = log(ee);

to calculate

intn(p, expression(t)) ≈
∫ ∞

−∞
expression(t)φ(t) d@, t

where φ is a standard normal density and p is the number of Hermite
integration points. For more information on this operator, see 5.4.2.

Since the likelihood is difficult to maximize, we use starting values
taken from the estimation results of the simple logit model. Also, we
use the BFGS algorithm (mina=4) that only requires first derivatives.1

Nevertheless, having reached convergence, standard errors are calculated
from the Hessian of second derivatives. Box 4 shows the estimation re-
sults. They are basically identical with the results found by Collett [1991,
p. 212] who used the EGRET program.

1The performance of the minimization algorithm depends, in particular, on the num-
ber of integration points. It might be necessary to begin with a low number of inte-
gration points and then using the estimated parameters as starting values for higher
number of integration points.
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Box 3 Part of standard output from qr5.cf

ML estimation of user-defined model.

Function definition:

xb = beta0+S*beta1+X*beta2+SX*beta3

ee = bc(N,Y)*(exp(xb)^Y)/((1+exp(xb))^N)

fn = log(ee)

Function evaluation: sum over 21 data matrix cases.

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Idx Parameter Starting value

1 beta0 0.00000000e+00

2 beta1 0.00000000e+00

3 beta2 0.00000000e+00

4 beta3 0.00000000e+00

Convergence reached in 4 iterations.

Number of function evaluations: 5 (5,5)

Maximum of log likelihood: -54.937

Norm of final gradient vector: 7.20504e-07

Last absolute change of function value: 2.61263e-08

Last relative change in parameters: 0.000299634

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 beta0 -0.5582 0.1260 -4.4292 1.0000

2 beta1 0.1459 0.2232 0.6539 0.4868

3 beta2 1.3182 0.1775 7.4277 1.0000

4 beta3 -0.7781 0.3064 -2.5392 0.9889

Log likelihood (starting values): -87.8318

Log likelihood (final estimates): -54.9370
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Box 4 Part of standard output from qr5.cf

ML estimation of user-defined model.

Function definition:

xb = beta0+S*beta1+X*beta2+SX*beta3

ee = intn(7,bc(N,Y)*(exp(xb+t*gam)^Y)/((1+exp(xb+t*gam))^N))

fn = log(ee)

Function evaluation: sum over 21 data matrix cases.

Maximum likelihood estimation.

Algorithm 4: BFGS

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 100

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Minimum of step size value: 1e-10

Scaling factor: -1

Got 5 starting value(s) from xp parameter.

Idx Parameter Starting value

1 beta0 -5.58200000e-01

2 beta1 1.45900000e-01

3 beta2 1.31820000e+00

4 beta3 -7.78100000e-01

5 gam 1.00000000e-01

Convergence reached in 16 iterations.

Number of function evaluations: 19 (19,1)

Maximum of log likelihood: -53.7562

Norm of final gradient vector: 6.18713e-07

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 beta0 -0.5481 0.1668 -3.2861 0.9990

2 beta1 0.0965 0.2785 0.3464 0.2710

3 beta2 1.3369 0.2369 5.6442 1.0000

4 beta3 -0.8104 0.3853 -2.1034 0.9646

5 gam 0.2368 0.1110 2.1335 0.9671

Log likelihood (starting values): -54.4375

Log likelihood (final estimates): -53.7562
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6.12.3 Ordinal Logit and Probit

This section describes logit and probit models for a dependent variable
with ordered categories. (For an applied introduction with social science
examples see Ludwig-Mayerhofer [1990].) It is assumed that there are at
least three such categories:

R1 < R2 < . . . < Rq q ≥ 3

The dependent variable is

Y ∈ {R1, R2, . . . , Rq} q ≥ 3 (1)

with observed values denoted by yi; xi is a corresponding row vector
containing, say, m covariates. There are two mathematically equivalent
methods to extend the simple binary logit and probit models discussed
in 6.12.2 to the case of an ordinal response variable. One approach is
to formulate the model in terms of cumulative probabilities (logits or
probits), the other approach uses the concept of a latent variable.

Cumulative Logits and Probits. The definition of cumulative prob-
abilities (logits or probits) is given by

θj = Pr (Y > Rj) j = 1, . . . , q

Of course, θq = 0. Defining θ0 = 1, it follows that

Pr (Y = Rj) = θj−1 − θj j = 1, . . . , q

Using these quantities, θj , a general probability model for an ordinal
dependent variable can be written

θj = F (αj + xβ) j = 1, . . . , q − 1 (2)

where F is a suitably chosen distribution function. The basic idea is to
assume a different intercept, αj , for each of the ordered categories of
the dependent variable. In this way, the model links the covariates to
the probability of reaching a given level of the dependent variable. Since
θq = 0, only q − 1 intercepts can be estimated, and there cannot be an
additional intercept in the vector of covariates, x.
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Choosing F as a logistic distribution function leads to the logit model
for an ordinal dependent variable:

θj =
exp (αj + xβ)

1 + exp (αj + xβ)
j = 1, . . . , q − 1

The corresponding probit model is

θj = Φ(αj + xβ) j = 1, . . . , q − 1

with Φ denoting the standard normal distribution function.

Formulation with a Latent Variable. Another way to derive proba-
bility models for an ordered dependent variable, discussed by McKelvey
and Zavoina [1975],1 is in terms of a continuous latent variable, say Y ∗.
It is assumed that there are unknown threshold values

−∞ = µ0 < µ1 < . . . < µq−1 < µq =∞

so that there is a correspondence

Y = Rj ⇔ µj−1 < Y ∗ ≤ µj j = 1, . . . , q

This approach leads to an ordinary regression model for Y ∗ that can be
written

Y ∗ = xβ + ε (3)

However, the model can equally well be written as a probability model,
and then it is seen to be equivalent to the formulation given in (2).

θj = Pr (Y > Rj) = Pr (Y ∗ > µj) (4)

= Pr (−ε < xβ − µj) = F (xβ − µj)

with F the distribution function of the disturbance term, ε, in (3).2 It
follows that

αj = −µj j = 1, . . . , q − 1

1The same approach has been used earlier to find a scaling procedure for ordinal
categorical data, see Snell [1964].
2It is assumed that ε has zero mean and that F is symmetric.
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This assumes that the covariate vector x does not contain an intercept.
Of course, other parametrizations are possible.3

Maximum Likelihood Estimation. The likelihood of a sample of
observations can be written as

L =
N∏

i=1

q∏
j=1

Pr (Yi = Rj | xi)wij

with indicator variables wij defined by

wij =
{

1 if Yi = Rj

0 otherwise

Using cumulative logits or probits, the log-likelihood is

` =
N∑

i=1

q∑
j=1

wij log(θi,j−1 − θij)

To maximize this expression and to estimate the covariance matrix, one
needs first and second derivatives with respect to αu (u = 1, . . . , q − 1)
and with respect to the components of the parameter vector, β. They
are given below for the logit and probit case.

Ordinal Logit. To simplify notation, the following abbreviations are
used:

Pij = θi,j−1 − θij , Ci0 = Ciq = 0

Cij =
θij

1 + exp (αj + xiβ)

Dij =
Cij

1 + exp (αj + xiβ)
j = 1, . . . , q − 1

3LIMDEP, for instance, sets µ0 = 0 and requires an intercept in x. The correspon-
dence is then given by α1 = estimate of the global intercept, and αj = α1 − µj−1.
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With these abbreviations and using the Kronecker symbol, δij , the first
and second derivatives are

∂`

∂αu
=

m∑
i=1

q∑
j=1

wij
δu,j−1Ci,j−1 − δujCij

Pij

∂`

∂βu
=

m∑
i=1

q∑
j=1

wij
Ci,j−1 − Cij

Pij
xiu

∂2`

∂αu∂αv
=

m∑
i=1

q∑
j=1

wij

{
δu,j−1δv,j−1(Di,j−1 − Ci,j−1θi,j−1)

Pij
−

δu,jδvj(Dij − Cijθij)
Pij

−

(δu,j−1Ci,j−1 − δujCij)(δv,j−1Ci,j−1 − δvjCij)
PijPij

}
∂2`

∂βu∂βv
=

m∑
i=1

q∑
j=1

wijxiuxiv

{
(Di,j−1 − Ci,j−1θi,j−1)

Pij
−

(Dij − Cijθij)
Pij

−
[
Ci,j−1 − Cij

Pij

]2}

∂2`

∂βu∂αv
=

m∑
i=1

q∑
j=1

wijxiu

{
δv,j−1(Di,j−1 − Ci,j−1θi,j−1)

Pij
−

δvj(Dij − Cijθij)
Pij

− (Ci,j−1 − Cij)(δv,j−1Ci,j−1 − δvjCij)
PijPij

}
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Ordinal Probit. Using the abbreviations

Eij = αj + xiβ, and Φij = Φ(αi + xiβ)

the first and second derivatives can be written as

∂`

∂αu
=

m∑
i=1

q∑
j=1

wij
δu,j−1Φi,j−1 − δujΦij

Pij

∂`

∂βu
=

m∑
i=1

q∑
j=1

wij
Φi,j−1 − Φij

Pij
xiu

∂2`

∂αu∂αv
=

m∑
i=1

q∑
j=1

wij

{
δujδvjEijΦi,j − δu,j−1δv,j−1Ei,j−1Φi,j−1

Pij
−

(δu,j−1Φi,j−1 − δujΦij)(δv,j−1Φi,j−1 − δvjΦij)
PijPij

}
∂2`

∂βu∂βv
=

m∑
i=1

q∑
j=1

wijxiuxiv

{
EijΦij − Ei,j−1Φi,j−1

Pij
−

[
Φi,j−1 − Φij

Pij

]2}

∂2`

∂βu∂αv
=

m∑
i=1

q∑
j=1

wijxiu

{
δvjEijΦij − δv,j−1Ei,j−1Φi,j−1

Pij
−

(Φi,j−1 − Φij)(δv,j−1Φi,j−1 − δvjΦij)
PijPij

}

Implementation. Both models can be estimated with the qreg com-
mand. m=3 selects the ordinal logit, m=4 selects the ordinal probit model.
Default is cross-sectional data. If there are two or more panel waves, the
data are pooled over waves. The models are parameterized using cumu-
lative logits and probits. Estimation is done by maximum likelihood as
described above.

Both models have m + q − 1 parameters where m is the number of
covariates and q is the number of categories of the dependent variable. It
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Box 1 Data file qr2.dat

Y X1 X2 Y X1 X2

------------------ ------------------

2 1.163 1.000 1 1.058 1.000

2 3.453 0.000 0 2.607 1.000

2 3.724 0.000 0 2.162 0.000

0 1.090 0.000 1 2.145 0.000

3 3.819 0.000 0 1.103 0.000

1 2.838 1.000 1 1.914 0.000

3 1.516 1.000 3 3.610 0.000

3 1.417 1.000 3 3.579 1.000

0 2.436 1.000 3 3.379 1.000

2 3.300 1.000 1 3.175 0.000

Box 2 Command file qr2.cf

nvar(

dfile = qr2.dat,

Y = c1,

X1 = c2,

X2 = c3,

);

qreg (m=3) = Y,X1,X2; ordinal logit

qreg (m=4) = Y,X1,X2; ordinal probit

fml( # ordinal logit with fml command

xp = -2,-3,-4,0,0,

) = xb = X1 * beta1 + X2 * beta2,

theta0 = 1,

theta1 = eexp(alpha1 + xb),

theta2 = eexp(alpha2 + xb),

theta3 = eexp(alpha3 + xb),

ll = if (eq(Y,0),theta0 - theta1,

if (eq(Y,1),theta1 - theta2,

if (eq(Y,2),theta2 - theta3, theta3))),

fn = log(ll);

is required that q ≥ 3. A separate intercept must not be specified. The
parameter vector is organized as follows:

α1 . . . αq−1 β1 . . . βm
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Box 3 Part of standard output from qr2.cf (logit model)

Model: ordinal logit.

Variables (cross-section)

-------------------------

Y : Y

X1 : X1

X2 : X2

Categories of dependent variable.

Maximum number of categories: 100

Index 0 1 2 3 (Weighted)

Category 0 1 2 3 Observations

-----------------------------------------------------------------

Wave 1 N 5.00 5.00 4.00 6.00 20.00

Pct 25.00 25.00 20.00 30.00

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -24.4642

Norm of final gradient vector: 5.20097e-09

Last absolute change of function value: 1.43246e-10

Last relative change in parameters: 1.81865e-05

Idx Cat Term Variable Coeff Error C/Error Signif

-----------------------------------------------------------------

1 - I 1 Alpha 1 -1.7466 1.3020 -1.3414 0.8202

2 - I 2 Alpha 2 -3.1531 1.4312 -2.2032 0.9724

3 - I 3 Alpha 3 -4.2253 1.5565 -2.7146 0.9934

4 - X X1 1.0121 0.4637 2.1826 0.9709

5 - X X2 1.3100 0.8949 1.4639 0.8568

Log likelihood (starting values): -27.5245

Log likelihood (final estimates): -24.4642
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Box 4 Part of standard output from qr2.cf (probit model)

Model: ordinal probit.

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -24.5741

Norm of final gradient vector: 5.01377e-10

Last absolute change of function value: 9.6685e-12

Last relative change in parameters: 3.42967e-06

Idx Cat Term Variable Coeff Error C/Error Signif

-----------------------------------------------------------------

1 - I 1 Alpha 1 -1.0868 0.8207 -1.3243 0.8146

2 - I 2 Alpha 2 -1.9059 0.8692 -2.1927 0.9717

3 - I 3 Alpha 3 -2.5413 0.9193 -2.7645 0.9943

4 - X X1 0.6122 0.2801 2.1853 0.9711

5 - X X2 0.7563 0.5225 1.4475 0.8522

Log likelihood (starting values): -29.5284

Log likelihood (final estimates): -24.5741

To provide starting values, they must be given in this order. Default
starting values are calculated as

β = 0 and αj = log

{
θ̃j

1− θ̃j

}

where θ̃j is the weighted fraction of cases with Yi > Rj . In most cases,
this is sufficient to reach convergence.

Example 1 To illustrate estimation of ordered logit and probit mod-
els with TDA we replicate an example taken from the LIMDEP manual
(version 6, p. 532). The data file is qr2.dat, shown in Box 1. The de-
pendent variables has four categories. The command file, qr2.cf (Box
2), first uses two qreg commands to estimate an ordinal logit and an or-
dinal probit model, respectively. Finally, there is an fml command that
illustrates how to estimate the ordinal logit model with a user-defined
log-likelihood. Output from the qreg commands is shown in Box 3 (logit
model) and 4 (probit model).
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The df Option. Box 5 illustrates the df and dtda parameters using the
data from Example 1 with a logit specification. The output file created
with the df parameter contains the data used for model estimation and,
in addition, estimated cumulative probabilities calculated according to
formula (4). The column labelled PROB contains the value for the actually
observed category.
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Box 5 Illustration of df and dtda option

nvar( result of dtda parameter

dfile = df,

noc = 20,

CaseID [6.0] = c1 ,

Wave [2.0] = c2 ,

Y [10.4] = c3 ,

X1 [10.4] = c4 ,

X2 [10.4] = c5 ,

PROB [10.4] = c6 ,

PROB0 [10.4] = c7 ,

PROB1 [10.4] = c8 ,

PROB2 [10.4] = c9 ,

PROB3 [10.4] = c10,

);

result of df paramter

1 1 2.0000 1.1630 1.0000 0.1495 0.6771 0.3394 0.1495 0.0000

2 1 2.0000 3.4530 0.0000 0.3251 0.8517 0.5846 0.3251 0.0000

3 1 2.0000 3.7240 0.0000 0.3879 0.8831 0.6493 0.3879 0.0000

4 1 0.0000 1.0900 0.0000 0.3445 0.3445 0.1141 0.0422 0.0000

5 1 3.0000 3.8190 0.0000 0.0000 0.8927 0.6709 0.4109 0.0000

6 1 1.0000 2.8380 1.0000 0.7368 0.9195 0.7368 0.4893 0.0000

7 1 3.0000 1.5160 1.0000 0.0000 0.7498 0.4234 0.2009 0.0000

8 1 3.0000 1.4170 1.0000 0.0000 0.7306 0.3992 0.1853 0.0000

9 1 0.0000 2.4360 1.0000 0.8838 0.8838 0.6508 0.3894 0.0000

10 1 2.0000 3.3000 1.0000 0.6046 0.9480 0.8171 0.6046 0.0000

11 1 1.0000 1.0580 1.0000 0.3160 0.6535 0.3160 0.1365 0.0000

12 1 0.0000 2.6070 1.0000 0.9004 0.9004 0.6890 0.4313 0.0000

13 1 0.0000 2.1620 0.0000 0.6086 0.6086 0.2759 0.1154 0.0000

14 1 1.0000 2.1450 0.0000 0.2725 0.6045 0.2725 0.1136 0.0000

15 1 0.0000 1.1030 0.0000 0.3475 0.3475 0.1154 0.0427 0.0000

16 1 1.0000 1.9140 0.0000 0.2286 0.5475 0.2286 0.0921 0.0000

17 1 3.0000 3.6100 0.0000 0.0000 0.8707 0.6226 0.3609 0.0000

18 1 3.0000 3.5790 1.0000 0.0000 0.9603 0.8556 0.6698 0.0000

19 1 3.0000 3.3790 1.0000 0.0000 0.9518 0.8287 0.6235 0.0000

20 1 1.0000 3.1750 0.0000 0.5151 0.8126 0.5151 0.2666 0.0000
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6.12.4 Multinomial Logit

We now consider a multinomial logit model for a depending variable with
two or more unordered categories:

Y ∈ {R1, R2, . . . , Rq} q ≥ 2

Given a sample of i = 1, . . . , n individuals, observed values of Y will be
denoted by yi.

Although not essential, to describe the modeling approach we use the
parlance of discrete choice models. It is assumed, then, that with each
of the q alternatives (R1, . . . , Rq) is associated a value of attractiveness,
or utility, depending on characteristics of the alternative and on char-
acteristics of the individual who perceives the alternatives. This may be
written

uj = u(x, zj) + εj (1)

uj is the attractiveness of the jth alternative assumed to depend on
covariates x and zj . The (row) vector x comprises covariates not varying
with the alternatives; the (row) vector zj comprises covariates specific
for the jth alternative. εj is a random variable to account for stochastic
influences.

The hypothesis of random utility maximization assumes that an indi-
vidual chooses the jth alternative if its attractiveness is greater than the
attractiveness of all other alternatives, that is if uj > uk for all k 6= j.1

Consequently, the condition for the jth alternative to be chosen is

u(x, zj) + εj > u(x, zk) + εk for all k 6= j

This condition can be used to express the probability distribution of the
dependent variable as follows:

Pj(x, zj) = Pr (Y = Rj | x, zj) (2)

= Pr ( ∀k 6= j : u(x, zj) + εj > u(x, zk) + εk)

1The possibility that two or more alternatives have the same attractiveness is ex-
cluded. Through introduction of the random term in (1) it has a zero probability
in the model. However, this may not be appropriate for all situations; for instance,
if something is picked from a supermarket shelf. See Ullmann-Margalit and Mor-
genbesser [1977] for an interesting distinction between “picking” and “choosing”.

d061204.tex April 21, 1998
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These probabilities are defined as soon as the joint probability distribu-
tion for the random variables εj is specified. Let f(ε1, . . . , εq) be their
joint density function. Then

Pr (ε1 ≤ b1, . . . , εq ≤ bq) =
∫ b1

−∞
· · ·
∫ bq

−∞
f(ε1, . . . , εq) dεq . . . dε1

The probabilities Pj(x, zj) can be expressed in the same way by only
changing the limits of integration according to the condition stated in
(2). So one gets

Pj(x, zj) =
∫ b1

−∞
· · ·
∫ bq

−∞
f(ε1, . . . , εq) dεq . . . dε1 (3)

bk =
{

u(x, zj)− u(x, zk) + εj if k 6= j
∞ if k = j

Based on this general choice model, a variety of different specifications
is possible. Two things must be specified. First, one has to choose a
distribution for the random vector ε = (ε1, . . . , εq). A standard choice
is an extreme value distribution leading to a multinomial logit model.
This is further discussed in the next section. Another choice would be
the multivariate normal distribution leading to a probit model.

Secondly, one has to specify the dependence of the alternative’s at-
tractiveness on the covariates. For simplicity, all models discussed in this
chapter assume a linear dependence, that is

u(x, zj) = xβj + zj γ (4)

Note that there is a separate parameter vector, βj , for each category of
the dependent variable, but only a single parameter vector, γ, for the
alternative-specific covariates.

Logit Specification. The model is derived from the assumption that
the components of the random vector ε = (ε1, . . . , εq) are independent
and that each component follows a (type I) extreme value distribution.
The density and distribution functions are, respectively

fe (x) = exp(− exp(−x)) exp(−x) (5)

Fe (x) = exp(− exp(−x))
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The general model formulation given in (3) can be rewritten, then, as

Pj(x, zj) =
∫ ∞

−∞
fe(εj)

∏
k 6=j

Fe(bk) dεj

Using the abbreviation ũk = u(x, zk) and the definition of the extreme
value distribution in (5), gives

Pj(x, zj) =∫ ∞

−∞
exp {− exp(−εj)} exp(−εj)

∏
k 6=j

exp {− exp(ũk − ũj − εj)} dεj =

∫ ∞

−∞
exp(−εj)

q∏
k=1

exp {− exp(ũk − ũj) exp(−εj)} dεj =

∫ ∞

−∞
exp(−εj) exp {− exp(−uj) C} dεj

with

C =
q∑

k=1

exp(ũk − ũj)

The integral can be solved analytically. With C ′ = log(C), one finds that

Pj(x, zj) =
∫ ∞

−∞
exp {−εj − exp(−εj + C ′)} dεj

=
1
C

∫ ∞

−∞
exp {−εj + C ′ − exp(−εj + C ′)} dεj

and, since by definition of the extreme value distribution function the
last integral evaluates to unity, one gets

Pj(x, zj) =
exp(ũj)∑q

k=1 exp(ũk)

Finally, assuming a linear dependence on covariates as defined in (4),
the model becomes

Pr (Y = Rj |, x, zj) =
exp(xβj + zj γ)∑q

k=1 exp(xβk + zk γ)
(6)
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Since not all of the parameter vectors βj are estimable we add the re-
striction that β1 = 0.

One should note that in the general model formulation given in (6)
there is a different parameter vector, βj , for each category of the depen-
dent variable, but only a single parameter vector, γ, associated with the
alternative-specific covariates. Therefore, all vectors zj , for j = 1, . . . , q,
must have the same length, and this in turn is the length of the pa-
rameter vector γ. Of course, the model can be specified without any
alternative-specific covariates leading to a standard multinomial logit
model.

Maximum Likelihood Estimation. For a sample of i = 1, . . . , n ob-
servations, the likelihood of model (6) is

L =
n∏

i=1

q∏
j=1

[
exp(xi βj + zij γ)∑q

k=1 exp(xi βk + zik γ)

]wij

with indicator variables wij defined by

wij =
{

1 if yi = Rj

0 otherwise

Since β1 = 0, the expression can be simplified by defining

z̃ij = zij − zi1

The log-likelihood can then be written as

` =
n∑

i=1

q∑
j=1

wij log
{

exp(xi βj + z̃ij γ)
1 +

∑q
k=2 exp(xi βk + z̃ik γ)

}

Using the abbreviations

eij = exp(xi βj + z̃ij γ) and Ei =
q∑

k=2

exp(xi βk + z̃ik γ)
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the derivatives are

∂`

∂βr,s
=

n∑
i=1

q∑
j=1

wij

{
δrj −

eir

1 + Ei

}
xi,s

∂`

∂γs
=

n∑
i=1

q∑
j=1

wij

{
z̃ij,s −

∑q
k=2 eik z̃ik,s

1 + Ei

}

∂2`

∂βr1,s1∂βr2,s2

=
n∑

i=1

q∑
j=1

wij
eir1

1 + Ei

{
eir2

1 + Ei
− δr1r2

}
xi,s1 xi,s2

∂2`

∂γs1∂γs2

=
n∑

i=1

q∑
j=1

wij

{∑q
k=2 eik z̃ik,s1

∑q
k=2 eik z̃ik,s2

(1 + Ei)2
−

∑q
k=2 eik z̃ik,s1 z̃ik,s2

1 + Ei

}
∂2`

∂βr,s∂γs1

=
n∑

i=1

q∑
j=1

wij
eir

1 + Ei

{∑q
k=2 eik z̃ik,s1

1 + Ei
− z̃ir,s1

}
xi,s

Implementation. The model can be estimated with the qreg com-
mand, using the model selection parameter m=5. In addition, one must
use the nq parameter to specify the number of categories in the depen-
dent variable.

The specification of covariates must follow the convention explained
at the beginning of this chapter. A special convention is used for alter-
native-specific covariates. Each z-variable must be specified as a set of
q variable names, q being the number of categories in the dependent
variable. Each of these sets of variable name must be enclosed in brackets
(see Example 2).

The number of model parameters is m (q − 1) + m′. q is the number
of categories of the dependent variable, m is the number of individual-
specific covariates, and m′ is the number of z-variables. The parame-
ter vector (and accordingly the first and second derivatives of the log-
likelihood) is organized in the following way:

β21 . . . β2m β31 . . . β3m βq1 . . . βqm γ1 . . . γq
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Box 1 Command file qr3.cf

nvar(

dfile = qr3.dat,

X = c1,

Weight = c2,

Y = c3,

);

cwt = Weight; use case weights

qreg(

m = 5, # select multinomial logit

nq = 5, # categories of dep variable

)= Y,X;

# same model with fml command

fml = xb2 = exp(beta20 + X * beta21),

xb3 = exp(beta30 + X * beta31),

xb4 = exp(beta40 + X * beta41),

xb5 = exp(beta50 + X * beta51),

xbb = 1 + xb2 + xb3 + xb4 + xb5,

ll = if (eq(Y,1),1 / xbb,

if (eq(Y,2),xb2 / xbb,

if (eq(Y,3),xb3 / xbb,

if (eq(Y,4),xb4 / xbb, xb5 / xbb)))),

fn = Weight * log(ll);

βlj is the parameter associated with the lth category and jth covari-
ate (l = 2, . . . , q, j = 1, . . . ,m). The first (lowest) category, R1, is the
reference. γk is the parameter associated with the kth set of alternative-
specific covariates (k = 1, . . . ,m′).

The model is estimated by maximum likelihood as described above.
All of TDA’s maximization algorithms can be used. Default starting val-
ues are currently zero for all parameters. This may result in conver-
gence problems. One should start, then, with simple models, successively
adding covariates and using the results of simple models as starting val-
ues for more complex models.

Example 1 To illustrate estimation of multinomial logit models with
TDA, our first example uses data taken from Dixon ([1990], p. 1048). The
data file is qr3.dat (not shown, but contained in the example archive).
The command, qr3.cf, is shown in Box 1. It contains the qreg com-
mand to estimate a multinomial logit model, and also a fml command
that directly uses the corresponding log-likelihood. Part of the standard
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Box 2 Part of standard output from qr3.cf

Model: multinomial logit.

Variables (cross-section)

-------------------------

Y : Y

X1 : X

Categories of dependent variable.

Maximum number of categories: 100

Index 0 1 2 3 4 (Weighted)

Category 1 2 3 4 5 Observations

-----------------------------------------------------------------

Wave 1 N 70.00 149.00 175.00 132.00 55.00 581.00

Pct 12.05 25.65 30.12 22.72 9.47

Using case weights defined by: Weight

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Convergence reached in 7 iterations.

Number of function evaluations: 8 (8,8)

Maximum of log likelihood: -826.748

Norm of final gradient vector: 6.22304e-12

Last absolute change of function value: 8.25065e-16

Last relative change in parameters: 2.47957e-07

Idx Cat Term Variable Coeff Error C/Error Signif

-----------------------------------------------------------------

1 2 I Intercept 7.2428 1.3578 5.3342 1.0000

2 2 X X -0.5035 0.1024 -4.9187 1.0000

-----------------------------------------------------------------

3 3 I Intercept 8.3752 1.3438 6.2326 1.0000

4 3 X X -0.5842 0.1014 -5.7582 1.0000

-----------------------------------------------------------------

5 4 I Intercept 11.3662 1.3897 8.1788 1.0000

6 4 X X -0.8723 0.1073 -8.1304 1.0000

-----------------------------------------------------------------

7 5 I Intercept 11.1873 1.5042 7.4373 1.0000

8 5 X X -0.9375 0.1202 -7.7979 1.0000

Log likelihood (starting values): -935.0834

Log likelihood (final estimates): -826.7484
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Box 3 Command file qr4.cf

nvar(

dfile = qr4.dat,

Z1 = c1,

Z2 = c2,

Z3 = c3,

Y = c4,

);

qreg(

m = 5, # selection of logit model

nq = 3, # number of categories

ni = 1, # without an intercept

) = Y,(Z1,Z2,Z3);

output from the qreg command is shown in Box 2.

In this example, the number of categories in the dependent variable is
q = 5 and there are no alternative-specific covariates. As indicated in the
column labeled Cat, the output contains a separate block of estimated
coefficients for each category, j = 2, . . . , q.

Example 2 To illustrate the estimation of a multinomial logit models
with alternative-specific covariates, we use example data from Daganzo
[1979, p. 61].2 The data are concerned with a choice between three dif-
ferent means of transportation. The data file, qr4.dat, contains four
variables. Y is the dependent variable, with three categories, reflecting
the actual choice. Variables Z1, Z2, and Z3, contain the expected trans-
portation times associated with the three alternatives. The command file
is shown in Box 3, part of its standard output in Box 4. In this exam-
ple, there is only a single alternative-specific covariate and the model is
estimated without an intercept. Since the dependent variable has three
categories, the alternative-specific covariate must be specified by using
three variable names, enclosed in brackets.

2The same data have been used for an illustration of KALOS, a program to estimate
general multinomial logit models written by Röding, Küsters, and Arminger [1985].
However, there are minor differences in the data files. The TDA example archive
contains the original Daganzo data as qr4.dat and the slightly different KALOS
data set as qr4a.dat.
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Box 4 Part of standard output from qr4.cf

Model: multinomial logit.

Variables (cross-section)

-------------------------

Y : Y

Z1 1 : Z1

2 : Z2

3 : Z3

Model without intercept.

Checking available data (pmin=1)

Number of cases with valid data: 50

Categories of dependent variable.

Maximum number of categories: 100

Index 0 1 2 (Weighted)

Category 1 2 3 Observations

-------------------------------------------------------

Wave 1 N 14.00 29.00 7.00 50.00

Pct 28.00 58.00 14.00

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 1

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -33.3581

Norm of final gradient vector: 8.09432e-07

Last absolute change of function value: 4.59832e-09

Last relative change in parameters: 0.000120481

Idx Cat Term Variable Coeff Error C/Error Signif

------------------------------------------------------------------

1 - Z1 Z1 -0.3568 0.0776 -4.5966 1.0000

Log likelihood (starting values): -54.9306

Log likelihood (final estimates): -33.3581
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Box 5 Illustration of df and dtda parameters

nvar( created by dtda parameter

dfile = df,

noc = 50,

CaseID [6.0] = c1 ,

Wave [2.0] = c2 ,

Y [10.4] = c3 ,

Z1 [10.4] = c4 ,

Z2 [10.4] = c5 ,

Z3 [10.4] = c6 ,

PROB [10.4] = c7 ,

PROB0 [10.4] = c8 ,

PROB1 [10.4] = c9 ,

PROB2 [10.4] = c10,

);

first records of output file created with df parameter

1 1 2.0000 16.4810 16.1960 23.8900 0.5083 0.4591 0.5083 0.0326

2 1 2.0000 15.1230 11.3730 14.1820 0.6137 0.1610 0.6137 0.2252

3 1 2.0000 19.4690 8.8220 20.8190 0.9651 0.0216 0.9651 0.0133

4 1 2.0000 18.8470 15.6490 21.2800 0.6880 0.2198 0.6880 0.0922

5 1 2.0000 12.5780 10.6710 18.3350 0.6364 0.3223 0.6364 0.0413

6 1 1.0000 11.5130 20.5820 27.8380 0.9595 0.9595 0.0377 0.0028

7 1 1.0000 10.6510 15.5370 17.4180 0.7910 0.7910 0.1383 0.0707

8 1 1.0000 8.3590 15.6750 21.0500 0.9223 0.9223 0.0678 0.0100

The df Option. Box 5 illustrates the df and dtda parameters using
the data from Example 2. The output file created with the df parameter
contains the data used for model estimation and, in addition, estimated
probabilities calculated according to formula (6). The column labelled
PROB contains the value for the actually observed category.
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6.12.5 Multivariate Probit

We now consider a probit specification of the general model that was
decribed in 6.12.4. For an extensive discussion see Daganzo [1979]. Y ∈
{R1, . . . , Rq} is the dependent variable. The attractiveness of category
Rj is

uj = xβj + zjγ

depending on covariate vectors x and zj . The probability for alternative
Rj may then be written as

Pj(x, zj) = Pr (Y = Rj | x, zj) (1)

= Pr ( ∀k 6= j : uj + εj > uk + εk)

= Pr ( ∀k 6= j : εk − εj < uj − uk)

The assumption is that

ε = (ε1, . . . , εq) ∼ N (0,Σq)

meaning that ε follows a q-dimensional normal distribution with zero
mean and covariance matrix Σq. One dimension can be saved by using

ε
(j)
k := εk − εj , u

(j)
k := uj − uk

We may then write

Pj(x, zj) = Pr (∀k 6= j : ε
(j)
k < u

(j)
k ) (2)

Let ε(j) denote the (q − 1)-vector consisting of ε
(j)
1 , . . . , ε

(j)
q for k 6= j.

There is then a simple linear transformation

ε(j) = T (j)@, ε

where the (q − 1, q)-matrix T (j) is defined by

T
(j)
tt′ =


−1 if t′ = j

1 if t′ < j and t′ = t
1 if t′ > j and t′ = t + 1
0 otherwise
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Then, see, e.g., Tong [1990, p. 26], ε(j) follows a (q − 1)-dimensional
normal distribution:

ε(j) ∼ N
(
0, T (j)ΣqT

(j)′@,
)

Finally, let u(j) denote the (q − 1)-vector consisting of u
(j)
1 , . . . , u

(j)
q for

k 6= j and Φ(j)
q−1 the distribution function of a (q−1)-dimensional normal

distribution with zero mean and covariance matrix

Σ(j)
q−1 := T (j)ΣqT

(j)′

we can simply write

Pj(x, zj) = Φ(j)
q−1(u

(j)) (3)

Maximum Likelihood Estimation. Now assume a sample of obser-
vations, (yi, xi, zij), for i = 1, . . . , n, where the covariate vector x has
m components. Setting β1 = 0, the model parameters are β2, . . . , βm, γ.
Using (3), the log-likelihood can be written as

`(β2, . . . , βm, γ) =
n∑

i=1

log
(
Φ(yi)

q−1(u
(yi))

)
(4)

Implementation. The multivariate probit model can be estimated with
the qreg command, the model selection parameter is m=6. The specifi-
cation of variables on the right-hand side follows the same convention as
was explained for the multinomial logit model in 6.12.4. If there are two
or more panel waves, the data are pooled over waves. The covariance
matrix

Σq =
(
σij

)
is assumed to be a correlation matrix (σii = 1), and all elements in the
lower triangle are possible model parameters. The parameter vector is
organized as

β21 . . . β2m . . . βq1 . . . βqm γ1 . . . γq σ21 σ31 σ32 . . . σq1 . . . σq,q−1

Of course, most often the model will not be estimable without further
constraints on the components of the correlation matrix. This can be
done with the con parameter for parameter constraints, see 5.6.6.
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Optional Parameterizations. The off-diagonal elements of the cor-
relation matrix must satisfy −1 < σij < 1. TDA’s standard function
minimization routines cannot account for this constraint, and so it can
easily happen that the estimation procedure cannot continue because of
a violation of this constraint. For this reason, TDA offers three different
parameterizations that can be selected with the opt parameter. Let σ∗ij
denote the components in the parameter vector corresponding to the
lower triangle of the correlation matrix.

1. If opt = 1 (default), the correlation matrix for model estimation is
created by setting σij = σ∗ij , without any further reparameterization.

2. If opt = 2, the transformation

σij = 2
exp(σ∗ij)

1 + exp(σ∗ij)
− 1

is applied before creating the covariance from the σij parameters.

3. If opt = 3, it is assumed that the parameters σ∗ij are the elements of
a Cholesky decomposition of Σq (see, e.g., Tong [1990, p. 184]):

Σq = CC ′ where C =


1

σ∗21 1
σ∗31 σ∗32 1
...

...
...

σ∗q1 σ∗q2 σ∗q,q−1 · · · 1


In any case, the output file that can be requested with the ppar parame-
ter will contain the estimated correlation matrix, Σq. It is easy, therefore,
to re-estimate the model with opt=1, given that one has achieved results
with opt=2 or opt=3.

Numerical Integration. The main difficulty is the evaluation of the
distribution function, Φ(j)

q−1, of the (q − 1)-dimensional normal distribu-
tion. Different approaches have been proposed for the evaluation of the
corresponding (q− 1)-dimensional integral. For the current implementa-
tion, TDA uses a numerical integration procedure developed by Drezner
[1992], based on a Gauss quadrature method. The procedure is compu-
tationally very intensive, and so it might not be possible to estimate
models with a large number of categories in the dependent variable. The
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Box 1 Command file qr6.cf

nvar(

dfile = qr3.dat,

X = c1,

Weight = c2,

Y = c3,

);

cwt = Weight; use case weights

qreg(

m = 6, # select multivariate probit

nq = 5, # categories of dep variable

ppar = par, # write estimated parameters and corr. matrix

con = b9 = 0, # use identity correlation matrix

con = b10 = 0,

con = b11 = 0,

con = b12 = 0,

con = b13 = 0,

con = b14 = 0,

con = b15 = 0,

con = b16 = 0,

con = b17 = 0,

con = b18 = 0,

)= Y,X;

advantage is, however, that the numerical accuracy of results can be
controlled. There are two parameters, nhp and eps.

1. The nhp = k parameter can be used to specify the number of inte-
gration points, k, in the Gauss quadrature procedure. If 2 ≤ k ≤ 10,
the algorithm performs one Gauss quadrature with k points for each
dimension of the integral. Default is nhp = 6.

2. If 12 ≤ k ≤ 20 the algorithm performs Gauss quadratures with k−10
points progressively until the accuracy specified with the eps parameter
is reached. Default is eps = 10−6. Note that the value of this parameter
is only used when 12 ≤ k ≤ 20.

The algorithm may not be able to achieve the required accuracy. This will
not be regarded as an error, but the standard output will then contain a
warning message. Note that the same algorithm is also used for the mvn
operator, see 5.2.5.7. This operator can be used to become familiar with
the integration procedure and to evaulate the distribution function for
arbitrary input values.
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Box 2 Part of standard output from qr6.cf

Maximum likelihood estimation.

Algorithm 8: CES (tensor model [0])

Number of model parameters: 18

Type of covariance matrix: 2

Maximum number of iterations: 200

Convergence criterion: 6

Tolerance for scaled gradient: 1e-05

Tolerance for scaled parameter change: 1e-08

Control of integration (nhp): 6

Type of parameterization: 1

Protocol will be written to: p

Convergence reached in 5 iterations.

Number of function evaluations: 321 (0,0)

Maximum of log likelihood: -828.232

Norm of final gradient vector: 0.0031299

Final scaled gradient: 2.71293e-06

Final scaled parameter change: 0.00511032

Idx Cat Term Variable Coeff Error C/Error Signif

------------------------------------------------------------------

1 2 I Intercept 2.8003 0.5530 5.0641 1.0000

2 2 X X -0.1915 0.0431 -4.4467 1.0000

------------------------------------------------------------------

3 3 I Intercept 3.3703 0.5456 6.1771 1.0000

4 3 X X -0.2320 0.0426 -5.4507 1.0000

------------------------------------------------------------------

5 4 I Intercept 4.8489 0.5610 8.6428 1.0000

6 4 X X -0.3740 0.0445 -8.3974 1.0000

------------------------------------------------------------------

7 5 I Intercept 4.5686 0.6055 7.5450 1.0000

8 5 X X -0.3867 0.0493 -7.8409 1.0000

------------------------------------------------------------------

9 - S Sigma 2, 1 0.0000 0.0000 --- ---

10 - S Sigma 3, 1 0.0000 0.0000 --- ---

11 - S Sigma 3, 2 0.0000 0.0000 --- ---

12 - S Sigma 4, 1 0.0000 0.0000 --- ---

13 - S Sigma 4, 2 0.0000 0.0000 --- ---

14 - S Sigma 4, 3 0.0000 0.0000 --- ---

15 - S Sigma 5, 1 0.0000 0.0000 --- ---

16 - S Sigma 5, 2 0.0000 0.0000 --- ---

17 - S Sigma 5, 3 0.0000 0.0000 --- ---

18 - S Sigma 5, 4 0.0000 0.0000 --- ---

Log likelihood (starting values): -935.1167

Log likelihood (final estimates): -828.2320
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Box 3 Command file qr7.cf

nvar(

dfile = qr4.dat,

Z1 = c1,

Z2 = c2,

Z3 = c3,

Y = c4,

);

qreg(

m = 6, # model selection

nq = 3, # number of categories

ni = 1, # without intercept

df = df, # print data and estimated probabilities

dtda = t, # description file

xp = -0.1716,0,0,0, # starting values taken from model with

# zero correlations

con = b3 = 0, # keep only sigma(2,1)

con = b4 = 0,

ppar = par, # print parameter and corr. matrix

df = df, # write data and estimated probabilities

dtda = t,

) = Y,(Z1,Z2,Z3);

Available Minimization Algorithms. While it would be possible to
use the same integration procedure also for an evaluation of derivatives
of the log-likelihood, this has not been implemented in TDA. Only func-
tion values, no derivataives of the likelihood function are available. As a
consequence, the multivariate probit model can only be estimated with
one of the algorithms, mina=7 or mina=8 (see 5.6.2). Default is mina=8.
Both algorithms numerically approximate first and second derivatives. A
numerical approximation to the Hessian of the log-likelihood is also used
to estimate a covariance matrix for the model parameters (consequently,
always ccov = 2).

Starting Values. As default, all parameters have a zero initial value.
This will often not lead to convergence. So one should specify suitable
starting values with the xp or dsv parameter. Note that an output file
written with the ppar parameter can be used as an input file with the
dsv parameter. Of course, file names should be different when using both
parameters simultaneously.

Example 1 As a first illustration we replicate multinomial logit model
from the first example in 6.12.4, now with a multivariate probit speci-
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Box 4 Part of standard output from qr7.cf

Maximum likelihood estimation.

Algorithm 8: CES (tensor model [0])

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 200

Convergence criterion: 6

Tolerance for scaled gradient: 1e-05

Tolerance for scaled parameter change: 1e-08

Scaling factor: -1

Control of integration (nhp): 6

Type of parameterization: 1

Got 4 starting value(s) from xp parameter.

Number of constraints: 2

Convergence reached in 4 iterations.

Number of function evaluations: 40 (0,0)

Maximum of log likelihood: -34.4166

Norm of final gradient vector: 2.21297e-06

Final scaled gradient: 5.87576e-08

Final scaled parameter change: 0.000629914

Idx Cat Term Variable Coeff Error C/Error Signif

------------------------------------------------------------------

1 - Z1 Z1 -0.1787 0.0349 -5.1178 1.0000

------------------------------------------------------------------

2 - S Sigma 2, 1 0.4134 0.6320 0.6542 0.4870

3 - S Sigma 3, 1 0.0000 0.0000 --- ---

4 - S Sigma 3, 2 0.0000 0.0000 --- ---

Log likelihood (starting values): -34.5825

Log likelihood (final estimates): -34.4166
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fication. Box 1 shows the command file, qr6.cf. In this example, as is
often a good starting point for the estimation of a multivariate probit
model, the constraints assure that all correlations are zero.

Although the command files relies on default starting values conver-
gence has been achieved in 5 iterations. However, due to the fact that
the minimization algorithm numerically approximates first and second
derivatives of the log-likelihood function, it needs altogether 321 evalua-
tions of the likelihood function. Multiplying this with the number of cases
shows how often the multivariate normal integral has been evaluated.
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6.14 Models for Count Data

We consider a dependent variable, Y , with non-negative integer values.
Values of Y may be interpreted as the number of times that some event
occurs. Standard regression models for this type of dependent variable
include the Poisson model and several variants of a negative binomial
model. While TDA does not offer a specific command to estimate these
kinds of models, estimation is actually quite easy when using the fml
command and the operators for the Poisson and the negative binomial
distribution. This chapter shortly explains how to set up the likelihood
for some standard models and gives some examples. For a discussion of
the fml command see 6.11.2.

6.14.1 Poisson Regression

6.14.2 Compound Poisson Models

d0614.tex April 21, 1998
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6.14.1 Poisson Regression

The most simple model is based on the assumption that Y follows a
Poisson distribution, that is,

Pr(Y = k) =
θk

k!
exp(−θ) θ > 0, k = 0, 1, 2, . . .

This implies that E(Y ) = Var(Y ) = θ. The standard Poisson regression
model uses the parameterization

θ = exp(xβ)

where x denotes a (row) vector of covariates. For numerical evaluation,
TDA offers the poisson

poisson(θ, k) ≡ log
(

θk

k!
exp(−θ)

)
This is a type I operator and allows for automatic differentiation with
respect to its first argument, θ. It is therefore quite easy to estimate
a Poisson regression model with the fml command. Given a sample of
observations, (yi, xi), for i = 1, . . . , n, the log-likelihood is simply

` =
n∑

i=1

poisson(exp(xiβ), yi)

Example 1 To illustrate model estimation we use the ship damage
data, data file cd1.dat, shown in Box 1. (These data have been used
by many authors. See, e.g., McCullagh and Nelder [1983, p. 137], Greene
[1992, p. 546], Winkelmann and Zimmermann [1991].) Box 2 shows the
command file, cd1.cf. The nvar command creates the necessary vari-
ables based on data file cd1.dat. Then follows the fml command. Since
the likelihood of the Poisson model is well behaved, we do not need any
parameters. It suffices to formulate the expression for the log-likelihood
on the right-hand side of the command. This is done in three steps. The
first step creates the intermediate expression xb, corresponding to xβ.
Note that parameter names can be arbitrary strings consisting of lower
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Box 1 Ship damage data file cd1.dat (McCullagh and Nelder [1983, p. 137]

# Col 1 : number of damage incidents

# Col 2 : aggregate months of service

# Col 3 - 6 : dummy variables for ship type (A - E)

# Col 7 - 9 : dummy variables for year of construction

# Col 10 : dummy variables for period of operation

0 127 0 0 0 0 0 0 0 0

0 63 0 0 0 0 0 0 0 1

3 1095 0 0 0 0 1 0 0 0

4 1095 0 0 0 0 1 0 0 1

6 1512 0 0 0 0 0 1 0 0

18 3353 0 0 0 0 0 1 0 1

-1 0 0 0 0 0 0 0 1 0

11 2244 0 0 0 0 0 0 1 1

39 44882 1 0 0 0 0 0 0 0

29 17176 1 0 0 0 0 0 0 1

58 28609 1 0 0 0 1 0 0 0

53 20370 1 0 0 0 1 0 0 1

12 7064 1 0 0 0 0 1 0 0

44 13099 1 0 0 0 0 1 0 1

-1 0 1 0 0 0 0 0 1 0

18 7117 1 0 0 0 0 0 1 1

1 1179 0 1 0 0 0 0 0 0

1 552 0 1 0 0 0 0 0 1

0 781 0 1 0 0 1 0 0 0

1 676 0 1 0 0 1 0 0 1

6 783 0 1 0 0 0 1 0 0

2 1948 0 1 0 0 0 1 0 1

-1 0 0 1 0 0 0 0 1 0

1 274 0 1 0 0 0 0 1 1

0 251 0 0 1 0 0 0 0 0

0 105 0 0 1 0 0 0 0 1

0 288 0 0 1 0 1 0 0 0

0 192 0 0 1 0 1 0 0 1

2 349 0 0 1 0 0 1 0 0

11 1208 0 0 1 0 0 1 0 1

-1 0 0 0 1 0 0 0 1 0

4 2051 0 0 1 0 0 0 1 1

0 45 0 0 0 1 0 0 0 0

-1 0 0 0 0 1 0 0 0 1

7 789 0 0 0 1 1 0 0 0

7 437 0 0 0 1 1 0 0 1

5 1157 0 0 0 1 0 1 0 0

12 2161 0 0 0 1 0 1 0 1

-1 0 0 0 0 1 0 0 1 0

1 542 0 0 0 1 0 0 1 1
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Box 2 Command file cd1.cf

nvar(

dfile = cd1.dat,

isel = ge(c1,0), # select valid cases

NDI = c1,

Service = c2,

B = c3,

C = c4,

D = c5,

E = c6,

C60 = c7,

C65 = c8,

C70 = c9,

P75 = c10,

LOGS = log(Service),

);

fml( # we don’t need any parameters

) = xb = b0 + B * bb + C * bc + D * bd + E * be +

C60 * bc60 + C65 * bc65 + C70 * bc70 + P75 * bp75 + LOGS * blogs,

exb = exp(xb),

fn = poisson(exb,NDI);

case letters and digits, but must begin with a lower case letter. The sec-
ond step creates the intermediate expression exb ≡ exp(xβ). The final
step uses the poisson operator to formulate the log-likelihood. This final
expression is automatically summed over all cases in the currently active
data matrix.

Box 3 shows part of the standard output. Since the fml command
uses a default set up, the minimization algorithm is TDA’ default Newton
I algorithm, and all starting values are zero. Nevertheless, convergence
is achieved with 12 function calls. Since the poisson operator allows for
automatic differentiation (in its first argument), first and second deriva-
tives of the log-likelihood are automatically calculated, and the second
derivatives are used for the standard errors (ccov = 2).

Example 2 As noted by McCullagh and Nelder [1983, p. 138], one can
assume that the parameter for the logarithm of aggregate months service
(blogs) should be 1. This constraint can easily be formulated by adding

con = b9 = 1,

to the fml command (see command file cd1a.cf in the example archive).
Note, however, that one cannot use the (arbitrary) name of the param-
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Box 3 Part of standard output from cd1.cf (Poisson regression)

ML estimation of user-defined model.

Algorithm 5: Newton (I)

Number of model parameters: 10

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Idx Parameter Starting value

1 b0 0.00000000e+00

2 bb 0.00000000e+00

3 bc 0.00000000e+00

4 bc60 0.00000000e+00

5 bc65 0.00000000e+00

6 bc70 0.00000000e+00

7 bd 0.00000000e+00

8 be 0.00000000e+00

9 blogs 0.00000000e+00

10 bp75 0.00000000e+00

Convergence reached in 8 iterations.

Number of function evaluations: 12 (12,12)

Maximum of log likelihood: -67.8354

Norm of final gradient vector: 2.84694e-11

Last absolute change of function value: 5.57244e-14

Last relative change in parameters: 2.05576e-06

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 b0 -5.5940 0.8724 -6.4121 1.0000

2 bb -0.3499 0.2702 -1.2948 0.8046

3 bc -0.7631 0.3382 -2.2565 0.9760

4 bc60 0.6625 0.1536 4.3124 1.0000

5 bc65 0.7597 0.1777 4.2763 1.0000

6 bc70 0.3697 0.2458 1.5040 0.8674

7 bd -0.1355 0.2971 -0.4560 0.3516

8 be 0.2739 0.2418 1.1331 0.7428

9 blogs 0.9027 0.1018 8.8672 1.0000

10 bp75 0.3703 0.1181 3.1339 0.9983

Log likelihood (starting values): -870.2939

Log likelihood (final estimates): -67.8354
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Box 4 Part of standard output from qr1a.cf

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 b0 -6.4059 0.2174 -29.4600 1.0000

2 bb -0.5433 0.1776 -3.0595 0.9978

3 bc -0.6874 0.3290 -2.0891 0.9633

4 bc60 0.6971 0.1496 4.6587 1.0000

5 bc65 0.8184 0.1698 4.8207 1.0000

6 bc70 0.4534 0.2332 1.9446 0.9482

7 bd -0.0760 0.2906 -0.2614 0.2062

8 be 0.3256 0.2359 1.3803 0.8325

9 blogs 1.0000 --- --- ---

10 bp75 0.3845 0.1183 3.2507 0.9988

Log likelihood (starting values): -161157.7779

Log likelihood (final estimates): -68.2808

eter in the formulation of constraints but has to use a reference to the
number of the parameter. In this case, blogs is the 9th parameter, and
is therefore referred to by b9. Estimation results are shown in Box 4.
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6.14.2 Compound Poisson Models

The Poisson distribution is obviously restrictive in the assumption that
the mean equals the variance. Several less restrictive distributions have
been proposed in the literature. A standard approach thinks in terms
of a compound Poisson distribution. It is assumed, then, that the mean
of the Poisson distribution, θ, is a random variable. Let fθ(θ; θ∗) denote
its density function, depending on some further parameter vector, θ∗. A
compound Poisson distribution is then given by

Pr(Y = k) =
∫ ∞

0

θk

k!
exp(−θ) fθ(θ; θ∗) dθ

Following the discussion in Cameron and Trivedi [1986], one arrives at
a relatively simple model when a gamma mixture distribution ist use,
that is,

fθ(θ;α, γ) =
1

Γ(α)
1
θ

(
αθ

γ

)α

exp
{
−αθ

γ

}
having mean E(θ) = γ and variance Var(θ) = γ2/α. The distribution for
Y then becomes

Pr(Y = k) =
(α/γ)α

k! Γ(α)

∫ ∞

0

θα+k−1 exp
{
−θ(

α

γ
+ 1)

}
dθ

Making the substitution θ → δγ/(α + γ), we find

Pr(Y = k) =
(α/γ)α

k! Γ(α)

(
γ

α + γ

)α+1 ∫ ∞

0

δα+k−1 exp(−δ) dθ

The integral (Euler’s integral, see Abramowitz and Stegun [1964, p. 255])
equals Γ(α + k), so we find

Pr(Y = k) =
Γ(α + k)

Γ(k + 1) Γ(α)

(
γ

α + γ

)k (
α

α + γ

)α

(1)

This is called a (general) negative binomial distribution. The distribution
has two parameters, α and γ. The mean is E(Y ) = γ, the variance is
Var(Y ) = γ + γ2/α.
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To arrive at a regression model, one can make both parameters de-
pendent on covariates. A particularly convenient approach has been pro-
posed by Cameron and Trivedi [1986]:

γ = exp(xβ)

α =
1
σ

exp(xβ)q

where q is some given constant and σ is a model parameter to be esti-
mated. The mean of Y is directly given by exp(xβ), and the variance
is

Var(Y ) = E(Y ) + σ E(Y )2−q

In particular, if q = 1, one gets

Var(Y ) = E(Y ) + σ E(Y )

called NEGBIN I model by Cameron and Trivedi. If q = 0, one gets

Var(Y ) = E(Y )
(
1 + σ E(Y )

)
called NEGBIN II model by Cameron and Trivedi.1 In both cases, if
σ → 0, one arrives at the standard Poisson regression model.

The negbin Operator In order to evaluate the negative binomial dis-
tribution one can use TDA’s negbin operator, with syntax

negin(α, γ, k) ≡ log

(
(Γ(α + k)

Γ(k + 1)Γ(α)

(
γ

α + γ

)k (
α

α + γ

)α
)

that directly evaluates the logarithm of the distribution as given in (1).
This is a type I operator and allows for automatic differentiation with
respect to its first two arguments, α and γ. The derivatives are calculated
as follows.

1This is the parameterization of the negative binomial model used in LIMDEP, see
Greene [1992, p. 539].
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∂ negbin(α, γ, k)
∂α

= digam(α + k)− digam(α) +

log
(

α

α + γ

)
+

γ − k

α + γ

∂ negbin(α, γ, k)
∂γ

=
α

α + γ

[
k

γ
− 1
]

∂2 negbin(α, γ, k)
∂α∂α

= trigam(α + k)− trigam(α) +

1
α + γ

[
γ

α
− γ − k

α + γ

]
∂2 negbin(α, γ, k)

∂γ∂γ
=

α

α + γ

[
1− k/γ

α + γ
− k

γ2

]
∂2 negbin(α, γ, k)

∂α∂γ
=

k − γ

(α + γ)2

digam and trigam are operators that evaluate, respectively, the first and
second derivative of the logarithm of the gamma function.

The negbin operator allows an easy formulation of the log-likelihood
for a regression model with a negative binomial distribution. Given a
sample of observations (yi, xi), for i = 1, . . . , n, the log-likelihood is
simply

` =
n∑

i=1

negbin (α, exp(xiβ), yi)

where α can be made in an arbitrary way a function of the mean, i.e.,
exp(xiβ).

Example 1 To illustrate, we estimate a NEGBIN II model for the ship
damage data that were used in 6.14.1. Box 1 shows part of the com-
mand file, cd2.cf (the first part is identical with the nvar command in
command file cd1.cf.) The expression

sigma = exp(sig),

is used to assure that σ is always positive. The model is estimated with
algorithm 8 that is somewhat more robust than TDA’s standard algo-
rithm for function minimization.
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Box 1 Part of command file cd2.cf

fml(

mina = 8, # select somewhat more robust algorithm

) = xb = b0 + B * bb + C * bc + D * bd + E * be +

C60 * bc60 + C65 * bc65 + C70 * bc70 + P75 * bp75 + LOGS * blogs,

gamma = exp(xb),

sigma = exp(sig),

alpha = 1 / sigma,

fn = negbin(alpha,gamma,NDI);

Box 2 shows the estimation results. σ is almost zero, indicating that
the NEGBIN II model does not give a better fit than the standard Poisson
model. In fact, the parameter estimates are almost the same as those
shown in Box 3. Of course, the huge standard error for the sig parameter
indicates that the estimate is not reliable.
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Box 2 Part of standard output from cd2.cf

Maximum likelihood estimation.

Algorithm 8: CES (tensor model [2])

Number of model parameters: 11

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 6

Tolerance for scaled gradient: 1e-05

Tolerance for scaled parameter change: 1e-08

Scaling factor: -1

Idx Parameter Starting value

1 b0 0.00000000e+00

2 bb 0.00000000e+00

3 bc 0.00000000e+00

4 bc60 0.00000000e+00

5 bc65 0.00000000e+00

6 bc70 0.00000000e+00

7 bd 0.00000000e+00

8 be 0.00000000e+00

9 blogs 0.00000000e+00

10 bp75 0.00000000e+00

11 sig 0.00000000e+00

Convergence reached in 17 iterations.

Number of function evaluations: 52 (19,19)

Maximum of log likelihood: -67.8354

Norm of final gradient vector: 5.25902e-05

Final scaled gradient: 4.90683e-06

Final scaled parameter change: 0.066398

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 b0 -5.5940 0.8724 -6.4121 1.0000

2 bb -0.3499 0.2702 -1.2948 0.8046

3 bc -0.7631 0.3382 -2.2565 0.9760

4 bc60 0.6625 0.1536 4.3124 1.0000

5 bc65 0.7597 0.1777 4.2763 1.0000

6 bc70 0.3697 0.2458 1.5040 0.8674

7 bd -0.1355 0.2971 -0.4560 0.3516

8 be 0.2739 0.2418 1.1331 0.7428

9 blogs 0.9027 0.1018 8.8672 1.0000

10 bp75 0.3703 0.1181 3.1339 0.9983

11 sig -15.0643 213.8136 -0.0705 0.0562

Log likelihood (starting values): -270.3274

Log likelihood (final estimates): -67.8354
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6.15 Generalized Linear Models

This chapter deals with generalized linear models. It contains the follow-
ing sections.

6.15.1 Introduction

6.15.2 The glm Command
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6.15.1 Introduction

Let Y denote a single dependent variable and (yi, xi), for i = 1, . . . , n,
a sample of observations. For case i, yi is the value of the dependent
variable, and xi is a vector of covariates. To find a model for the dis-
tribution of Y , conditional on the information in covariates, one can
assume a parametric density for Y , say f(y; θ), and then make the pa-
rameter vector θ dependent on x. In general terms, this approach might
be written as

f(y; θ) with θ = u(x, β) (1)

where the function u(x, β) depends on information given by the covariate
vector x, and a new parameter vector β. The log-likelihood for model
estimation may then be written as

` =
n∑

i=1

log
(
f(yi; u(xi, β))

)
(2)

TDA’s fml command described in 6.11.2 can be used to implement this
general approach.

However, while this approach is very general, it requires a complete
specification of the (conditional) density of the given observations. It
is often more practical to focus on the conditional expectation of the
dependent variable. The modeling approach then becomes

E(Y |x) = u(x, β) (3)

Deriving a likelihood function depends, of course, on assuming some
density function for the observations. In general, if the expectation is
not directly given by one of the distributional parameters, this requires
a more or less complicated re-parameterization.

A relatively flexible approach is possible by using the exponential
family of distributions having the density

f(y; θ, φ) = exp
{

y θ − b(θ)
a(φ)

+ c(y, φ)
}

(4)
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where a(φ), b(θ) and c(y, φ) are some functions of the distributional
parameters φ and θ. The expectation is

E(Y ) = b′(θ) =
∂b(θ)
∂θ

(5)

and the variance is given by

Var(Y ) = a(φ) b′′(θ) = a(φ)
∂2b(θ)
∂θ2

(6)

b′′(φ) is often called variance function (of the distribution).
This exponential family of distributions has many familiar distribu-

tions as special cases and, furthermore, provides a comfortable starting
point for the modeling strategy (3). The required re-parameterization is
simply

E(Y |x) = b′(θ) ≡ u(x, β) (7)

An additional simplification is possible if one assumes that the scale
parameter, φ, does not vary across individual cases. It is possible, then,
to estimate β and φ separately.

This exponential family of distributions has become the starting point
for a broad literature on generalized linear models, see, e.g., McCullagh
and Nelder [1983], Aitkin et al. [1989] and, in particular, for the GLIM

program, see Francis et al. [1994]. Starting from (7), one needs the speci-
fication of b(θ) and u(x, β). Specification of b(θ) depends on which mem-
ber of the exponential family of distributions will be used; some options
are discussed in later sections. Specification of u(x, β) can, in principle,
be arbitrary. Generalized linear models as normally defined and imple-
mented, for instance, in the GLIM package (Francis et al., 1994), use a
two-part specification. One part is the linear predictor

η = xβ (8)

optionally including an intercept term. The second part is the link func-
tion

η = g(µ), µ = E(Y |x) (9)

linking the conditional expectation, µ, to the linear predictor, η. The
link function must be invertible to allow the calculation of

µ = g−1(η) = g−1(xβ) (10)
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We will also assume that the link function is twice continuously differ-
entiable. The relationship with the link function u, used in (7), is then

u(x, β) ≡ g−1(η) = g−1(xβ) (11)

Secondly, when formulating generalized linear models, it is normally as-
sumed that the scale parameter, φ, in (4) is constant across individual
cases. We then have that a(φ), but not φ, may depend on case-specific
information. In fact, most often there is a further simplification by as-
suming that

a(φ) = φ/w (12)

where w is some case-specific prior weight, see Francis et al. [1994, p. 260].

Estimation Approach. Using the specification of generalized linear
models described above, maximum likelihood estimation can be achieved
with an iteratively reweighted least squares procedure, see McCullagh
and Nelder [1983, pp. 31–34], Francis et al. [1994, chap. 11]. The log-
likelihood is

` =
n∑

i=1

yiθi − b(θi)
φ/wi

+ c(yi, φ) (13)

In general, maximization requires an iterative procedure. Given a current
parameter vector, β, the Newton-Raphson method would calculate a new
estimate

β∗ = β −H−1 ∂`

∂β
(14)

where H is the Hessian matrix

H =
(

∂2`

∂βj∂βk

)
Assuming m components in the parameter vector, this is an (m,m) ma-
trix. A somewhat simpler approach uses the expectation of H which can
be substituted by

H̃ = E
(

∂`

∂βj

∂`

∂βk

)
= −E (H)
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Considering first the gradient for the ith component of the log-likelihood,
we find

∂`i

∂βj
=

∂`i

∂θi

∂θi

∂µi

∂µi

∂ηi

∂ηi

∂βj

Using the model specification defined above, this becomes

∂`i

∂βj
=

yi − µi

ai(φ)
1

b′′(θi)
1

g′(µi)
xij (15)

Using the abbreviations

di = g′(µi) and ui =
wi

φ b′′(θi) d2
i

this may also be written as

∂`i

∂βj
= (yi − µi)uidixij (16)

Since ∂`i/∂ηj = 0 if i 6= j, we find

H̃jk = E
(

∂`

∂βj

∂`

∂βk

)
=

n∑
i=1

u2
i d

2
i E
[
(yi − µi)2

]
xijxik

However, as already noted in (6),

E
[
(yi − µi)2

]
=

φ

wi
b′′(θi) =

1
ui d2

i

and the expectation of the outer product simplifies into

H̃jk = E
(

∂`

∂βj

∂`

∂βk

)
=

n∑
i=1

uixijxik

Written in matrix notation, we finally have

H̃ = X ′UX , U = diag {u1, , . . . , un}

(14) can then be rewritten as

β∗ = β + (X ′UX)−1 ∂`

∂β
= (X ′UX)−1

[
X ′UXβ +

∂`

∂β

]
(17)
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This can be further simplified. Using (16) we can write

∂`

∂βj
= (X ′Uz)j =

n∑
i=1

xijui(yi − µi)di

where z is an n-vector with components

zi = (yi − µi) di

Consequently,

∂`

∂β
= X ′Uz

and inserting this into (17), we find

β∗ = (X ′UX)−1 X ′U [Xβ + z] (18)

This is the basic equation for the iteratively re-weighted least squares
procedure. The steps are as follows:

1. Given a parameter vector β of starting values and an invertible link
function ηi = g(µi) we can calculate

ηi = xiβ and µi = g−1(ηi)

Since the link function is assumed to be differentiable, we can also cal-
culate di = g′(µi) and the components of the z vector, zi = (yi − µi)di.
While this can be done quite generally, we furthermore need the weights,
ui, depending on the scaling and variance functions. As noted above, we
shall assume that the scaling function is φ/wi, where wi is some case-
specific weight. It is possible, therefore, to ignore the scaling function
when estimating the parameter vector β.1 On the other hand, we need
the variance function, b′′(θ), that depends on which member of the expo-
nential family of distributions has been selected for model specification.
Several standard options will be described below. Given such a speci-
fication, we know the variance function and can calculate the working
weights

ũi =
wi

b′′(θi) d2
i

1Of course, we need this function for estimating a covariance matrix, see below.
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2. The next step is to solve the weighted least squares problem defined in
(18) using the working weights Ũ = diag {ũ1, . . . , ũn}. This least squares
problem may be written as

(Xβ + z −Xβ∗)′ Ũ (Xβ + z −Xβ∗) −→ min

with β the given parameter vector for the current iteration and β∗ the
solution vector. For solving this least squares problem, TDA uses the
Hanson and Haskell [1982] algorithm described in Chapter 6.9.1. As an
option, this algorithm allows equality and inequality constraints as de-
scribed below.

3. The procedure is iterated until the difference between β and β∗ be-
comes small, or a maximum number of iterations has been performed.
TDA assumes convergence if

max
j

{
|β∗j − βj |

max{β∗j , 1}

}
≤ TOLSP (19)

where TOLSP is some small value.

4. If the procedure successfully converged, one can estimate a covariance
matrix

Cov(β̂) = (X ′UX)−1 = φ̂ (X ′ŨX)−1 (20)

using some estimate of the scale parameter, φ. These are the basic steps
performed by TDA to estimate generalized linear models. As indicated,
the procedure needs a variance function depending on which member of
the exponential family of distributions has been selected.

Estimating the Scale Parameter. Not all members of the exponen-
tial family of distributions do have a scale parameter. If there is a scale
parameter, estimation can be done separately, using an estimate of the
structural parameter vector, β̂. The log-likelihood for estimating φ is

`(φ) =
n∑

i=1

wi
yiθ̂i − b(θ̂i)

φ
+ c(yi, φ) (21)

Solutions of maximizing this log-likelihood will be called ML-based es-
timates of the scale factor. Alternatively, one can use the concept of
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deviance to estimate a scale parameter, see Francis et al. [1994, p. 270].
This estimate is defined by

φ̂d = D/df (22)

where D denotes the deviance (see below) and df = n− rank(X) is the
number of degrees of freedom. φ̂d will be called deviance-based estimate
of the scale parameter.

Goodness-of-Fit Indicators. Two types of goodness-of-fit indicators
are often used when estimating generalized linear models. First, a gen-
eralized Pearson statistic, defined by

X2 =
n∑

i=1

(yi − µ̂i)2

V (µ̂i)
, µ̂i = g−1(xiβ̂), V (µ̂i) = b′′(θ̂i) (23)

The second indicator is called deviance and is derived from considering
likelihood ratios, see Francis et al. [1994, p. 274]. If M1 ⊂ M2 are two
nested models, the likelihood ratio is 2(`2 − `1); `1 and `2 being the
maxima of the corresponding log-likelihood functions. The idea behind
the concept of deviance is to compare the log-likelihood of the current
model, `c, with the log-likelihood of a saturated model, `s, defined as
a model having sufficient parameters to reproduce the observed data
exactly.

Ds = 2 ( `s − `c )

is called the scaled deviance (of the current model). Let θ̂i,c and θ̂i,s

denote estimates for the current and saturated model, respectively, the
latter being defined by b′(θ̂i,s) = yi. Also assume that we use the same
estimate, φ̂, for the current and for the saturated model. Then

Ds = 2
n∑

i=1

wi
yi(θ̂i,s − θ̂i,c)− (b(θ̂i,s)− b(θ̂i,c))

φ̂
(24)

Without scaling,

D = φ̂Ds (25)

is called simply deviance. Detailed information about how TDA calcu-
lates both goodness-of-fit indicators will be given below, separately for
each type of distribution.
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6.15.2 The glm Command

The TDA command to estimate generalized linear models is glm. The
syntax is shown in Box 1. The command allows to select one of five
members of the exponential family of distributions, default is d=1, se-
lecting a normal distribution. Details will be described in later sections,
separately for each type of distribution.

1. A list of variable names must be given with the v parameter, the
syntax is

v = Y,X1,...XM,

The right-hand side is a comma-separated list of variable names, op-
tionally containing namelists. The first variable on the right-hand side is
used as dependent variable. The remaining variables are used to create
the linear predictor. If the dependent variable is followed by m variable
names, say X1, . . . , Xm, the linear predictor is

ηi = β0 +
m∑

j=1

Xijβj

By default, the linear predictor contains an intercept term, β0. The ni=1
parameter can be used to suppress this term. In this case, there must be
at least one independent variable.

2. An additional parameter, yw, is used to specify a dependent variable as
proportions. This will only be recognized if the distribution is binomial,
see 6.15.2.2.

3. The d parameter can be used to select a specific type of distribution.
Default is d = 1, i.e, the normal distribution. For a discussion of specific
distributions see subsequent sections.

4. There are two possibilities to specify a link function. One can use one
of the pre-defined link functions, or one can explicitly define a link func-
tion on the right-hand side of the command. Pre-defined link functions
can be selected with the link parameter. For available options and de-
faults, see Box 2. If a link function is specified on the right-hand side of
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Box 1 Syntax for glm command

glm (

d=..., type of distribution, def. 1
1 = Normal
2 = Binomial
3 = Poisson
4 = Gamma
5 = Inverse Gaussian

link=..., type of link function (if not user-defined)
1 = identity
2 = log
3 = logit
4 = reciprocal
5 = probit
6 = complementary log-log
7 = square root
8 = quadratic inverse

v=..., list of variables
yw=..., additional variable to define proportions
ni=..., 1 if linear predictor without intercept, def. 0
lsecon=..., equality constraints
lsicon=..., inequality constraints
mxit=..., maximum number of iterations, def. 20
tolsp=..., tolerance for parameter change, def. 1.e-8
xp=..., starting values
dsv=..., input file with starting values
tfmt=..., print format for results, def. tfmt=10.4
ppar=..., print estimated coefficients to output file
pcov=..., print covariance matrix to output file
mfmt=..., print format for pcov option, def. 12.4
pres=..., print data and estimated values to output file
fmt=..., print format for pres option, def. 10.4
dtda=..., TDA description of file written with pres

prot=..., request protocol file
pfmt=..., print format for protocol file, def. 19.11
ab=..., domain of user-defined link function

def. ab=0,1

) = user-defined link function;
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Box 2 Built-in link functions

link function default if

1 η = µ d = 1
2 η = log(µ) d = 3
3 η = log(µ/(1− µ)) d = 2
4 η = 1/µ d = 4
5 η = Φ−1(µ)
6 η = log(− log(1− µ))
7 η =

√
µ

8 η = 1/µ2 d = 5

the command, the syntax must follow the conventions for the definition
of functions in TDA explained in 5.3. The function must contain exactly
one parameter and must not refer to data matrix variables. An arbitrary
name can be used for the function argument; in the examples below we
will use the name mue.

The algorithm for estimating generalized linear models requires the
link function to be invertible (monotone) and differentiable. If the link
function is η = g(µ), the algorithm needs µ = g−1(η) and g′(µ). Deriva-
tives are calculated by automatic differentiation. For calculating µ, given
η, for a user-defined link function, the algorithm also needs to know the
domain of the link function, that is, some interval µa < µ < µb. In
general, the domain will depend on the selected distribution and link
function. Default is 0 < µ < 1. To change this default, one can use the
parameter

ab = µa, µb,

To illustrate user-defined link functions, here are some standard exam-
ples:

Identity glm(...) = mue;
Log glm(...) = log(mue);
Logit glm(...) = log(mue / (1 - mue));
Reciprocal glm(...) = 1 / mue;
Probit glm(...) = ndi(mue);
Compl. log-log glm(...) = log(-log(1 - mue));
Square root glm(...) = sqrt(mue);
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5. As explained in 6.15.1, estimation is done with an iteratively re-
weighted least squares procedure. The behavior of the algorithm can be
controlled with two parameters. The mxit parameter can be used to de-
fine the maximum number of iterations, default is mxit=20. The tolsp
parameter can be used to define the convergence tolerance according to
(19), default is tolsp = 1.e-8. While the command performs the itera-
tions, a message about the current value of the scaled parameter change
is written into the standard error output. To get additional information
about the iterations, one can request a protocol file with the parameter

prot = name of an output file,

The print format can be controlled with the pfmt parameter.

6. There are two options to define starting values for the model param-
eters, β. First, one can use

xp = b1,b2,...,

to provide starting values directly in the command file. Alternatively,
one can use

dsv = fname,

where fname is the name of a free-format input file containing starting
values in the first numerical column. If the model has m parameters, up
to m values are taken from the right-hand side of the xp parameter, or
read from the input file defined with the dsv parameter. By default, all
parameters get the starting value zero.

7. Basic estimation results are written into the standard output. Exam-
ples will be given below. The print format can be controlled with the
tfmt parameter, default is tfmt=10.4.

8. As an option, estimated parameters and standard errors can be writ-
ten into an output file using the parameter

ppar = name of an output file,

The print format is the same as used for the standard output and may
be changed with the tfmt parameter.

9. Also optionally, one can write the estimated covariance matrix into
an output file using the parameter

pcov = name of an output file,
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The print format can be controlled with the mfmt parameter, default is
mfmt=12.4.

10. As a further option, one can use the parameter

pres = name of an output file,

to request an output file containing the following entries:

Case Y Ŷ η X1 . . . Xm W Ũ

1 y1 ŷ1 η1 x11 · · · x1m w1 ũ1

2 y2 ŷ2 η2 x21 · · · x2m w2 ũ2

...
...

...
...

...
...

...
...

11. Finally, one can define equality and inequality constraints with the
lsecon and lsicon parameters, respectively. For an explanation of the
syntax, see 6.9.1. Note that a covariance matrix for the estimated pa-
rameters is only calculated if there are no inequality constraints.
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6.15.2.1 Normal Distribution

As a first member of the exponential family of distributions, one gets
the normal distribution by specifying

a(φ) = φ, b(θ) =
1
2
θ2, c(y, φ) = −1

2

(
y2

φ
+ log(2πφ)

)
Inserting these expressions into (4) and using

µ ≡ θ, σ2 ≡ φ

one gets the normal density function

f(y;µ, σ2) =
1√
2πσ

exp

{
−1

2

(
y − µ

σ

)2
}

The variance function is simply b′′(θ) = 1. Given an invertible link func-
tion ηi = g(µi), the relation between the mean value of the distribution
and the linear predictor is

µi = g−1(xiβ)

If g(µi) is the identity function, the resulting model is an ordinary linear
regression model. Of course, many other link functions can be used.
Note that, in general, the default domain for the link function will not
be appropriate for the normal distribution and should be redefined with
the ab parameter when user defined link functions are used.

The normal distribution has a scale parameter equal to its variance.
The log-likelihood for estimating this scale parameter is

`(φ) =
n∑

i=1

wi

[
yiµ̂i − µ̂2

i /2
φ

− 1
2

(
y2

i

φ
+ log(2πφ)

)]
Maximizing this log-likelihood gives the estimate

φ̂ =
∑n

i=1 wi(yi − µ̂i)2∑n
i=1 wi

d06150201.tex February 14, 2005



6.15.2.1 normal distribution 2

Box 1 Command file glm1.cf

nvar(

dfile = lsreg1.dat, # data file

Height = c1,

Weight = c2,

);

glm( # use default normal distribution, identity link

v = Weight,Height, # variables

pcov = cov, # write covariance matrix to cov

ppar = par, # write parameter to par

pres = res, # write residuals to res

);

TDA uses this formula to calculate an ML estimate for the scale param-
eter. Note that this is different from the deviance-based estimate of the
scale parameter, see below.

For the normal distribution, the variance function is b′′(θ) = 1 and
the generalized Pearson statistic is

X2 =
n∑

i=1

(yi − µ̂i)2

The deviance is calculated according to (24) and (25). The saturated
model is defined by θ̂i,s = yi and b(θ̂i,s) = y2

i /2. Inserting this into (24),
one gets

D =
n∑

i=1

wi(yi − µ̂i)2

TDA uses this formula to calculate the deviance, and the deviance-based
estimate of the scale factor, φ̂d = D/df .

Example 1 To illustrate the glm command, we begin with a replica-
tion of the simple linear regression model discussed in the first example
in 6.9.1. The command file, glm1.cf, is shown in Box 1, part of the
standard output is shown in Box 2. The command file uses a normal dis-
tribution and an identity link function (both being defaults). The same
results can be achieved with a user-defined link function, for example,
by using the command

glm (..., ab=1.e-6,1.e6) = mue;
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Box 2 Part of standard output from glm1.cf

Distribution: normal.

Link function: identity.

Variables (cross-section)

-------------------------

Y : Weight

X1 : Height

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

Data and estimated values written to: res

Convergence reached in 2 iterations.

Final scaled parameter change: 0

Rank of data matrix: 2

Degrees of freedom: 17

Deviance 2142.4880

Pearson statistic 2142.4880

ML-based scaling factor 112.7625

Deviance-based scaling factor 126.0287

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept -143.0269 32.2746 -4.4316 0.9996

2 1 Height 3.8990 0.5161 7.5549 1.0000

Parameter estimates written to: par

Covariance matrix written to: cov

Box 3 Command file glm2.cf

nvar(

noc = 100,

X = rd(-3,3),

Y = exp(3 + X) + rd,

);

glm(

link = 2, # logarithmic link function

v = Y,X, # variables

xp = 5,5, # some bad starting values

);
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Box 4 Part of standard output from glm2.cf

Distribution: normal.

Link function: log.

Variables (cross-section)

-------------------------

Y : Y

X1 : X

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

Got 2 starting value(s) from xp parameter.

Convergence reached in 19 iterations.

Final scaled parameter change: 4.13314e-10

Rank of data matrix: 2

Degrees of freedom: 98

Deviance 19.9937

Pearson statistic 19.9937

ML-based scaling factor 0.1999

Deviance-based scaling factor 0.2040

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept 3.0128 0.0020 1524.0440 1.0000

2 1 X 0.9958 0.0008 1299.1800 1.0000

Of course, we need to re-define the domain for the link function with
the ab parameter. The modified command file is supplied as glm1a.cf
in the example archive.

Example 2 To illustrate a logarithmic link function we use some ran-
dom data, see command file glm2.cf in Box 3. Data generation is by

yi = exp(3 + xi) + ri

where ri and xi are random numbers, equally distributed in (0, 1) and
in (−3, 3), respectively. Results are shown in Box 4. The parameters
are quite well recovered. (The example archive contains a command file,
glm2a.cf, that estimates the same model with a user-defined link func-
tion.)
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6.15.2.2 Binomial Distribution

If the dependent variable, Y , has possible values in {0, 1, . . . ,m}, where
m ≥ 1, we may assume a binomial distribution with density function

f(y) =
(

m

y

)
πy (1− π)m−y 0 ≤ π ≤ 1 (1)

This is again a special case of the exponential family of distributions.
This is easily seen by using the definitions

θ = log
(

π

1− π

)
, π =

exp(θ)
1 + exp(θ)

φ = 1

b(θ) = m log(1 + exp(θ))

c(y, φ) = log
{(

m

y

)}
Inserting these expressions into 6.15.1-4 will give (1). The expectation
is

E(Y ) = b′(θ) = mπ

and the variance is

Var(Y ) = mπ(1− π)

This shows that models for a dependent variable with a binomial distri-
bution can be specified as special cases of generalized linear models. In
the glm command, the d=2 parameter selects the binomial distribution.

Proportions. We speak of individual-level data if m = 1. The depen-
dent variable is then expected to take values in {0, 1}. Note that, contrary
to TDA’s qreg command, the glm command expects that the variable Y
actually has values in {0, 1}, there is no internal recoding.

On the other hand, if m > 1, we speak of grouped data, or propor-
tions. In order to tell the glm command that it should use proportions,
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instead of individual-level data, one needs to specify an additional vari-
able, say M, that contains the values of m. This is done with the additional
parameter

yw = M,

M must be the name of a variable that is defined in the currently ac-
tive data matrix and must contain only positive integer values. And, of
course, if Y is the name of the dependent variable, we need to have

0 ≤ Yi ≤ Mi and 1 ≤ Mi

Deviance. Since φ = 1, deviance and scaled deviance are identical. Cal-
culation follows formula 6.15.1-24. For the saturated model, we assume
that

yi = µ̂i,s = b′(θ̂i,s) = miπ̂i,s

and, consequently,

θ̂i,s = log
(

π̂i,s

1− π̂i,s

)
= log

(
yi

mi − yi

)
For the current model we find analoguously

θ̂i,c = log
(

π̂i,c

1− π̂i,c

)
= log

(
µ̂i

mi − µ̂i

)
By the same reasoning, we also find

b(θ̂i,s) = mi log
(

1
1− yi/mi

)
b(θ̂i,c) = mi log

(
1

1− µ̂i/mi

)
It might happen that the expressions for the saturated model cannot be
evaluated. However, inserting into 6.15.1-24 gives

Ds = 2
n∑

i=1

wi

{
yi log

(
yi

µ̂i

)
+ (mi − yi) log

(
mi − yi

mi − µ̂i

)}
TDA uses this formula for calculating the deviance in case of a binomial
distribution.
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Box 1 Command file glm3.cf

nvar(

dfile = qr1.dat,

Dose = c1,

Weight = c2,

Response = c3,

Log10Dose = log(Dose) / log(10),

);

cwt = Weight; use case weights

glm(

d = 2, # binomial distribution

v = Response,Log10Dose, # variables

);

Logit Link Function. We arrive at a standard logit model if we assume
that

µi

mi
=

exp(ηi)
1 + exp(ηi)

with the linear predictor ηi = xiβ. This corresponds to a logit link
function that is the default for the binomial distribution. In order that
individual-level and grouped data can be treated in the same way, all
link functions for the binomial case will be interpreted as

g(µi/mi) = ηi

If g is then specified as a logit function we have

ηi = log
(

µi/mi

1− µi/mi

)
Example 1 To illustrate we replicate example 6.12.2-1. Box 1 shows
the command file, Box 2 shows part of the standard output. The case
weights defined with the cwt command are used by the glm command.
Estimation results are identical with the results from the qreg command.
The only difference is in the column Signif due to the fact that the qreg
command ues a normal distribution and the glm command, instead, a
t-distribution.

Example 2 To illustrate estimation of logit model with grouped data
we use the data file glm3.dat shown in Box 3. The data are taken from
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Box 2 Part of standard output from glm3.cf

Distribution: binomial.

Link function: logit.

Variables (cross-section)

-------------------------

Y : Response

X1 : Log10Dose

Estimation with iteratively re-weighted least squares.

Using weights defined by: Weight

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

Convergence reached in 6 iterations.

Final scaled parameter change: 2.75435e-16

Rank of data matrix: 2

Degrees of freedom: 11

Deviance 74.2213

Fixed scaling factor 1.0000

Idx Wave Variable Coeff Error Coeff/E Signif

--------------------------------------------------------------

1 - Intercept -3.2246 0.8861 -3.6393 0.9961

2 1 Log10Dose 5.9702 1.4492 4.1197 0.9983

Box 3 Data file glm3.dat

D N Y

-------------

0.01 49 0

2.60 50 6

3.80 48 16

5.10 46 24

7.70 49 42

10.20 50 44

Francis et al. [1994, p. 440]. The command file, glm4.cf (Box 4) con-
tains two glm commands. Both estimate the same logit model. The first
command uses the build-in logit link function (default with the binomial
distribution), the second one uses a user-defined link function. Estima-
tion results from the first command are shown in Box 5. Of course, the
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Box 4 Command file glm4.cf

nvar(

dfile = glm3.dat,

D = log(c1),

N = c2,

Y = c3,

);

glm(

d = 2, # binomial distribution

v = Y,D, # variables

yw = N, # count

);

glm(

d = 2, # binomial distribution

v = Y,D, # variables

yw = N, # count

) = log(mue / (1 - mue)); # user-defined link function

second glm command should give the same results.

Probit Link Function. Substituting the logit link function by a probit
function, i.e.,

ηi = Φ−1(µi/mi)

results in a probit model. Box 6 shows the command file glm4a.cf that
replicates example 2 with a probit model. The first glm command uses
the link=5 parameter to select the in-build probit function, the sec-
ond glm command uses an equivalent user-defined link function. (The
ndi operator evaluates the inverse of the standard normal distribution
function.)
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Box 5 Part of standard output from glm4.cf

Distribution: binomial.

Link function: logit.

Variables (cross-section)

-------------------------

Y : Y

X1 : D

Variable used to define proportions: N

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

Convergence reached in 8 iterations.

Final scaled parameter change: 2.86182e-16

Rank of data matrix: 2

Degrees of freedom: 4

Deviance 1.4241

Fixed scaling factor 1.0000

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept -4.8869 0.6429 -7.6010 0.9984

2 1 D 3.1035 0.3877 8.0047 0.9987

Box 6 Command file glm4a.cf

nvar(...); # same as in glm4.cf

glm(

d = 2, # binomial distribution

link = 5, # probit link function

v = Y,D, # variables

yw = N, # count

);

glm(

d = 2, # binomial distribution

v = Y,D, # variables

yw = N, # count

) = ndi(mue); # user-defined link function



6.15.2.3 poisson distribution 1

6.15.2.3 Poisson Distribution

The Poisson distribution has density

f(y) = e−λ λy

y !
λ > 0 (1)

where y takes values in {0, 1, 2, . . .}. It is therefore often used to model
count data. The Poisson distribution is a special case of the exponential
family with

θ = log(λ) , λ = eθ

φ = 1

b(θ) = eθ

c(y, φ) = − log(y !)

The expectation is

E(Y ) = b′(θ) = λ = eθ

and the variance is

Var(Y ) = λ = eθ

Thus the variance is equal to the expectation. The Poisson distribution
can be specified with the d=3 parameter in the glm command. The de-
fault link function is the logarithm (link=2). The glm command expects
the variable Y to have values in {0, 1, 2, . . .}.

Deviance. Since φ = 1, deviance and scaled deviance are identical.
Calculation follows formula (24). For the saturated model, we assume
that

yi = µ̂i,s = λ̂i,s

Thus

θ̂i,s = log
(
λ̂i,s

)
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Box 1 Data file glm5.dat

X Y

---------

0.844 7

0.603 5

0.316 6

0.245 2

0.944 6

-0.322 1

0.365 3

-0.386 3

-0.795 1

-0.609 0

Box 2 Command file glm5.cf

nvar(

dfile = glm5.dat,

X = c1, # covariate

Y = c2,

);

glm(

d = 3, # Poisson distribution

v = Y,X, # variables

);

For the current model we find

θ̂i,c = log
(
λ̂i,c

)
Consequently,

b(θ̂i,s) = λ̂i,s = yi

b(θ̂i,c) = λ̂i,c

Inserting these expressions into 6.15.1-24 gives

D = 2
n∑

i=1

wi

{
yi log

(
yi

λ̂i,c

)
− (yi − λ̂i,c)

}

where we set 0 log(0) = 0.
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Box 3 Part of standard output from glm5.cf

Distribution: Poisson.

Link function: log.

Variables (cross-section)

-------------------------

Y : Y

X1 : X

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

Convergence reached in 9 iterations.

Final scaled parameter change: 2.22045e-16

Rank of data matrix: 2

Degrees of freedom: 8

Deviance 6.1902

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept 0.8673 0.2384 3.6382 0.9934

2 1 X 1.1754 0.3565 3.2974 0.9891

Example 1 To illustrate we use the data in Box 1 with the command
file glm5.cf (Box 2). Part of the output is shown in Box 3.
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Box 4 Command file glm6.cf

nvar(

dfile = cd1.dat,

isel = ge(c1,0), # select valid cases

NDI = c1,

Service= c2,

B = c3,

C = c4,

D = c5,

E = c6,

C60 = c7,

C65 = c8,

C70 = c9,

P75 = c10,

LOGS = log(Service),

);

glm( d = 3,

v = NDI, B, C, D, E, C60, C65, C70, P75, LOGS,

lsecon = b9 = 1, # constraint: blogs = 1

mxit = 100,

);

Example 2 In this example we use the ship damage data from McCul-
lagh and Nelder [1983, p. 136–140]. The command file is glm6.cf (Box
4). It demonstrates the use of equality constraints: The effect of the ag-
gregate months of service should be proportional to the expected number
of damage incidents. The coefficient of the logarithm of service time is
thus constraint to be 1. Also the number of iterations must be increased
to achieve convergence. Part of the output is shown in (Box 5). It repli-
cates the results in McCullagh and Nelder [1983, p. 139] except for the
standard errors. McCullagh and Nelder use a factor of approximately 1.3
from an overdispersion model.
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Box 5 Part of standard output from glm6.cf

Distribution: Poisson.

Link function: log.

Variables (cross-section)

-------------------------

Y : NDI

X1 : B

X2 : C

X3 : D

X4 : E

X5 : C60

X6 : C65

X7 : C70

X8 : P75

X9 : LOGS

Estimation with iteratively re-weighted least squares.

Number of model parameters: 10

LSECon: 1 b9 = 1

Equality constraints: 1

Inequality constraints: 0

Maximum number of iterations: 100

Tolerance for scaled parameter change: 1e-06

Convergence reached in 41 iterations.

Final scaled parameter change: 1.66533e-15

Rank of data matrix: 9

Degrees of freedom: 25

Deviance 38.6950

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept -6.4059 0.2174 -29.4600 1.0000

2 1 B -0.5433 0.1776 -3.0595 0.9948

3 1 C -0.6874 0.3290 -2.0891 0.9530

4 1 D -0.0760 0.2906 -0.2614 0.2041

5 1 E 0.3256 0.2359 1.3803 0.8203

6 1 C60 0.6971 0.1496 4.6587 0.9999

7 1 C65 0.8184 0.1698 4.8207 0.9999

8 1 C70 0.4534 0.2332 1.9446 0.9368

9 1 P75 0.3845 0.1183 3.2507 0.9967

10 1 LOGS 1.0000 --- --- ---
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6.15.2.4 Gamma Distribution

The gamma distribution has density

f(y) =
1

Γ(ν)

(
ν

µ

)ν

yν−1 exp
(
−νy

µ

)
ν, µ > 0 (1)

where y takes values in the non-negative reals R+. The gamma distribu-
tion is a special case of the exponential family with

θ = − 1
µ

, µ = −1
θ

φ =
1
ν

b(θ) = − log(−θ)

c(y, φ) = (log(y)− log(φ)) /φ− log(Γ(1/φ))

The expectation is

E(Y ) = b′(θ) = −1
θ

= µ

and the variance is

Var(Y ) = b
′′
(θ)φ =

µ2

ν

Thus the variance is proportional to the square of the expectation. In
other words, the coefficient of variation is constant. The gamma distri-
bution can be specified with the d=4 parameter in the glm command.
The default link function is the inverse link (link=4). This is also the
canonical link. But note that this link will not necessarily respect the
condition µ > 0. Thus, very often also the log link or the identity link
are considered.

Deviance. For the saturated model, we assume that

yi = µ̂i,s
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Box 1 Command file glm7.cf

nvar(

X = rd,

Y = -exp(1+X)*(log(rd) + log(rd))/2, # Gamma with form parameter 2

# and expectation exp(1+X)

);

glm(

d = 4,

link = 2,

v = Y,X,

);

clear;

nvar(

X = rd,

Y = -(log(rd) + log(rd))/((1+X)*2), # Gamma with form parameter 2

# and expectation 1/(1+X)

);

glm(

d = 4,

xp = 1,1, # starting values required

mxit = 50,

v = Y,X,

);

If ν is taken to be a constant, the log likelihood reduces to

ν
∑

i

wi

(
− yi

µi
− log(µi)

)
Since twice the log likelihood of the saturated model takes the value
−2
∑

wi(1 + log(yi)), the deviance can be written as

D = −2
n∑

i=1

wi

{
log
(

yi

µ̂i

)
− yi − µ̂i

µ̂i

}
Note that this is only defined for yi > 0.

Estimating ν. Not implemented.

Example 1 We use simulated data as a first illustration. Box 1 shows
the command file. It generates gamma distributed variables with covari-
ate effects first with the log link and then with the canonical inverse link.
Results are shown in Box 2 and 3.



6.15.2.4 gamma distribution 3

Box 2 Part of standard output from glm7.cf

Distribution: gamma.

Link function: log.

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

Convergence reached in 10 iterations.

Final scaled parameter change: 1.72821e-08

Rank of data matrix: 2

Degrees of freedom: 998

Deviance 519.1471

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept 0.9620 0.0624 15.4239 1.0000

2 1 X 1.0947 0.1070 10.2332 1.0000

Box 3 Part of standard output from glm7.cf

Distribution: gamma.

Link function: reciprocal.

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 50

Tolerance for scaled parameter change: 1e-06

2 starting value(s) from xp parameter.

Convergence reached in 3 iterations.

Final scaled parameter change: 4.12683e-15

Rank of data matrix: 2

Degrees of freedom: 998

Deviance 550.6416

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept 1.0082 0.0748 13.4819 1.0000

2 1 X 1.0223 0.1604 6.3736 1.0000
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Box 4 Command file glm8.cf

nvar(

dfile = glm8a.dat,

U = c1,

Y = c2,

L = c3,

X = log(U),

LX = L * X,

);

tsel=eq(L,0);

glm(

d = 4,

v = Y,X,

xp = -0.02,0.02, # starting values required

);

tsel=eq(L,1);

glm(

d = 4,

v = Y,X,

xp = -0.02,0.02, # starting values required

);

Example 2 In this example we use the blood clutting data from Mc-
Cullagh and Nelder [1983, p. 163]. The command file is glm8.cf (Box 4).
It uses the canonical (inverse) link separately for the two lots. Part of
the output is shown in Box 5. It replicates the results in McCullagh and
Nelder [1983, p. 163], except for the estimated standard errors. The lat-
ter are computed using a moment estimate of the dispersion parameter
by McCullagh and Nelder.
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Box 5 Part of standard output from glm8.cf

Distribution: gamma.

Link function: reciprocal.

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

2 starting value(s) from xp parameter.

Convergence reached in 5 iterations.

Final scaled parameter change: 1.48388e-12

Rank of data matrix: 2

Degrees of freedom: 7

Deviance 0.0167

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept -0.0166 0.0188 -0.8827 0.5933

2 1 X 0.0153 0.0084 1.8287 0.8898

tsel=eq(L,1)

Distribution: gamma.

Link function: reciprocal.

Convergence reached in 4 iterations.

Final scaled parameter change: 2.45984e-15

Rank of data matrix: 2

Degrees of freedom: 7

Deviance 0.0127

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept -0.0239 0.0311 -0.7675 0.5321

2 1 X 0.0236 0.0135 1.7423 0.8750
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6.15.2.5 Inverse Gaussian Distribution

The inverse Gaussian distribution has density

f(y) =
1√

2πσ2y3
exp

{
− (y − µ)2

2σ2µ2y

}
µ, σ2 > 0 (1)

where y takes values in the positive reals. The inverse Gaussian distri-
bution is a special case of the exponential family with

θ = − 1
2µ2

, µ =
1√
−2θ

φ = σ2

b(θ) = −
√
−2θ

c(y, φ) = −1
2

(
log(2πφy3) +

1
φy

)
The expectation is

E(Y ) = b′(θ) = − 1√
−2θ

= µ

and the variance is

Var(Y ) = b
′′
(θ)φ = µ3σ2

Thus the variance is proportional to the cube of the expectation. The
inverse Gaussian distribution can be specified with the d=5 parameter
in the glm command. The default link function is the quadratic inverse
link (link=5). This is also the canonical link.

Deviance. For the saturated model, we assume that

yi = µ̂i,s

If σ2 is taken to be a constant, the log likelihood reduces to

1
σ2

∑
i

wi

(
− yi

2µ2
i

+
1
µ

)
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Since twice the log likelihood of the saturated model takes the value
−
∑

wi/(yiσ
2), the deviance can be written as

D =
n∑

i=1

wi

{
(yi − µ̂)2

yiµ̂2

}
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Box 1 Command file glm9.cf

nvar(

X = rd,

Mu = 1 + X,

Z = rdn^2,

X1 = Mu + Mu^2 * Z - Mu * sqrt(2 * Mu * Z + Mu^2 * Z^2),

Y = if le(rd,Mu / (Mu + X1)) then X1 else Mu^2 / X1,

);

glm(

d = 5,

link = 1,

xp = 0.5,0.5,

v = Y,X,

);

Box 2 Part of standard output from glm9.cf

Distribution: inverse Gaussian.

Link function: identity.

Estimation with iteratively re-weighted least squares.

Number of model parameters: 2

Maximum number of iterations: 20

Tolerance for scaled parameter change: 1e-06

2 starting value(s) from xp parameter.

Convergence reached in 6 iterations.

Final scaled parameter change: 7.00738e-09

Rank of data matrix: 2

Degrees of freedom: 998

Deviance 1933.9975

Idx Wave Variable Coeff Error Coeff/E Signif

-------------------------------------------------------------

1 - Intercept 1.0702 0.0867 12.3497 1.0000

2 1 X 0.8148 0.1909 4.2690 1.0000

Example 1 We use simulated data as an illustration. Box 1 shows
the command file. It generates inverse Gaussian variables with covariate
effects with the identity link using a simulation method described in
Seshadri [1993, p. 203–204]. In this case, non-default starting values
must be given. Results are shown in Box 2.
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6.16 Nonlinear Regression

This chapter deals with nonlinear regression. It includes linear regression
as a special case. Currently, there is only a single section.

6.16.1 The freg Command
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6.16.1 The freg Command

If Yi is a dependent variable for cases i = 1, . . . , n and Xi is a correspond-
ing vector of covariates, a nonlinear regression model can be written as

f(θ) =
n∑

i=1

(Yi − g(Xi, θ))2 −→ min

While it would be possible to use the fmin command to find a solution,
there are somewhat different conventions for calculating a covariance ma-
trix for parameter estimates. TDA therefore provides a complementary
command, freg, for nonlinear regression. The syntax and parameters
for this command are identical with the fmin command. The only dif-
ference is that, when using the freg command, the covariance matrix is
calculated as

2
f(θ̂)
n− p

H(θ̂)−1

n is the number of data matrix cases, p the number of model parameters,
H(θ) is the Hessian of f(θ), and θ̂ denotes the parameter estimates. This
convention makes linear regression a special case of nonlinear regression.
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Box 1 Command file freg1.cf

nvar(

dfile = freg1.dat, # data file (Gallant, p. 4)

Y = c2,

X1 = c3,

X2 = c4,

X3 = c5,

);

freg (

xp = -0.1,1,-1,-1, # starting values

) = ax = a1 * X1 + a2 * X2 + a4 * exp(a3 * X3),

fn = (Y - ax)^2;

Example 1 To illustrate the freg command we use an example from
Gallant [1987, p. 4]. The command file, freg1.cf, is shown in Box 1. It
creates four variables, Y, X1, X2, X3, based on the data file freg1.dat
containing Gallant’s example data. The model is

Y = X1 a1 + X2 a2 + a4 exp(X3 a3) + ε

The freg command specifies the corresponding function to be mini-
mized. Its standard output is shown in Box 2.

For most applications, the freg command, like the fmin and fml
commands, requires reasonable starting values.
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Box 2 Output from command file freg1.cf

Nonlinear regression. Current memory: 148695 bytes.

Function definition:

ax = a1*X1+a2*X2+a4*exp(a3*X3)

fn = (Y-ax)^2

Function will be summed over 30 data matrix cases.

Nonlinear regression.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: 1

Got starting values from xp parameter.

Idx Parameter Starting value

1 a1 -0.1000

2 a2 1.0000

3 a3 -1.0000

4 a4 -1.0000

Convergence reached in 9 iterations.

Number of function evaluations: 11 (11,11)

Minimum of function: 0.0304955

Norm of final gradient vector: 3.95162e-11

Last absolute change of function value: 4.75342e-11

Last relative change in parameters: 4.7722e-06

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 a1 -0.0259 0.0126 -2.0511 0.9597

2 a2 1.0157 0.0099 102.4481 1.0000

3 a3 -1.1157 0.1607 -6.9423 1.0000

4 a4 -0.5049 0.0255 -19.7862 1.0000

Function (starting values): 1.3728

Function (final estimates): 0.0305
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6.17 Transition Rate Models

This chapter deals with transition rate models. They require an episode
data structure as explained in 3.3. The sections are:

6.17.1 Introduction

6.17.2 Exponential Models

6.17.3 Parametric Duration Dependence

6.17.4 Mixture Models

6.17.5 User-defined Rate Models

6.17.6 Discrete Time Rate Models

6.17.7 Semi-parametric Rate Models
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6.17.1 Introduction

This section provides introductory remarks about specification and esti-
mation of transition rate models. Specific types of models are dealt with
in subsequent sections. Here we shortly discuss TDA’s general approach
to the formulation of parametric transition rate models.

6.17.1.1 Parametric Rate Models

6.17.1.2 Maximum Likelihood Estimation

6.17.1.3 Time-varying Covariates

6.17.1.4 The rate Command

6.17.1.5 Relative Risks

6.17.1.6 Generalized Residuals
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6.17.1.1 Parametric Rate Models

For the discussion in this section we assume a set of single episodes:

(oi, di, si, ti, xi) i = 1, . . . , N (1)

where si is the starting time of the episode, ti is the ending time, oi

is the origin state, di is the destination state, and xi is a (row) vector
of covariates which, for the moment, are assumed to have fixed values
during the episode to which they are associated. Some of the episode
may be right censored, but we assume that they are not left censored.

Formulation (1) allows for different origin and destination states and,
therefore, covers the case of multi-episode data. Model estimation gen-
erally assumes that the individual episodes are statistically independent
and this might not be true for multi-episode data where each individual
can contribute more than one episode. But this requirement is condi-
tional on covariates, and can often be met by using covariates to capture
information about the past history of the individual episodes.

We use O and Dj (j ∈ O) to refer to the origin and destination
state spaces, respectively. Any pair (j, k), j ∈ O and k ∈ Dj , is called a
transition from origin state j to destination state k.

The modeling approach will be based on a process time axis, that
is, we assume that all episodes begin at time zero (si = 0 for all i =
1, . . . , N). It is then possible to describe the episodes in terms of dura-
tions as discussed in 3.3.1.

The general setup of the models will be explained in two steps. First
we look at the case of a single transition. There is a single random vari-
able, T , for the duration in the origin state until a transition to the
destination state occurs. To derive a model, one assumes a known para-
metric distribution for this duration variable T , depending on some un-
known parameters a, b, c, . . . The distribution may be given by a density
function f(t ; a, b, c, . . .) or, likewise, by a distribution function

F (t ; a, b, c, . . .) =
∫ t

0

f(τ ; a, b, c, . . .) dτ (2)

or by a survivor function

G(t ; a, b, c, . . .) = 1− F (t ; a, b, c, . . .) (3)
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or by a transition rate

r(t ; a, b, c, . . .) =
f(t ; a, b, c, . . .)
G(t ; a, b, c, . . .)

(4)

Second, if episodes can end in one of several different destination states
then, for each origin state j ∈ O, there is a two-dimensional random
variable (Tj , Dj), with Tj the duration in the origin state and Dj the
destination state after leaving the origin state. Generalization of transi-
tion rate models to this case is based on the concept of transition-specific
rates defined by

rjk(t) = lim
∆t→0

Pr (t ≤ Tj < t + ∆t, Dj = k | Tj ≥ t)
∆t

(5)

For the formulation of parametric transition rate models we assume that
all transition-specific rate rjk(t) have the same mathematical form. In
general, we begin by assuming a model for the single-transition case
and simply extend this model to a situation with alternative destination
states. The general approach is then

rjk(t ; ajk, bjk, cjk, . . .) ≡ r(t ; ajk, bjk, cjk, . . .) (6)

with r(t ; . . .) taken from the single-transition case, but providing the
possibility of transition-specific parameters.

To formulate the likelihood for the model one needs also survivor
functions, Gj(t), for the duration in the given origin state j ∈ O. They
can easily be derived from the transition-specific rates. One can first
define transition-specific pseudo-survivor functions

G̃jk(t) = exp
{
−
∫ t

0

rjk(τ) dτ

}
(7)

As a consequence of assuming identical rates for the different transitions,
all pseudo-survivor functions have the same mathematical form as the
corresponding survivor function in the single-transition case, and Gj(t)
may be written as

Gj(t) =
∏

k∈Dj

G̃jk(t) (8)

Summing up: For the formulation of parametric transition rate models in
TDA, we start with an expression for the rate in the single-transition case.
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This is then generalized for the case of several transitions by assuming
the same mathematical form for each transition-specific rate. Finally,
the survivor function for the duration in a given origin states is derived
from the transition-specific rates. As is seen in the next section, this is
all what is needed for maximum likelihood estimation of the models.

There is, of course, a broad range of possibilities for the construction
of transition rate models. One can start with some familiar paramet-
ric distribution and then derive the implied transition rate; or one can
immediately start with some expression for the transition rates. Both
approaches will be used in subsequent chapters. In any case, there are
some unknown parameters, denoted by ajk, bjk, and cjk, generally as-
sumed to have different values for each transition. The models described
in later chapters have, in fact, different numbers of unknown parame-
ters (for each transition). There are simple models with only one set of
parameters, and more flexible models with up to three different sets of
parameters. Using the terminology of the rate program (Tuma 1980),
they are called, respectively, the A-terms, the B-terms, and the C-terms
of a model.

The final step in model formulation is to specify how covariates shall
be linked to the transition rate functions that primarily define the model.
This, sometimes called the parameterization of a model, is done by link-
ing covariates to the unknown parameters of the transition-specific rates.
In principle, many different link functions are possible. Here we follow
the most common approach: if parameters can only take positive values
an exponential link function is used, otherwise a linear link function. The
exponential link functions are

ajk = exp
{

A(j,k) α(j,k)
}

bjk = exp
{

B(j,k) β(j,k)
}

(9)

cjk = exp
{

C(j,k) γ(j,k)
}

A(j,k), B(j,k), and C(j,k), are (row) vectors of covariates, and in most
cases it is assumed that the first component is equal to a constant one
to provide an intercept term. α(j,k), β(j,k), and γ(j,k), are the associated
coefficients. Therefore, if no covariates are specified, TDA estimates a
so-called null model , i.e. a model with only constant effects.
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6.17.1.2 Maximum Likelihood Estimation

For model estimation TDA uses the method of maximum likelihood. To
explain the setup of the likelihood, we proceed in three steps: first we
consider the case of a single transition, then situations with one origin
state but possibly two or more destination states, and finally situations
with more than one origin state.

The notation to set up the likelihood is as follows. O is the set of
origin states, and Dj is the set of possible destination states for episodes
with origin j ∈ O. Nj and Zj are, respectively, the set of all episodes and
the set of all right censored episodes, having an origin state j. Ejk is the
set of all episodes with origin state j and destination state k which have
an event (j 6= k). To simplify notation the dependence on parameters is
not explicitly shown.

In the case of a single transition (j, k), the likelihood may be written
as

Ljk =
∏

i∈Ejk

f(ti)
∏

i∈Zj

G(ti) =
∏

i∈Ejk

r(ti)
∏

i∈Nj

G(ti) (1)

where f(t) is the density function and G(t) is the survivor function for the
single transition (j, k). The contribution to the likelihood of an episode
with an event at ti is the density function, evaluated at the ending time
ti and with appropriate covariate values. The contribution of a censored
episode is the survivor function evaluated at the censored ending time
ti, but possibly depending on covariates changing their values during the
episode. Remember that, for the moment, we assume all episodes have
starting time zero. The likelihood can be expressed, then, by using only
the transition rate and the survivor function.

The next step is to look at the case with a single origin state j but
possibly more than one destination state. The destination state space is
Dj . Using the notation introduced in 3.3.1, the likelihood may be written
as

Lj =
∏

k∈Dj

∏
i∈Ejk

f̃jk(ti)
∏

i∈Zj

Gj(ti) (2)

The contribution of an episode with event at ti is again the density
function, but now transition-specific, according to the underlying model.
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As shown in 3.3.1, this density is given by the subdensity function f̃jk(t),
with the interpretation that f̃jk(t) dt is the probability of leaving the
origin state j to the destination state k in a small time interval at t. The
contribution to the likelihood of a right censored episode is the value of
the survivor function at ti, denoted by Gj(ti), i.e. the probability that
the episode starting in state j has no event until ti.

It is possible to factor the likelihood into a product of transition-
specific terms.1 First, the likelihood (2) may be rewritten as

Lj =
∏

k∈Dj

∏
i∈Ejk

rjk(ti)
∏

i∈Nj

Gj(ti) (3)

Secondly, using 6.17.1.1-(8), this may be rewritten as

Lj =
∏

k∈Dj

∏
i∈Ejk

rjk(ti)
∏

k∈Dj

∏
i∈Nj

G̃jk(ti) (4)

or, with terms rearranged:

Lj =
∏

k∈Dj

 ∏
i∈Ejk

rjk(ti)
∏

i∈Nj

G̃jk(ti)

 (5)

The third step, to account for more than a single origin state, is again
simple. One assumes that the model for each type of episode is con-
ditional on a given origin state. Then also the total likelihood is the
product of the likelihood for each of the origin states, Lj , and can be
written as

L =
∏
j∈O

∏
k∈Dj

∏
i∈Ejk

rjk(ti)
∏

i∈Nj

G̃jk(ti) (6)

In the case of a single origin state this likelihood reduces to (5), and in
the case of a single transition it reduces to (1).

Estimation of parametric transition rate models in TDA is always
based on the likelihood (6), by using the corresponding log-likelihood

` =
∑
j∈O

∑
k∈Dj

∑
i∈Ejk

log {rjk(ti)}+
∑
i∈Nj

log
{

G̃jk(ti)
}

(7)

1This assumes transition rates defined in continuous time. For discrete-time models
this factoring is not possible as will be discussed in 6.17.6.
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The fact that the total likelihood can be expressed as a product of
transition-specific factors implies that, in the case of several transitions,
a model for each transition can be estimated separately.2 Estimation for
a transition (j, k) is then done using all episodes starting in origin state
j; the episodes ending in destination state k are regarded as having an
event, and all other episodes are included as censored.

The possibility of factoring the total likelihood opens an easy way to
estimate models with a different specification of transition rates for dif-
ferent transitions. A different model can be assumed for each transition,
and then each of these models can be estimated separately.

2Of course, this is only possible if there are no constraints on parameters across
different transitions. To provide for this possibility is the main reason for using the
likelihood (6).
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6.17.1.3 Time-varying Covariates

For practical applications one should be able to include time-varying
covariates into the specification of transition rate models. There are ba-
sically three different approaches.

1. The first approach develops a special model formulation that ac-
counts for time-dependent covariates. For each application, this method
requires a new formulation of the model and, accordingly, new equations
for maximum likelihood estimation must be derived. This is impossible
with a general purpose program and not supported by TDA.

2. A second method was proposed by Tuma (1980). The idea is to split
the time axis into predefined time intervals and then to specify possibly
different covariates with associated coefficients for each of these inter-
vals. This method is supported by one version of the piecewise-constant
exponential model discussed in 6.17.2.3.

3. In practice, the most useful method is known as episode splitting ,
and this is the preferred method for handling time-varying covariates in
TDA. The basic idea is very simple. At all time points when at least one
of the covariates changes its value, the original episode is split into sub-
episodes, called splits (of an episode), and each split is given appropriate
values of the covariates. All splits have the same origin state as the
original episode and, except the last split, are regarded as right censored.
Only the last split is given the same destination state as the original
episode. To be used with split episodes, the likelihood expression for
transition rate models needs some modification. We need an expression
based on split episodes that might have starting times greater than zero.
Fortunately, the necessary modifications in the likelihood construction
are simple. Consider one of the original episodes (si, ti), with si = 0, and
assume it is split into li sub-episodes

(si, ti) ≡ {(s(l)
i , t

(l)
i ) | l = 1, . . . , li} (1)

The pseudo-survivor functions defined in (7) can then be written as

G̃jk(ti) =
li∏

l=1

G̃jk(t(l)i | s
(l)
i ) (2)
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where, on the right-hand side, one has conditional pseudo-survivor func-
tions1 defined by

G̃jk(t(l)i | s
(l)
i ) =

G̃jk(t(l)i )

G̃jk(s(l)
i )

= exp

{
−
∫ t

(l)
i

s
(l)
i

rjk(τ) dτ

}
(3)

In the integral on the right-hand side, rjk(τ) is the rate appropriate for
the split (s(l)

i , t
(l)
i ) and may depend on the covariate values for this split.

Now it would be possible to rewrite again the likelihood function (6)
by inserting (3). But one does not really need the subscripts, l. One can
simply write the likelihood function as

L =
∏
j∈O

∏
k∈Dj

∏
i∈Ejk

rjk(ti)
∏

i∈Nj

G̃jk(ti | si) (4)

Written this way, the likelihood can be used as well with a sample of
original (not split) episodes where all starting times are zero, and with
a sample of splits. Of course, it is the responsibility of the user to do
any episode splitting in such a way that the splits add up to a sample of
meaningful episodes.

1In the case of a single transition it is the probability of staying in the origin state

at least until t
(l)
i given that this state was not exited until s

(l)
i .
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6.17.1.4 The rate Command

TDA’s command to request estimation of a transition rate model is rate.
The syntax is

rate (parameter) = model number;

Currently available model numbers are shown in Box 1; parameter op-
tions are summarized in Box 2. Also, most options available in the fmin
command for function minimization can be use with the rate command,
see 5.6.1. These additional options are not shown in Box 2.

1. For most models all parameters are optional and the rate command
can be used as

rate = model number;

resulting in the estimation of a null model withou covariates. An excep-
tion are the piecewise constant exponential models where it is required
to use the tp parameter to define time periods.

2. Possibilities to include covariates depend on the model terms provided
by the selected model (see 6.17.1.1). In general, covariates are linked to
model terms by using expressions like

xa(j,k) = list of variables,

meaning that the list of variables to be given on the right-hand side
is linked to transition from origin state j to destination state k in the
model term A. If a model also provides a model term B, one can use
analoguously the expression

xb(j,k) = list of variables,

Some models also provide model terms C and D. The available possi-
bilities depend on the type of model and will be explained separtely for
each model.

3. For some models, additional parameters can be used for model spec-
ification. If a model contains polynomial terms, one can use the deg
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Box 1 Models available with the rate command

Model

rate = 1 Cox model
2 Exponential model
3 Piecewise constant exponential model
4 Polynomial rates, I
5 Polynomial rates, II
6 Gompertz-Makeham models
7 Weibull model
8 Sickle model
9 Log-logistic model, type I

10 Log-logistic model, type II
12 Log-normal model
13 Generalized gamma model
14 Inverse Gaussian model
16 Piecewise constant exponential model

with period-specific effects
20 Logistic regression model
21 Complementary log-log model

parameter to specify the degree. The kgam parameter is used for the
generalized gamma model. The grp parameter is used to define groups
for stratified Cox model estimation. Additional explanations for these
parameters will be given in separate sections.

4. Basic results of model estimation are always written into the stan-
dard output. This includes information about the results of maximum
likelihood estimtion, in particular whether the selected minimization al-
gorithm has reached convergence. In any case, one gets a table with
estimated parameters and, if the algorithm terminated successfully, also
estimated standard errors. The print format can be controlled with the
tfmt option, default is tfmt=10.4. In addition, for some models, one
can use the rrisk option to request a table containing relative risks; see
6.17.1.5.

5. The ppar option can be used to request an output file containing the
estimated parameters and standard errors. The syntax is

ppar = name of an output file,
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Box 2 Syntax for rate command

rate (

tp=..., time periods
xa(j,k)=..., variables for A-term of model
xb(j,k)=..., variables for B-term of model
xc(j,k)=..., variables for C-term of model
xd(j,k)=..., variables for D-term of model
deg=..., degree of polynomial rate, def. 0
kgam=..., coefficient for gamma model, def. 1
mix=..., selection of mixture model, see 6.17.4.1
grp=..., groups for stratified Cox model
rrisk, print table with relative risks
ppar=..., output file with estimated parameters
pcov=..., output file with covariance matrix
pres=..., generalized residuals, see 6.17.1.6
prate=..., calculation of estimated rates
tfmt=..., print format for results, def. 10.4
mfmt=..., print format for pcov, pres and prate, def. 12.4
mplog=..., write loglikelihood value into matrix
mppar=..., write estimated parameters into matrix
mpcov=..., write covariance matrix into matrix
mpgrad=..., write gradients into matrix
dsv=..., input file with starting values
con=..., linear parameter constraints

in addition, one can use all parameters to
control maximum likelihood estimation.

) = model number;

The print format is the same as used for the table in the standard output
and can be changed with the tfmt option.

6. As mentioned, standard errors are only calculated if the minimization
algorithm terminates successfully. In this case it is also possible to request
an output file containing the full covariance matrix with the pcov option.
The print format can be controlled with the mmfmt option, default is
mfmt=12.4.

7. For many models TDA can calculate so-called generalized residuals,
see 6.17.1.6. If supported, one can use the option

pres = name of an output file,



6.17.1.4 the rate command 4

to request an output file containing the estimated generalized residuals.
The print format can be controlled with the mfmt option, default is
mfmt=12.4.

8. One often wishes to tabulate, or plot, the transition rates, survivor
and density functions resulting from estimation of a model, depending
on certain constellations of covariates. This can be done with the prate
option, the syntax is

prate (tab=a(d)b, V1=..., V2=...,...) = fname,

The right-hand side must provide the name of an output file. Except for
the Cox model (see below), the tab parameter must be used to specify
a time axis, running from a to b with increments d; a must be nonneg-
ative, b must be greater than a, and d must be positive. Then follows,
optionally, a list of variable names each with syntax

VName = v,

where VName is the name of a variable used in the model specification
and v is the value to be used for this variable when estimating rates. All
variable not explicitly mentioned will get the value zero. Consider, for
example, the expression

prate (tab=0(1)100, X1=1, X2=2) = r.dat,

The output file, r.dat, will tabulate the estimated rates for the time
axis 0, 1, 2, . . . , 100 and uses covariate values X1=1 and X2=2; all other
covariates (if any) will be zero. We mention that the prate option can be
used more than once in the same rate command. Each prate expression
will create a new table. If the output file name is the same as previously
used, the table will be appended to the end of the file.

For the Cox model, the prate option can be used to request tables
with estimated baseline rates; this will be explained in 6.17.7.6. For
other parametric models, the output file will contain the estimated rates,
survivor and density functions. The calculation depends on the type of
model and will be described separately for each type of model. The print
format can be controlled with the mfmt option, default is mfmt=12.4. For
an example, see 6.17.2.1.

9. The dsv parameter can be used to provide starting values for model
estimation. The syntax is

dsv = name of an input file,
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The input file is assumed to be a free-format file. TDA uses the first
numerical entry in each record assuming an ordering of parameters as
used in model estimation and shown in the table of estimated parameters.
In particular, it is possible to use an output file created with the ppar
option as an input file for the dsv option. Alternatively, one can use the
xp parameter to provide starting values, see 5.6.4.

10. The con option can be used to specify linear constraints for the
model parameters, see the discussion in 5.6. Also most other options,
discussed there, to control maximum likelihood estimation can be used
as additional parameters in the rate command.

11. For a few parametric rate models one can use the mix parameter
to request model estimation based on a gamma mixing distribution, see
the discussion in 6.17.4.1.
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6.17.1.5 Relative Risks

Many of TDA’s transition rate models can be written as proportional rate
models:

r(t) = rb(t; θ) exp
( m∑

i=1

Aiαi

)
(1)

Here the transition rate, r(t), is a product of two parts. The first part,
rb(t; θ), is called the baseline transition rate. In general, with the ex-
ception of the simple exponential model, the baseline rate depends on
time and on a parameter vector θ. The second part links the transition
rate to individual-specific covariates; the formulation in (1) assumes m
covariates, A1, . . . , Am, with associated parameters α1, . . . , αm.

Models which can be given the representation (1) are called propor-
tional rate models because the effects of individual-specific covariates
are independent of time. Only the baseline transition rate is dependent
on time; different individual-specific covariates only lead to proportional
shifts of the baseline rate.

Of course, this interpretations assumes that the baseline rate’s pa-
rameter vector, θ, is not also linked to individual-specific covariates. In
fact, most transition rate models which can be estimated with TDA also
provide the opportunity to link some or all components of θ to individual-
specific covariates; and if this is done the resulting model is no longer a
proportional rate model.

The main advantage of proportional rate models is their simple in-
terpretation. There is a single baseline rate, independent of individual-
specific covariates and therefore easily assessed, for instance by plotting
this rate. Then, having a picture of the baseline rate, the influence of
individual-specific covariates can be represented by their contribution to
shifting the baseline rate. This is easily seen by rewriting (1) as

r(t) = rb(t; θ)
m∏

i=1

ri(Ai) with ri(Ai) = exp(Aiαi) (2)

For instance, if a1 and a2 are two values of the covariate Ai, the pro-
portional shift of the baseline rate due to a change from a1 to a2 is
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ri(a2)/ri(a1). In particular, if Ai is a dummy variable with possible val-
ues 0 and 1, the whole information about this variable’s influence on the
transition rate can be given by ri(1), i.e. by exp(αi).

To aid in this interpretation of proportional transition rate models,
TDA provides the option to request a table containing the estimated rel-
ative risks, ri(1). To request this table, simply use rrisk as a parameter
in the rate command. Note, however, that for some transition rate mod-
els, this option is not available. Whether it is, and how the calculations
are performed, is described separately for each type of model.
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6.17.1.6 Generalized Residuals

Since estimation of transition rate models is based on maximum likeli-
hood, it is difficult to assess goodness of fit. As proposed by Cox and
Snell [1968], it might be helpful to calculate so-called generalized resid-
uals. For applying this idea to transition rate models see, for instance,
Blossfeld et al. [1989, p. 82] and Lancaster [1985].

The definition is as follows. Let r̂(t;x) denote the estimated rate,
depending on time t and on a vector of covariates, x. The estimation is
based on a random sample of individuals i = 1, . . . , N , with duration
ti and covariate vectors xi. Generalized residuals are then defined as
cumulative transition rates, evaluated for the given sample observations,
i.e.

êi =
∫ ti

0

r̂(τ ;xi) dτ i = 1, . . . , N (1)

The reasoning behind this definition is that, if the model is appropriate,
and if there were no censored observations, the set of residuals should
approximately behave like a sample from a standard exponential distri-
bution. If some of the observations are censored, the residuals may be
regarded as a censored sample from a standard exponential distribution.
In any case, one can calculate a product-limit estimate of the survivor
function of the residuals, say Gê(e), and a plot of − log(Gê(êi)) against
êi can be used to check whether the residuals actually follow a standard
exponential distribution.

For most of TDA’s continuous time transition rate models one can
request a table with generalized residuals by using the option

pres = name of an output file,

as part of the rate command for model estimation. Depending on the
estimated model, residuals are calculated and then written into the spec-
ified output file. The print format can be controlled with the mfmt option,
default is mfmt=12.4. The variables (columns) in the output file are as
follows:
1. Case number.

2. Origin state of the episode.
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3. Destination state of the episode.

4. Starting time of the episode.

5. Ending time of the episode.

6. Estimated transition rate, evaluated at the ending time of the episode.
Note that the calculation is independent of whether the case is right
censored or not. The information about origin and destination states
can be used to select censored or uncensored cases.

7. Estimated survivor function, evaluated at the ending time of the
episode.

8. Residual.

9. Case weight.
Calculation of residuals is conditional on given starting times which may
be greater than zero. There will then be no straightforward interpreta-
tion. In any case, residuals are calculated according to

êi =
∫ ti

si

r̂(τ ;xi) dτ i = 1, . . . , N (2)

with si and ti denoting the starting and ending time of the episode,
respectively. Also the survivor functions printed into the output file are
conditional on starting times, meaning that the program calculates and
prints

Ĝ(ti | si;xi) = exp
{
−
∫ ti

si

r̂(τ ;xi) dτ

}
i = 1, . . . , N (3)

Therefore, if the starting times are not zero, in particular if the method of
episode splitting is applied, the output file will not contain proper infor-
mation about residuals. We also mention that calculation of generalized
residuals is only supported for single episode data without alternative
destination states.1 It is also not supported for Cox models, mixture
models, and discrete time transition rate models.

1If one really needs these residuals for models with alternative destination states one
should estimate a separate model for each transition.
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6.17.2 Exponential Models

This section describes transition rate models with a constant, or piece-
wise constant, rate. The sections are:

6.17.2.1 The Basic Exponential Model

6.17.2.2 Models with Time Periods

6.17.2.3 Period-specific Effects
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6.17.2.1 The Basic Exponential Model

The most simple transition rate model is the exponential where it is
assumed that the transition rates can vary with different constellations
of covariates but do not depend on time. In the case of a single transition
the model is derived by assuming that the duration variable T can be
described by an exponential distribution with density, survivor function,
and transition rates, respectively, given by

f(t) = a exp(−a t) a > 0 (1)

G(t) = exp(−a t) (2)

r(t) = a (3)

The transition rates are constants, not varying with the duration of the
episode. In most applications this might be not realistic. But the model is
not only simple, it can serve as a reference for more complicated models,
and some more flexible extensions of this model are described in later
sections.

Implementation. The simple exponential model has model number 2;
the command to request model estimation is

rate (parameter) = 2;

For a description of the syntax and options see 6.17.1.4.
The exponential distribution has only one parameter, so there is only

one possibility to include covariates (there is only an A-term in this
model). TDA uses an exponential link function. Taking into account the
possibility of different transitions one gets the model formulation

rjk = exp
{

A(jk)α(jk)
}

(4)

rjk is the constant transition rate from origin state j to destination
state k. A(jk) is a (row) vector of covariates, having a constant one in
its first component to provide an intercept term; and α(jk) is a vector of
associated coefficients to be estimated.

The command rate=2 estimates a null model without covariates. For
linking covariates to the model for transition from j to k one should use
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the parameter

xa(j,k) = list of variables,

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify notation we omit
indices for transitions. Using the conditional survivor function

G(ti | si) = exp {−(ti − si) exp(Ai α)} (5)

the log-likelihood is

` =
∑
i∈E

Aiα +
∑
i∈N

(si − ti) exp(Ai α)

Using the same notation, the first and second derivatives of the log-
likelihood with respect to the α coefficients are derived to be

∂`

∂αja

=
∑
i∈E

Ai,ja
+
∑
i∈N

(si − ti) exp(Aiα)Ai,ja
(6)

∂2`

∂αja
∂αka

=
∑
i∈N

(si − ti) exp(Aiα)Ai,ja
Ai,ka

The notation Ai,j is used to denote the jth component of the covariate
vector Ai associated with the ith episode.

Starting Values. In most cases there are no difficulties in reaching a
ML solution for the exponential model. The calculation of default start-
ing values by TDA is build on the fact that the ML solution of an expo-
nential null model can be found directly and does not need an iterative
procedure.1 In the single transition case the rate of an exponential null
model is given by

rn =
Wu

Tw
(7)

where Wu is the number of uncensored episodes, and Tw is the summed
duration of all episodes. Default starting values for exponential models
are calculated as the parameters of a corresponding null model.

1Cf. Lawless [1982, p. 101].
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Box 1 Command file rt1.cf for simple exponential model

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

rate (

xa(0,1) = COHO2,COHO3,W,

) = 2; exponential model

Example 1 To illustrate estimation of an exponential model we use
our main example data, rrdat.1 (see 3.3.3). Box 1 shows the command
file, rt1.cf. Most commands are used to specify variables and episode
data. The rate command at the end of the file requests model estimation.
Three covariates are linked to the model for transition from 0 to 1,
the only transition in the input data. For all other options of the rate
command, default values are used. The output from the rate command
is shown in Box 2. Convergence is reached with 5 iterations using TDA’s
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Box 2 Output from command file rt1.cf

Transition rate models.

Model: Exponential

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -2475.44

Norm of final gradient vector: 9.66315e-08

Last absolute change of function value: 2.62535e-11

Last relative change in parameters: 3.26799e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant -5.0114 0.0843 -59.4446 1.0000

2 1 0 1 A COHO2 0.5341 0.1120 4.7686 1.0000

3 1 0 1 A COHO3 0.6738 0.1152 5.8472 1.0000

4 1 0 1 A W 0.5065 0.0942 5.3746 1.0000

Log likelihood (starting values): -2514.0201

Log likelihood (final estimates): -2475.4383

default algorithm for ML estimation. The table shows the estimated
parameter values and standard errors.

Example 2 If the input data contain several transitions covariates can
be linked separately to each transition. To illustrate this option we use
command file rt1m.cf, shown in Box 4. There are now three transitions,
and we link some covariates to each of them. While it would be possible
to use different sets of covariates for each transition, we have not done
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Box 3 Command file rt1m.cf

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else

if ge(PRESN/PRES - 1,0.2) then 1 else

if lt(PRESN/PRES - 1,0.0) then 3 else 2,

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

rate (

xa(0,1) = COHO2,COHO3,W,

xa(0,2) = COHO2,COHO3,W,

xa(0,3) = COHO2,COHO3,W,

) = 2; exponential model

so in this example. Part of TDA’s standard output from this command
file is shown in Box 4.

Example 3 To control model estimation, one can use all the options
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Box 4 Part of standard output from file rt1m.cf

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -2935.58

Norm of final gradient vector: 2.6882e-05

Last absolute change of function value: 6.16377e-09

Last relative change in parameters: 0.000460972

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant -6.3412 0.1736 -36.5229 1.0000

2 1 0 1 A COHO2 0.3012 0.2618 1.1504 0.7500

3 1 0 1 A COHO3 0.4999 0.2651 1.8857 0.9407

4 1 0 1 A W -0.0957 0.2342 -0.4084 0.3170

-------------------------------------------------------------------

5 1 0 2 A Constant -5.7548 0.1236 -46.5439 1.0000

6 1 0 2 A COHO2 0.6924 0.1630 4.2486 1.0000

7 1 0 2 A COHO3 0.8088 0.1684 4.8039 1.0000

8 1 0 2 A W 0.2977 0.1381 2.1556 0.9689

-------------------------------------------------------------------

9 1 0 3 A Constant -6.3686 0.1578 -40.3698 1.0000

10 1 0 3 A COHO2 0.4424 0.1924 2.2996 0.9785

11 1 0 3 A COHO3 0.5875 0.1980 2.9676 0.9970

12 1 0 3 A W 1.1156 0.1659 6.7254 1.0000

Log likelihood (starting values): -2986.9500

Log likelihood (final estimates): -2935.5833

described in 5.6.1. For example, one can use the ppar option to write
estimated model parameters into an output file, the pcov option for the
covariance matrix, and the dsv option for reading starting values.

It is also possible to estimate models with linear constraints on a
subset of parameters. Assume, for example, we want to estimate the
model defined in command file rt1m.cf with the additional constraint
that the effects of COHO3 are equal for the transitions (0, 1) and (0, 3).
The corresponding model parameters have indices 3 and 11, respectively.
So the additional parameter for the rate command should be

con = b3 - b11 = 0,

Relative Risks. The rrisk option can be used as part of the rate com-
mand to request a table with relative risks. Since the exponential model
is a proportional transition rate model, the estimated model parameters
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Box 5 Relative risks for the model estimated by command file rt1m.cf

Idx SN Org Des MT Variable R.Risk

-------------------------------------

1 1 0 1 A Constant 0.0018

2 1 0 1 A COHO2 1.3514

3 1 0 1 A COHO3 1.6485

4 1 0 1 A W 0.9088

-------------------------------------

5 1 0 2 A Constant 0.0032

6 1 0 2 A COHO2 1.9985

7 1 0 2 A COHO3 2.2452

8 1 0 2 A W 1.3468

-------------------------------------

9 1 0 3 A Constant 0.0017

10 1 0 3 A COHO2 1.5564

11 1 0 3 A COHO3 1.7994

12 1 0 3 A W 3.0514

Box 6 Generalized residuals estimated with rt1.cf

# Generalized residuals.

# Survivor

# Case Org Des TS TF Rate Function Residual Weight

# ------------------------------------------------------------

1 0 0 0.0 428.0 0.0067 0.0578 2.8513 1.0000

2 0 1 0.0 46.0 0.0111 0.6014 0.5086 1.0000

3 0 1 0.0 34.0 0.0111 0.6867 0.3759 1.0000

4 0 1 0.0 220.0 0.0111 0.0878 2.4322 1.0000

5 0 1 0.0 12.0 0.0189 0.7975 0.2263 1.0000

...........................................................

595 0 1 0.0 119.0 0.0067 0.4526 0.7928 1.0000

596 0 1 0.0 66.0 0.0067 0.6442 0.4397 1.0000

597 0 0 0.0 112.0 0.0067 0.4742 0.7461 1.0000

598 0 0 0.0 103.0 0.0131 0.2603 1.3461 1.0000

599 0 1 0.0 22.0 0.0189 0.6604 0.4149 1.0000

600 0 1 0.0 13.0 0.0189 0.7826 0.2452 1.0000

can be changed into relative risks by taking their anti-logarithm. Box 5
shows the effect of the rrisk option when added to the rate command
in command file rt1m.cf (Box 3).

Generalized Residuals. If the exponential model is estimated for only
a single transition, one can use the pres option to request a table with
generalized residuals. For each episode (oi, di, si, ti, Ai) in the input data,
the output file specified with the pres option will contain the estimated
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rate

r̂i = exp(Ai α̂)

the estimated (conditional) survivor function

Ĝ(ti | si) = exp(−(ti − si) r̂i)

and the generalized residual

êi = − log(Ĝ(ti | si))

To illustrate the structure of the output file, the parameter pres=res.d
is added to the rate command in command file rt1.cf. Part of the
resulting output file, res.d, is shown in Box 6.
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Box 7 Table with estimated rates based on rt1.cf

# Time axis: 0 (5) 100

# Idx SN Org Des MT Variable Coeff Covariate

# ------------------------------------------------

# 1 1 0 1 A Constant -5.0114 1.0000

# 2 1 0 1 A COHO2 0.5341 0.0000

# 3 1 0 1 A COHO3 0.6738 1.0000

# 4 1 0 1 A W 0.5065 1.0000

# ID Time Surv.F Density Rate

# ------------------------------------------------------

0 0.0000 1.0000 0.0217 0.0217

0 5.0000 0.8972 0.0195 0.0217

0 10.0000 0.8050 0.0175 0.0217

0 15.0000 0.7223 0.0157 0.0217

0 20.0000 0.6481 0.0141 0.0217

0 25.0000 0.5815 0.0126 0.0217

0 30.0000 0.5217 0.0113 0.0217

0 35.0000 0.4681 0.0102 0.0217

0 40.0000 0.4200 0.0091 0.0217

0 45.0000 0.3768 0.0082 0.0217

0 50.0000 0.3381 0.0073 0.0217

0 55.0000 0.3034 0.0066 0.0217

0 60.0000 0.2722 0.0059 0.0217

0 65.0000 0.2442 0.0053 0.0217

0 70.0000 0.2191 0.0048 0.0217

0 75.0000 0.1966 0.0043 0.0217

0 80.0000 0.1764 0.0038 0.0217

0 85.0000 0.1583 0.0034 0.0217

0 90.0000 0.1420 0.0031 0.0217

0 95.0000 0.1274 0.0028 0.0217

0 100.0000 0.1143 0.0025 0.0217

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. To illustrate this option, we use com-
mand file rt1.cf and add the option

prate (tab=0(5)100, COHO3=1,W=1) = r.dat,

to the rate command. The resulting output file, r.dat, is shown in Box
7. The header shows the parameter and covariate values used to create
the table. The calculation of the rate, survivor and density functions is
based on the estimated model parameters and the specified covariate
values using the formulas for the exponential model. The first column of
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each table, labelled by ID, can be used to identify the table. If the prate
option is used more than once in the same rate command then, using
the same output file name, it will contain several tables which can be
identified by their ID column.
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6.17.2.2 Models with Time Periods

For most applications, the basic exponential model is not appropriate.
However, a small generalization leads to a very useful and flexible model,
called the piecewise constant exponential model. The idea is to split the
time axis into periods and assume that transition rates are constant in
each period but may vary across periods.

If there are m time periods, the distribution of durations has m pa-
rameters. To include covariates one has two different options. The first
is to assume that only a baseline rate, given by period-specific constants,
can vary across time periods but the covariates have the same (propor-
tional) effects in each period. The second option would be to allow for
period-specific effects of covariates. TDA’s standard exponential model
with time periods follows the first option; a model with period specific
effects is described in 6.17.2.3.

Implementation. The exponential model with time periods has model
number 3; the command to request model estimation is

rate (tp=..., additional parameters) = 3;

The tp parameter must be used to provide time periods defined by split
points on the time axis:

0 = τ1 < τ2 < τ3 < . . . < τm (1)

With τm+1 =∞, one gets m time periods

Il = {t | τl ≤ t < τl+1} l = 1, . . . ,m (2)

The syntax of the tp parameter is

tp = τ1, τ2, . . . , τm,

This parameter must be used with τ1 = 0 when requesting an exponential
model with time periods.

Given these time periods, the transition rate from origin state j to
destination state k is

rjk(t) = exp
{

ᾱ
(jk)
l + A(jk)α(jk)

}
if t ∈ Il (3)
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For each transition (j, k), ᾱ
(jk)
l is a constant coefficient associated with

the lth time period. A(jk) is a (row) vector of covariates, and α(jk) is an
associated vector of coefficients assumed not to vary across time periods.
The model must not contain a separate constant. If specified without
covariates, TDA estimates a null model, containing only parameters for
the baseline rate. Covariates can be added to the A-term of the model
with the option

xa(j,k) = list of variables,

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify notation we omit
indices for transitions and define l[t] to be the index of the time period
containing t (so always t ∈ Il[t]). Also the following notation is helpful:

δ[t, l] =
{

1 if t ∈ Il

0 else (4)

∆[s, t, l] =


t− τl if s ≤ τl, τl < t < τl+1

τl+1 − τl if s ≤ τl, t ≥ τl+1

τl+1 − s if t ≥ τl+1, τl < s < τl+1

0 else

(5)

The conditional survivor function may then be written as

G(t | s) = exp

{
−

m∑
l=1

∆[s, t, l] exp(ᾱl + Aα)

}
(6)

Using this expression, the log-likelihood can be written as

` =
∑
i∈E

(ᾱl[ti] + Aiα)−
∑
i∈N

m∑
l=1

∆[si, ti, l] exp(ᾱl + Aiα) (7)

and the first and second derivatives are1

∂`

∂ᾱj
=
∑
i∈E

δ[ti, j] +
∑
i∈N
−∆[si, ti, j] exp(ᾱj + Aiα)

∂`

∂αj
=
∑
i∈E

Ai,j +
∑
i∈N

m∑
l=1

−∆[si, ti, l] exp(ᾱl + Aiα) Ai,j

1δjk, here and in later sections, denotes the Kronecker symbol which is equal to one,
if j = k, and is otherwise zero.
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∂2`

∂ᾱj∂ᾱk
=
∑
i∈N
−∆[si, ti, j] exp(ᾱj + Aiα) δjk

∂2`

∂αj∂αk
=
∑
i∈N

m∑
l=1

−∆[si, ti, l] exp(ᾱl + Aiα)Ai,jAi,k

∂2`

∂ᾱj∂αk
=
∑
i∈N
−∆[si, ti, j] exp(ᾱj + Aiα)Ai,k

Starting Values. TDA calculates default starting values for the piece-
wise constant exponential model by assuming the same rate in each time
period. As an initial estimate the constant rate of a correspondingly de-
fined exponential null model is used. In most practical situations this
is sufficient to reach convergence of the maximum likelihood iterations.
Alternatively, one can use the dsv option to provide starting values.

Example 1 To illustrate estimation of an exponential model with time
periods we continue with command file rt1.cf (see 6.17.2.1), and mod-
ify the rate command. The model number is now 3, instead of 2; and
we add the parameter

tp = 0 (12) 96,

to specify time periods. The new command file is rt2.cf (not shown).
The output from this command is shown in Box 1. It begins with a table
showing the time periods and the distribution of starting and ending
times of the episodes used for model estimation. In particular, the table
shows the number of events occurring in each of the time periods. This
is useful information because the model is only estimable if each time
period contains sufficient events.

Example 2 The piecewise constant exponential model contains the ba-
sic exponential model as a special case. Consequently, adding constraints
to the parameters in the piecewise constant model should result in es-
timates for the basic exponential model. The rate command in Box 2
(command file rt2c.cf) illustrates this by adding 8 constraints in or-
der to have the same baseline rate in all time periods. The result of
this command should be identical to the output from rt1.cf shown in
6.17.2.1.



6.17.2.2 models with time periods 4

Box 1 Part of output from command file rt2.cf

Model: Exponential with time-periods

Time period Starting times Ending times Events

-----------------------------------------------------------

0.0000 - 12.0000 600 76 63

12.0000 - 24.0000 0 104 96

24.0000 - 36.0000 0 108 95

36.0000 - 48.0000 0 55 44

48.0000 - 60.0000 0 44 38

60.0000 - 72.0000 0 38 29

72.0000 - 84.0000 0 22 17

84.0000 - 96.0000 0 9 6

96.0000 - 0 144 70

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 12

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Period-1 -5.2070 0.1520 -34.2464 1.0000

2 1 0 1 A Period-2 -4.5473 0.1312 -34.6574 1.0000

3 1 0 1 A Period-3 -4.2675 0.1296 -32.9389 1.0000

4 1 0 1 A Period-4 -4.7784 0.1690 -28.2758 1.0000

5 1 0 1 A Period-5 -4.7300 0.1779 -26.5924 1.0000

6 1 0 1 A Period-6 -4.7862 0.1987 -24.0857 1.0000

7 1 0 1 A Period-7 -5.1366 0.2523 -20.3568 1.0000

8 1 0 1 A Period-8 -6.0783 0.4137 -14.6918 1.0000

9 1 0 1 A Period-9 -5.4198 0.1281 -42.3123 1.0000

10 1 0 1 A COHO2 0.4367 0.1133 3.8534 0.9999

11 1 0 1 A COHO3 0.5162 0.1182 4.3688 1.0000

12 1 0 1 A W 0.4336 0.0949 4.5688 1.0000

Log likelihood (starting values): -2514.0201

Log likelihood (final estimates): -2433.3757
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Box 2 Illustration of constraints (rt2c.cf)

rate (

tp = 0 (12) 96,

xa(0,1) = COHO2,COHO3,W,

con = b1 - b2 = 0, # adding constraints

con = b2 - b3 = 0, # to request the same

con = b3 - b4 = 0, # baseline rate in

con = b4 - b5 = 0, # all periods

con = b5 - b6 = 0,

con = b6 - b7 = 0,

con = b7 - b8 = 0,

con = b8 - b9 = 0,

) = 3;

Relative Risks. Since the exponential model is a proportional tran-
sition rate model one can use the rrisk option as part of the rate
command to request a table with relative risks. Calculation is done by
simply taking the anti-logarithm of the estimated model parameters.

Generalized Residuals. If the model is specified for only a single
transition, one can use the pres option to request generalized residuals.
For each episode in the input data, the rate is calculated with formula (3),
the (conditional) survivor function with formula (6), and the generalized
residuals by taking the anti-logarithm of the survivor function.

For example, adding the pres option to the rate command in Box
2 would result in the same output as shown in 6.17.2.1 for the basic
exponential model.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. For each point on the specified time
axis, the rate is calculated according to (3) using the corresponding time
period. Calculation of the survivor function is based on (6), always start-
ing with time zero but integrating over all time periods up to the given
time point. The density function is calculated by multiplying the rate
and the survivor function.
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6.17.2.3 Period-specific Effects

The piecewise constant exponential model described in 6.17.2.2 is based
on the assumption that the effects of covariates do not change across time
periods. Of course, the covariates may be time-dependent, but not their
effects. An essentially different approach would allow also the effects of
covariates to vary across time periods. This model with period-specific
effects will be explained in the current section. We mention that this
is different from a standard exponential model with interaction effects
between covariates and time periods.

Implementation. The exponential model with time periods has model
number 16; the command to request model estimation is

rate (tp=..., additional parameters) = 16;

The tp parameter must be used to provide time periods defined by split
points on the time axis in the same way as described in 6.17.2.2 for
the standard piecewise constant exponential model. Given these time
periods, and using the same notation as in 6.17.2.2, the transition rate
from origin state j to destination state k is

rjk(t) = exp
{

ᾱ
(jk)
l + A(jk)α

(jk)
l

}
if t ∈ Il (1)

For each transition (j, k), ᾱ
(jk)
l is a constant coefficient associated with

the lth time period. A(jk) is a (row) vector of covariates, and α
(jk)
l is

an associated vector of coefficients, also associated with the lth time
period. TDA estimates a null model, containing only parameters for the
baseline rate, if specified without covariates. Covariates can be added to
the A-term of the model with the option

xa(j,k) = list of variables,

The standard exponential model with time periods described in 6.17.2.2

is, of course, a special case of the model defined in (1). In fact, estimating
the latter model with constraints so that the α

(jk)
l parameters are equal

across time periods, would give the same result as a standard exponential
model with time periods.
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Box 1 Part of command file rt3.cf

rate (

tp = 0 (12) 96,

xa(0,1) = COHO2,COHO3,W,

) = 16;

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. Using the same notation as
in 6.17.2.2, the conditional survivor function can now be written as

G(t | s) = exp

{
−

m∑
l=1

∆[s, t, l] exp(ᾱl + Aαl)

}
(2)

Using this expression, the log-likelihood is

` =
∑
i∈E

(ᾱl[ti] + Aiαl[ti])−
∑
i∈N

m∑
l=1

∆[si, ti, l] exp(ᾱl + Aiαl) (3)

and the first and second derivatives are
∂`

∂ᾱl
=

∑
i∈E

δ[ti, l] +
∑
i∈N
−∆[si, ti, l] exp(ᾱl + Aiαl) (4)

∂`

∂αl,j
=

∑
i∈E

Ai,j δ[ti, l] +
∑
i∈N
−∆[si, ti, l] exp(ᾱl + Aiαl) Ai,j

∂2`

∂ᾱl∂ᾱl′
=

∑
i∈N
−∆[si, ti, l] exp(ᾱl + Aiαl) δll′

∂2`

∂αl,j∂αl′,k
=

∑
i∈N

m∑
l=1

−∆[si, ti, l] exp(ᾱl + Aiαl) Ai,jAi,k δll′

∂2`

∂ᾱl∂αl′,k
=

∑
i∈N
−∆[si, ti, l] exp(ᾱl + Aiαl) Ai,k δll′

Starting Values. Default starting values are calculated in the same way
as for the piecewise constant exponential model described in 6.17.2.2,
based on the results of a simple exponential null model.

Example 1 To illustrate estimation of an exponential model with period-
specific effects we use again command file rt1.cf. The rate command
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Box 2 Part of the output from command file rt3.cf

Model: Exponential with period-specific effects

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Idx SN Org Des MT P Variable Coeff Error C/Error Signif

----------------------------------------------------------------------

1 1 0 1 A 1 Period-1 -5.0470 0.2696 -18.7220 1.0000

2 1 0 1 A 2 Period-2 -4.5147 0.2121 -21.2865 1.0000

3 1 0 1 A 3 Period-3 -4.1413 0.1949 -21.2431 1.0000

4 1 0 1 A 4 Period-4 -5.1107 0.3160 -16.1711 1.0000

5 1 0 1 A 5 Period-5 -4.9954 0.3226 -15.4869 1.0000

6 1 0 1 A 6 Period-6 -4.5366 0.2934 -15.4603 1.0000

7 1 0 1 A 7 Period-7 -5.5069 0.5127 -10.7403 1.0000

8 1 0 1 A 8 Period-8 -6.0808 0.7231 -8.4090 1.0000

9 1 0 1 A 9 Period-9 -5.5356 0.1732 -31.9616 1.0000

10 1 0 1 A 1 COHO2 0.4474 0.3362 1.3308 0.8168

11 1 0 1 A 2 COHO2 0.5783 0.2509 2.3050 0.9788

12 1 0 1 A 3 COHO2 0.4240 0.2411 1.7581 0.9213

13 1 0 1 A 4 COHO2 0.2850 0.3616 0.7881 0.5694

14 1 0 1 A 5 COHO2 0.6357 0.4089 1.5546 0.8800

15 1 0 1 A 6 COHO2 -0.0546 0.4292 -0.1273 0.1013

16 1 0 1 A 7 COHO2 1.5141 0.6137 2.4671 0.9864

17 1 0 1 A 8 COHO2 -0.8695 1.0971 -0.7925 0.5719

18 1 0 1 A 9 COHO2 0.2966 0.3020 0.9822 0.6740

19 1 0 1 A 1 COHO3 0.7676 0.3161 2.4284 0.9848

20 1 0 1 A 2 COHO3 0.5335 0.2609 2.0446 0.9591

21 1 0 1 A 3 COHO3 0.2488 0.2590 0.9606 0.6633

22 1 0 1 A 4 COHO3 0.3212 0.3684 0.8717 0.6166

23 1 0 1 A 5 COHO3 0.8420 0.3946 2.1337 0.9671

24 1 0 1 A 6 COHO3 -0.7163 0.5605 -1.2779 0.7987

25 1 0 1 A 7 COHO3 1.1975 0.6762 1.7708 0.9234

26 1 0 1 A 8 COHO3 -8.4412 42.1447 -0.2003 0.1587

27 1 0 1 A 9 COHO3 1.2489 0.3227 3.8701 0.9999

28 1 0 1 A 1 W -0.1421 0.2620 -0.5422 0.4123

29 1 0 1 A 2 W 0.2518 0.2054 1.2259 0.7798

30 1 0 1 A 3 W 0.3492 0.2060 1.6958 0.9101

31 1 0 1 A 4 W 1.2122 0.3188 3.8026 0.9999

32 1 0 1 A 5 W 0.6285 0.3255 1.9310 0.9465

33 1 0 1 A 6 W 0.7757 0.3749 2.0691 0.9615

34 1 0 1 A 7 W -0.2436 0.5366 -0.4539 0.3501

35 1 0 1 A 8 W 1.7909 0.8673 2.0650 0.9611

36 1 0 1 A 9 W 0.5607 0.2580 2.1729 0.9702

Log likelihood (starting values): -2514.0201

Log likelihood (final estimates): -2411.9909
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is changed as shown in Box 1; the new command file is rt3.cf. For each
covariate one gets m parameters, with m the number of time periods.
So the total number of model parameters can easily become very large.
To reduce the number of parameters one can use constraints. As al-
ready mentioned, constraining the parameters to get equal values across
time periods would be equivalent to estimating the standard piecewise
constant exponential model described in 6.17.2.2. The example archive
contains another command file, rt3c.cf, that illustrates how to use con-
straints.

Generalized Residuals. If the model is specified for only a single
transition, one can use the pres option to request generalized residuals.
For each episode in the input data, the rate is calculated with formula (1),
the (conditional) survivor function with formula (2), and the generalized
residuals by taking the anti-logarithm of the survivor function.

Printing Estimated Rates. The prate option is not supported for
models with period-specific effects. This option might be added in a
future version of TDA.
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6.17.3 Parametric Duration Dependence

This section describes transition rate models with parametric duration
dependence. All models can be estimated with the rate command, see
6.17.1.4. All examples use the episode data set rrdat.1 that was dis-
cussed in 3.3.3.

6.17.3.1 Polynomial Rates

6.17.3.2 Gompertz-Makeham Models

6.17.3.3 Weibull Models

6.17.3.4 Sickle Models

6.17.3.5 Log-logistic Models

6.17.3.6 Log-normal Models

6.17.3.7 Generalized Gamma Models

6.17.3.8 Inverse Gaussian Models
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6.17.3.1 Polynomial Rates

This section described two types of models where duration dependence
is specified by a polynomial. In a direct approach, one can specify the
transition rate by

r(t) = a + b1t + b2t
2 + . . . bntn (1)

The corresponding survivor function is

G(t) = exp
{
−at− b1

2
t2 − b2

3
t3 − . . .− bn

n + 1
tn+1

}
(2)

This model, sometimes called a generalized Rayleigh model, is described
shortly by Lawless [1982, p. 252]. An obvious drawback is that not all
possible parameter values will give sensible results.

With a small modification this problem can be avoided. If we take
the approach

r(t) = exp
(
a + b1t + b2t

2 + . . . bntn
)

(3)

estimated rates can only take positive values. The corresponding condi-
tional survivor function is

G(t | s) = exp
{
− exp(a)

∫ t

s

exp(b1τ + b2τ
2 + . . . bnτn) dτ

}
(4)

Unfortunately, there is no analytic solution; the integral must be evalu-
ated numerically.

Implementation. Both types of models can be estimated with TDA.
They are called models with polynomial rates, type I and II, respectively.
The commands to request model estimation are

rate (parameter) = 4;

for the type I model, and

rate (parameter) = 5;
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for the type II model. To specify the degree of the polynomial one can
use the parameter

deg = degree of polynomial,

The default value is deg=0, both models are then identical to a simple
exponential model. For type II model, one can also select a method for
numerical integration with the niset command, see 5.4.1. Default is
method 1 (QNG algorithm) with relative accuracy 0.0001.

1. The type I model provides for the possibility to link covariates to the
parameter a via an exponential link function, the other parameters are
estimated directly. The degree of the polynomial can be defined by the
user, so there is the possibility of testing how many degrees are needed
for a reasonably model fit. One gets the following formulation for the
transition rate from origin state j to destination state k.

rjk(t) = ajk +
n∑

l=1

b
(jk)
l tl (5)

ajk = exp
{

A(jk)α(jk)
}

2. In the type II model covariates can be linked to the parameter a by
a linear link function, the other parameters are again estimated directly.
Also the degree of the polynomial can be defined by the user. One then
gets the following formulation for the transition rate from origin state j
to destination state k.

rjk(t) = exp
{

ajk +
n∑

l=1

b
(jk)
l tl

}
(6)

ajk = A(jk)α(jk)

In both cases, A(jk) is a (row) vector of covariates, and α(jk) is the
associated vector of coefficients. The first component of A(jk) is supplied
automatically by TDA as a constant equal to one. The model parameters
to be estimated are the vectors

α(jk) and b(jk) = (b(jk)
1 , . . . , b(jk)

n )′

In both cases the null model is defined as a simple exponential model,
that is a model with polynomial degree zero. We mention that the type I



6.17.3.1 polynomial rates 3

model is not a proportional transition rate model, and the rrisk option
is not available for this model.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify notation we omit
indices for transitions.

I. Using the conditional survivor function

G(t | s) = exp
{

a (s− t) +
n∑

l=1

bl

l + 1
(
sl+1 − tl+1

)}
(7)

the log-likelihood for the type I model can be written as

` =
∑
i∈E

log
{

a +
n∑

l=1

blt
l
i

}
+
∑
i∈N

{
a (si − ti) +

n∑
l=1

bl

l + 1
(
sl+1

i − tl+1
i

)}
The first and second derivatives with respect to the α and b coefficients
are

∂`

∂αja

=
∑
i∈E

a

a +
∑

l bltli
Ai,ja

+
∑
i∈N

a (si − ti) Ai,ja

∂`

∂bjb

=
∑
i∈E

1
a +

∑
l bltli

tjb

i +
∑
i∈N

(
si

ti

)jb

(si − ti)

jb + 1
tjb

i

∂2`

∂αja∂αka

=
∑
i∈E

a

a +
∑

l bltli

{
1− a

a +
∑

l bltli

}
Ai,ja

Ai,ka
+∑

i∈N
a (si − ti)Ai,ja

Ai,ka

∂2`

∂bjb
∂bkb

=
∑
i∈E

−1
a +

∑
l bltli

tjb

i tkb
i

∂2`

∂αja
∂bkb

=
∑
i∈E

−a

a +
∑

l bltli
Ai,ja

tkb
i
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II. For the type II model the integral needed in the formulation of (4)
must be evaluated numerically. Assuming that a method for the evalua-
tion of

I(s, t) =
∫ t

s

exp
{ n∑

l=1

blτ
l
}

dτ

∂In(s, t)
∂bj

=
∫ t

s

exp
{ n∑

l=1

blτ
l
}

τ j dτ

∂2In(si, ti)
∂bj∂bk

=
∫ t

s

exp
{ n∑

l=1

blτ
l
}

τ j+k dτ

is available, the log-likelihood for the type II model can be written as

` =
∑
i∈E

{
a +

n∑
l=1

blt
l
i

}
−
∑
i∈N

exp(a) I(si, ti)

and the first and second derivatives are

∂`

∂αja

=
∑
i∈E

Ai,ja
−
∑
i∈N

exp(a) I(si, ti) Ai,ja

∂`

∂bjb

=
∑
i∈E

tjb

i −
∑
i∈N

exp(a)
∂I(si, ti)

∂bjb

∂2`

∂αja
∂αka

=
∑
i∈N
− exp(a) I(si, si) Ai,jaAi,ka

∂2`

∂bjb
∂bkb

=
∑
i∈N
− exp(a)

∂2I(si, ti)
∂bjb

∂bkb

∂2`

∂αja
∂bkb

=
∑
i∈N
− exp(a)

∂I(si, ti)
∂bkb

Ai,ja

To evaluate the integrals, one can use the algorithms described in the
chapter about numerical integration, see 5.4.

Starting Values. Both types of the polynomial model contain the sim-
ple exponential model as a special case. Therefore it is possible to use the
parameter estimates of correspondingly defined exponential null models
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Box 1 Illustration of polynomial model, type I (rt4.cf)

Model: Polynomial (I) with degree 2

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Convergence reached in 7 iterations.

Number of function evaluations: 10 (10,10)

Maximum of log likelihood: -2454.04

Norm of final gradient vector: 0.00705957

Last absolute change of function value: 9.30148e-14

Last relative change in parameters: 2.72933e-06

Numerical problems: 1

Idx SN Org Des MT Variable Coeff Error C/Error

------------------------------------------------------------------

1 1 0 1 A Constant -4.4325e+00 1.0308e-01 -4.2999e+01

2 1 0 1 A COHO2 2.4523e-01 8.9275e-02 2.7468e+00

3 1 0 1 A COHO3 3.4108e-01 9.9069e-02 3.4429e+00

4 1 0 1 A W 3.1746e-01 7.5806e-02 4.1878e+00

5 1 0 1 B Beta-1 -7.6085e-05 1.5607e-05 -4.8750e+00

6 1 0 1 B Beta-2 1.4274e-07 4.3506e-08 3.2809e+00

Log likelihood (starting values): -2.5140e+03

Log likelihood (final estimates): -2.4540e+03

as starting values. The default starting values used by TDA are calcu-
lated this way, i.e. the constant terms in the model parameters α(jk)

are initially set as in a simple exponential model, and all other model
parameters are set to zero.

In most cases this is sufficient for low degree polynomials. If the
degree of the polynomial is greater than three, the default starting values
can result in convergence difficulties. In many cases this can be avoided
if a series of models with successively higher degrees of the polynomial is
estimated, and for each model the parameter estimates of the previous
one are used as starting values.

Another source of convergence difficulties arises because of numerical
overflow if the degree of the polynomials becomes large since TDA does
not automatically scale variables of different magnitude.

Example 1 To illustrate the type I model, we use command file rt4.cf
(not shown). Part of the standard output is shown in Box 1, the first line
shows the rate command used for model estimation. In this example,
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Box 2 Illustration of polynomial model, type II (rt5.cf)

Model: Polynomial (II) with degree 2

Numerical integration with Method 1 (QNG).

Relative error: 1.00000e-04

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Convergence reached in 7 iterations.

Number of function evaluations: 8 (8,8)

Maximum of log likelihood: -2454.54

Norm of final gradient vector: 5.24649e-07

Last absolute change of function value: 3.25666e-15

Last relative change in parameters: 3.81352e-06

Idx SN Org Des MT Variable Coeff Error C/Error

------------------------------------------------------------------

1 1 0 1 A Constant -4.5911e+00 1.1656e-01 -3.9389e+01

2 1 0 1 A COHO2 3.8307e-01 1.1322e-01 3.3834e+00

3 1 0 1 A COHO3 4.5832e-01 1.1780e-01 3.8908e+00

4 1 0 1 A W 4.1726e-01 9.4840e-02 4.3996e+00

5 1 0 1 B Beta-1 -3.6942e-03 2.1718e-03 -1.7010e+00

6 1 0 1 B Beta-2 -7.4989e-06 9.6591e-06 -7.7635e-01

Log likelihood (starting values): -2.5140e+03

Log likelihood (final estimates): -2.4545e+03

we have selected a second-degree polynomial. Box 2 shows part of the
output for an analogously specified type II model. The command file is
rt5.cf.

Generalized Residuals. If one of the polynomial models is estimated
for only a single transition, one can use the pres option to request a
table with generalized residuals. For a type II model, the calculation
uses again numerical integration.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations.
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6.17.3.2 Gompertz-Makeham Models

This section describes the Gompertz-Makeham model. The transition
rate is given by the expression

r(t) = a + b exp(c t) a, b ≥ 0 (1)

If a = 0, one gets the Gompertz model without a Makeham term. If b = 0,
the model reduces to the simple exponential model. The corresponding
survivor and density functions are

f(t) = exp
{
−at− b

c
[exp(c t)− 1]

}
[a + b exp(c t)] (2)

G(t) = exp
{
−at− b

c
[exp(c t)− 1]

}
(3)

In the case of c = 0, it is assumed that these expressions reduce to the
density and survivor function for a simple exponential model. Figure 1
shows some graphs of the transition rate function for a = 0, b = 1, and
some different values of c.

Implementation. The Gompertz-Makeham model has three parame-
ters to include covariates. TDA uses exponential link functions with the
A- and B-term of the model, and a linear link function for the C-term.
The model formulation for the transition rate from origin state j to
destination state k is

rjk(t) = ajk + bjk exp(cjk t) (4)

ajk = exp
{

A(jk)α(jk)
}

bjk = exp
{

B(jk)β(jk)
}

cjk = C(jk)γ(jk)

It is assumed that the first component of each of the covariate (row)
vectors A(jk), B(jk), and C(jk), is a constant equal to one. The associated
coefficient vectors, α(jk), β(jk), and γ(jk), are the model parameters to
be estimated. Both, the Gompertz and the Gompertz-Makeham model
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c = 0.2

c = -0.5

Figure 1 Gompertz transition rates. Plot created with com-
mand file plot-gm.cf.

have model number 6. If no covariates are linked to the A-term of the
model, a simple Gompertz model is estimated. If at least one variable
is linked to the A-term, the estimated model is of Gompertz-Makeham
type. To estimate a Gompertz-Makeham model with the A-term a single
constant, one can use the parameter ni=1 to specify a single constant
for the A term.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify notation, we omit
indices for transitions and use the abbreviations a, b, and c, as defined
in (4). Providing for the possibility of episode splitting by using the
conditional survivor function

G(t | s) = exp
{

a (s− t) +
b

c
[exp(c s)− exp(c t)]

}
(5)

one gets the log-likelihood

` =
∑
i∈E

log{a + b exp(c ti)}+
∑
i∈N

a(si − ti) +
b

c
[ exp(c si)− exp(c ti) ]

The first and second derivatives with respect to the α, β, and γ coeffi-
cients are

∂`

∂αja

=
∑
i∈E

a

a + b exp(c ti)
Ai,ja

+
∑
i∈N

a (si − ti)Ai,ja
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∂`

∂βjb

=
∑
i∈E

b exp(c ti)
a + b exp(c ti)

Bi,jb
+
∑
i∈N

b

c
{exp(c si)− exp(c ti)}

∂`

∂γjc

=
∑
i∈E

b exp(c ti)
a + b exp(c ti)

ti Ci,jb
+

∑
i∈N

b

c

{
exp(c si)

[
si −

1
c

]
− exp(c ti)

[
ti −

1
c

]}
∂2`

∂αja
∂αka

=
∑
i∈E

a

a + b exp(c ti)

{
1− a

a + b exp(c ti)

}
Ai,ja

Ai,ka
+∑

i∈N
a (si − ti) Ai,jaAi,ka

∂2`

∂βjb
∂βkb

=
∑
i∈E

b exp(c ti)
a + b exp(c ti)

{
1− b exp(c ti)

a + b exp(c ti)

}
Bi,jb

Bi,kb
+

∑
i∈N

b

c
{exp(c si)− exp(c ti)}Bi,jb

Bi,kb

∂2`

∂γjb
∂γkb

=
∑
i∈E

b exp(c ti)
a + b exp(c ti)

{
1− b exp(c ti)

a + b exp(c ti)

}
t2i Ci,jb

Ci,kb
+

∑
i∈N

b

c

{
exp(c si)

[
(si −

1
c
)2 +

1
c2

]
−

exp(c ti)
[
(ti −

1
c
)2 +

1
c2

]}
Ci,jb

Ci,kb

∂2`

∂αja∂βkb

=
∑
i∈E

−a b exp(c ti)
[a + b exp(c ti)]

2 Ai,ja
Bi,kb

∂2`

∂αja
∂γkb

=
∑
i∈E

−a b exp(c ti)
[a + b exp(c ti)]

2 ti Ai,ja
Ci,kb

∂2`

∂βja∂γkb

=
∑
i∈E

b exp(c ti)
a + b exp(c ti)

{
1− b exp(c ti)

a + b exp(c ti)

}
ti Bi,jb

Ci,kc
+

∑
i∈N

b

c

{
exp(c si)

[
si −

1
c

]
− exp(c ti)

[
ti −

1
c

]}
Bi,jb

Ci,kc
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Box 1 Output from command file rt6.cf

Model: Gompertz-Makeham

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 8

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 6 iterations.

Number of function evaluations: 8 (8,8)

Maximum of log likelihood: -2453.38

Norm of final gradient vector: 1.83153e-06

Last absolute change of function value: 2.81327e-12

Last relative change in parameters: 8.91402e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 B Constant -4.5114 0.1198 -37.6503 1.0000

2 1 0 1 B COHO2 0.4595 0.1546 2.9716 0.9970

3 1 0 1 B COHO3 0.4147 0.1657 2.5025 0.9877

4 1 0 1 B W 0.2860 0.1280 2.2351 0.9746

5 1 0 1 C Constant -0.0060 0.0013 -4.6239 1.0000

6 1 0 1 C COHO2 -0.0016 0.0022 -0.7275 0.5331

7 1 0 1 C COHO3 0.0011 0.0028 0.3986 0.3098

8 1 0 1 C W 0.0026 0.0018 1.4299 0.8472

Log likelihood (starting values): -2557.3645

Log likelihood (final estimates): -2453.3828

Starting Values. In most cases, good initial estimates are required
to estimate Gompertz-Makeham models. It is difficult, however, to de-
termine such estimates since it depends on whether a positive or nega-
tive time dependence should be assumed. In particular the addition of
a Gompertz A-term in the model specification can give rise to conver-
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gence difficulties. Default starting values used with TDA are calculated
by using the constant rate of a correspondingly defined exponential null
model. The constant coefficients in the A- and the B-terms of the model
are taken to be the logarithm of this rate, the constant coefficient in the
C-term is taken to be minus this rate. The idea is to assume negative
time dependence as the “normal case”, and to start with some estimate
of the mean duration. However, the starting values calculated this way
are not very good initial estimates. So it may be necessary to try other
ones.

Example 1 As is seen from Figure 1, the Gompertz-Makeham model
is not appropriate for our main example data. As a consequence we find
severe convergence difficulties when trying a full Gompertz-Makeham
specification. No problems arise, however, if we try a model without the
Makeham term. To illustrate, we use command file rt6.cf, identical
with rt1.cf except for the model number that has been changed into 6.
Box 1 shows the resulting parameter estimates.

Generalized Residuals. For the Gompertz-Makeham models, one can
use the pres option to request a table with generalized residuals.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations.



6.17.3.3 weibull models 1

6.17.3.3 Weibull Models

This section describes the Weibull model. In the single transition case
it is derived by assuming the duration variable T to follow a Weibull
distribution. Density and survivor function, and the transition rate, are
given respectively by

f(t) = b ab tb−1 exp
{
−(at)b

}
a, b > 0 (1)

G(t) = exp
{
−(at)b

}
(2)

r(t) = b ab tb−1 (3)

Figure 1 shows graphs of the transition rate for a = 1 and some different
values of b.

Implementation. The Weibull model has two parameters, so one has
two possibilities to include covariates. Using standard exponential link
functions, the model formulation for the transition rate from origin state
j to destination state k is

rjk(t) = bjk a
bjk

jk tbjk−1 (4)

ajk = exp
{

A(jk)α(jk)
}

bjk = exp
{

B(jk)β(jk)
}

It is assumed that the first component of each of the covariate (row)
vectors A(jk) and B(jk) is a constant equal to one. The associated coeffi-
cient vectors, α(jk) and β(jk), are the model parameters to be estimated.
The Weibull model has model number 7.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify the notation we
omit indices for transitions and use the abbreviations a and b as defined
in (4). Using the conditional survivor function

G(t | s) =
exp(−(at)b)
exp(−(as)b)

(5)
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Figure 1 Weibull transition rates. Plot created with command
file plot-wei.cf.

the log-likelihood is

` =
∑
i∈E

log
(
b ab t b−1

i

)
+
∑
i∈N

(asi)b − (ati)b (6)

and the first and second derivatives with respect to the α and β coeffi-
cients are

∂`

∂αja

=
∑
i∈E

b Ai,ja
+
∑
i∈N

b
{
(asi)b − (ati)b

}
Ai,ja

∂`

∂βjb

=
∑
i∈E
{1 + b log(ati)}Bi,jb

+

∑
i∈N

b
{
log(asi)(asi)b − log(ati)(ati)b

}
Bi,jb

∂2`

∂αja
∂αka

=
∑
i∈N

b2
{
(asi)b − (ati)b

}
Ai,ja

Ai,ka

∂2`

∂βjb
∂βkb

=
∑
i∈E

b log(ati)Bi,jb
Bi,kb

+

∑
i∈N

b
{
log(asi)(asi)b [1 + b log(asi)]−

log(ati)(ati)b [1 + b log(ati)]
}

Bi,jb
Bi,kb
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Box 1 Output from command file rt7.cf

Model: Weibull

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2473.54

Norm of final gradient vector: 4.34528e-08

Last absolute change of function value: 5.00438e-12

Last relative change in parameters: 4.56362e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant -5.0055 0.0906 -55.2452 1.0000

2 1 0 1 A COHO2 0.5339 0.1201 4.4448 1.0000

3 1 0 1 A COHO3 0.6671 0.1235 5.4003 1.0000

4 1 0 1 A W 0.5191 0.1012 5.1274 1.0000

5 1 0 1 B Constant -0.0700 0.0366 -1.9119 0.9441

Log likelihood (starting values): -2514.0201

Log likelihood (final estimates): -2473.5432

∂2`

∂αja∂βkb

=
∑
i∈E

b Ai,jaBi,kb
+∑

i∈N
b
{
(asi)b [1 + b log(asi)]−

(ati)b [1 + b log(ati)]
}

Ai,jaBi,kb

Starting Values. Estimation of Weibull models is relatively robust
with respect to starting values. Therefore initial estimates used by TDA

are taken to be the constant rates of an accordingly defined exponential
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null model. All model coefficients, without the constant coefficient of the
A-term, are set to zero, implying a unit shape parameter of the duration
distribution, i.e. an exponential model.

Example 1 Although the Weibull model does not seem appropriate for
our main example data, just to illustrate its estimation we use command
file rt7.cf. Estimation results are shown in Box 1.

Generalized Residuals. For the Weibull model, one can use the pres
option to request a table with generalized residuals.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. Note that, for t = 0, the rate and
density is always set to zero, and the survivor function is set to 1; this
might not be correct.
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6.17.3.4 Sickle Models

This section describes the Sickle model proposed by Diekmann and Mit-
ter ([1983], [1984]). Formulated first for the single transition case, it
starts with the assumption of a transition rate given by the expression

r(t) = a t exp
{
− t

b

}
a, b > 0 (1)

The corresponding survivor and density functions are

f(t) = exp
{
−a b [ b− (t + b) exp(− t

b
)]
}

a t exp
{
− t

b

}
(2)

G(t) = exp
{
−a b [ b− (t + b) exp(− t

b
)]
}

(3)

As is easily seen, this distribution is defective. The survivor function goes
not to zero if t→∞, instead one finds that

lim
t→∞

G(t) = exp(−a b2) (4)

Figure 1 shows graphs of the rate function for a = 1 and some values of
b. It looks like a sickle, and this has given the name for the model.

Implementation. The Sickle model has two parameters, so there are
two possibilities to include covariates. Because both of the parameters
must be positive, TDA uses standard exponential link functions. One
then gets the following model formulation for the transition rate from
origin state j to destination state k.

rjk(t) = ajk t exp
{
− t

bjk

}
(5)

ajk = exp
{

A(jk)α(jk)
}

bjk = exp
{

B(jk)β(jk)
}

It is assumed that the first component of each of the covariate (row)
vectors A(jk) and B(jk) is a constant equal to one. The associated coeffi-
cient vectors, α(jk) and β(jk), are the model parameters to be estimated.
The sickle model has model number 8.
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Figure 1 Sickle transition rates. Plot created with command
file plot-sic.cf.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify the notation we
omit indices for transitions and use the abbreviations a and b as defined
in (5). Providing for the possibility of episode splitting by using the
conditional survivor function

G(t | s) = exp
{

a b

[
(t + b) exp(− t

b
)− (s + b) exp

(
−s

b

)]}
the log-likelihood is

` =
∑
i∈E

log(a ti)−
ti
b

+

∑
i∈N

a b

{
(ti + b) exp

(
− ti

b

)
− (si + b) exp

(
−si

b

)}

and the first and second derivatives with respect to the α and β coeffi-
cients are

∂`

∂αja

=
∑
i∈E

Ai,ja
+

∑
i∈N

a b

{
(ti + b) exp(− ti

b
)− (si + b) exp(−si

b
)
}

Ai,ja
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∂`

∂βjb

=
∑
i∈E

ti
b

Bi,jb
+
∑
i∈N

a b

{[
2(ti + b) +

t2i
b

]
exp(− ti

b
)−[

2(si + b) +
s2

i

b

]
exp(−si

b
)
}

Bi,jb

∂2`

∂αja
∂αka

=
∑
i∈N

a b

{
(ti + b) exp(− ti

b
)− (si + b) exp(−si

b
)
}

Ai,jaAi,ka

∂2`

∂βjb
∂βkb

=
∑
i∈E
− ti

b
Bi,jb

Bi,kb
+

∑
i∈N

a b

{[
4(ti + b) + (2 +

ti
b

)
t2i
b

]
exp(− ti

b
)−[

4(si + b) + (2 +
si

b
)
s2

i

b

]
exp(−si

b
)
}

Bi,jb
Bi,kb

∂2`

∂αja
∂βkb

=
∑
i∈N

a b

{[
2(ti + b) +

t2i
b

]
exp(− ti

b
)−

[
2(si + b) +

s2
i

b

]
exp(−si

b
)
}

Ai,jaBi,kb

Starting Values. The choice of starting values for the Sickle model
seems not to be critical. In most applications it seems to be sufficient to
set initially all coefficients to zero. Somewhat more efficient calculations
are possible if one chooses as initial estimates α0 = r2 and β0 = − log(r)
with r the constant rate of a correspondingly defined exponential null
model. The starting values used by TDA are defined this way.

Example 1 To illustrate estimation of the Sickle model, we use our
main example data; the command file is rt8.cf, identical with rt1.cf,
only the model number has been changed into 8. Estimation results are
shown in Box 1. Note that the program has given an information about
numerical problems. Number 4 signals that the Hessian matrix was at
least for one time not positive definite during the iterations to maximize
the likelihood. However, in the final iteration steps it was positive defi-
nite, and so there is no real problem. For more details about the iteration
process one can request a protocol file with the pprot parameter.
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Box 1 Output from command file rt8.cf

Model: Sickle

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 7 iterations.

Number of function evaluations: 10 (10,10)

Maximum of log likelihood: -2466.1

Norm of final gradient vector: 4.84093e-06

Last absolute change of function value: 1.11023e-09

Last relative change in parameters: 0.00044869

Numerical problems.

4 : Hessian not positive definite.

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant -7.0645 0.1140 -61.9618 1.0000

2 1 0 1 A COHO2 0.3926 0.1123 3.4947 0.9995

3 1 0 1 A COHO3 0.4363 0.1162 3.7556 0.9998

4 1 0 1 A W 0.4232 0.0944 4.4808 1.0000

5 1 0 1 B Constant 3.7046 0.0517 71.6511 1.0000

Log likelihood (starting values): -2897.7621

Log likelihood (final estimates): -2466.1005

Generalized Residuals. For the sickle model, one can use the pres
option to request a table with generalized residuals.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations.



6.17.3.5 log-logistic models 1

6.17.3.5 Log-logistic Models

Another model with time-varying transition rates is the log-logistic. This
section describes the standard log-logistic model and an extension.

I. In the single transition case the standard log-logistic model is based
on the assumption that the duration variable follows a log-logistic dis-
tribution. The density, survivor, and rate functions for this distribution
are

f(t) =
b ab tb−1

[1 + (at)b]2
a, b > 0 (1)

G(t) =
1

1 + (at)b
(2)

r(t) =
b ab tb−1

1 + (at)b
(3)

Figure 1 shows graphs of the rate function for a = 1 and some values of
b. The time tmax when the rate reaches its maximum, rmax, is given by

tmax =
1
a

(b− 1)
1
b rmax = a (b− 1)1−

1
b (4)

II. A sometimes useful extension of the standard log-logistic model was
proposed by Brüderl [1991]; see also Brüderl and Diekmann [1995]. The
idea is to include a third parameter to allow for varying levels of the
transition rate. The model definition is

r(t) = c
b (a t)b−1

1 + (at)b
a, b, c > 0 (5)

The associated density and survivor functions are

f(t) = c
b (a t)b−1

[1 + (at)b]
c
a +1

G(t) =
1

[1 + (at)b]
c
a
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Figure 1 Log-logistic transition rates. Plot created with
command file plot-ll.cf.

Implementation. Both versions of the log-logistic transition rate model
can be estimated, the model numbers are 9 and 10, respectively.

I. The standard log-logistic model has two parameters, so there are two
possibilities to include covariates. TDA uses exponential link functions,
so one gets the following model formulation for the transition rate from
origin state j to destination state k.

rjk(t) =
bjk a

bjk

jk tbjk−1

1 + (ajkt) bjk

ajk = exp
{

A(jk)α(jk)
}

bjk = exp
{

B(jk)β(jk)
}

II. The extended log-logistic model has three parameters, providing three
possibilities to include covariates. Using again standard exponential link
functions, one gets the following model formulation for the transition
rate from origin state j to destination state k.

rjk(t) = cjk
bjk (ajk t)bjk−1

1 + (ajkt)bjk

ajk = exp
{

A(jk)α(jk)
}
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bjk = exp
{

B(jk)β(jk)
}

cjk = exp
{

C(jk)γ(jk)
}

Again it is assumed that the first component of each of the covariate
vectors A(jk), B(jk), and C(jk), is a constant equal to one. The coefficients
α(jk), β(jk), and γ(jk), are the model parameters to be estimated.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify the notation we
omit indices for transitions and use some already defined abbreviations.

I. The conditional survivor function for the standard log-logistic model
may be written as

G(t | s) =
1 + (as)b

1 + (at)b
(6)

Using these conditional survivor functions, the log-likelihood is

` =
∑
i∈E

log

{
b ab t b−1

i

1 + (ati)b

}
+
∑
i∈N

log
{

1 + (asi)b

1 + (ati)b

}
(7)

with first and second derivatives

∂`

∂αja

=
∑
i∈E

b

{
1− (ati)b

1 + (ati)b

}
Ai,ja+

∑
i∈N

b

{
(asi)b

1 + (asi)b
− (ati)b

1 + (ati)b

}
Ai,ja

∂`

∂βjb

=
∑
i∈E

{
1 + b

log(ati)
1 + (ati)b

}
Bi,jb

+

∑
i∈N

b

{
log(asi)

(asi)b

1 + (asi)b
− log(ati)

(ati)b

1 + (ati)b

}
Bi,jb
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∂2`

∂αja∂αka

=
∑
i∈E

b2 (ati)b

1 + (ati)b

{
(ati)b

1 + (ati)b
− 1
}

Ai,jaAi,ka+

∑
i∈N

b2

{
(asi)b

1 + (asi)b

[
1− (asi)b

1 + (asi)b

]
−

(ati)b

1 + (ati)b

[
1− (ati)b

1 + (ati)b

]}
Ai,jaAi,ka

∂2`

∂βjb
∂βkb

=
∑
i∈E

b
log(ati)

1 + (ati)b

{
1− b log(ati)

(ati)b

1 + (ati)b

}
Bi,jb

Bi,kb
+

∑
i∈N

b

{
log(asi)

(asi)b

1 + (asi)b

[
1 + b

log(asi)
1 + (asi)b

]
−

log(ati)
(ati)b

1 + (ati)b

[
1 + b

log(ati)
1 + (ati)b

]}
Bi,jb

Bi,kb

∂2`

∂αja
∂βkb

=
∑
i∈E

b

{
1− (ati)b

1 + (ati)b

[
1 +

b log(ati)
1 + (ati)b

]}
Ai,ja

Bi,kb
+

∑
i∈N

b

{
(asi)b

1 + (asi)b

[
1 +

b log(asi)
1 + (asi)b

]
−

(ati)b

1 + (ati)b

[
1 +

b log(ati)
1 + (ati)b

]}
Ai,ja

Bi,kb

Starting Values. Starting values for estimating the standard log-logistic
model are not critical, and in most situations it is sufficient to set the
shape parameter b = 1 and to use for the parameter a the constant rate
of an accordingly defined exponential null model. TDA uses this method
to calculated default starting values.

For the extended models the choice of starting values is critical. In
many cases the best way to reach convergence is to use as starting val-
ues the parameter estimates of a standard log-logistic model, and to set
the C-term coefficients to zero. Because of the overhead involved in this
method it is not practical as a default. Default starting values are there-
fore calculated by TDA in another way: the A- and B-term coefficients
of the model are set to zero, and the C-term coefficients are defined by
the constant rate of an accordingly defined exponential null model. For
many situations this method seems to provide sufficient initial parameter
estimates.
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Box 1 Output from command file rt9.cf

Model: Log-logistic (I)

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 5 iterations.

Number of function evaluations: 8 (8,8)

Maximum of log likelihood: -2442.3

Norm of final gradient vector: 3.28158e-05

Last absolute change of function value: 6.67562e-09

Last relative change in parameters: 0.000446382

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant -4.3546 0.0998 -43.6183 1.0000

2 1 0 1 A COHO2 0.4792 0.1257 3.8138 0.9999

3 1 0 1 A COHO3 0.5927 0.1295 4.5752 1.0000

4 1 0 1 A W 0.3989 0.1065 3.7463 0.9998

5 1 0 1 B Constant 0.3307 0.0385 8.5823 1.0000

Log likelihood (starting values): -2521.7850

Log likelihood (final estimates): -2442.3017

Example 1 To illustrate estimation of the standard (type I) log-logistic
model, we use command file rt9.cf. Parameter estimates are shown in
Box 1.

Generalized Residuals. For both types of the log-logistic model, one
can use the pres option to request a table with generalized residuals.
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Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. Tor t = 0, the rate and density is
always set to zero, and the survivor function is set to 1; this might not be
correct. The rrisk option cannot be used with the standard log-logistic
models. For the extended (type II) log-logistic model, the rrisk option
shows relative risks for covariates linked to the C-term of the model.
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6.17.3.6 Log-normal Models

This section describes two versions of the log-normal model, a standard
log-normal model and a model with an additional shift-parameter. The
models correspond to the two-parameter and the three-parameter log-
normal distributions as described, for instance, by Aitchison and Brown
[1957]. (Descriptions of log-normal rate models are given by Lawless
[1982], p. 313, Lancaster [1990], p. 47.)

In the single transition case, the standard (two-parameter) log-normal
model is derived by assuming that the logarithm of the duration vari-
able, T , follows a normal distribution or, equivalently, that T follows a
log-normal distribution with density function

f(t) =
1
b t

φ

(
log(t)− a

b

)
b > 0 (1)

φ and Φ are used, respectively, to denote the standard normal density
and distribution function:

φ(τ) =
1√
2π

exp(−τ2

2
)

Φ(t) =
∫ t

0

φ (τ) d τ

The survivor function corresponding to (1) is

G(t) = 1− Φ
(

log(t)− a

b

)
(2)

and the transition rate can be written as

r(t) =
1
b t

φ (zt)
1− Φ (zt)

where zt =
log(t)− a

b

Figure 1 shows graphs of the rate function for a = 0 and some different
values of b. As is seen, the graphs are very similar for the log-normal and
the log-logistic model, provided that b > 1 in the latter case.

A simple, sometimes useful extension of the standard log-normal
model is derived by adding a shift parameter c > 0. The assumption,
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Figure 1 Log-normal transition rates. Plot created with
command file plot-ln.cf.

then, is that not T , but T−c follows a log-normal distribution. Of course,
this assumption implies that no episode ends before c, meaning that c
can be thought of as a basic waiting time until the risk of leaving the
origin state becomes positive. The resulting model formulation is very
similar to the standard log-normal model. The density, survivor and rate
functions have the same expressions as given above for the standard case,
one only has to substitute t by t − c. The result is a simple shift of the
functions to the right by an amount of c.

Implementation. The standard log-normal model has two parameters,
so there are two possibilities to include covariates. Following Lawless
([1982], p. 313), TDA uses a linear link function for a, but additionally
provides the possibility to link covariates to the dispersion parameter,
b, via an exponential link function. So one gets the following model
formulation for the transition rate from origin state j to destination
state k.

rjk(t) =
1

bjk t

φ
(
z
(jk)
t

)
1− Φ

(
z
(jk)
t

)
z
(jk)
t =

log(t)− ajk

bjk

ajk = A(jk)α(jk)
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bjk = exp
{

B(jk)β(jk)
}

The extended three-parameter model is defined analogously by

rjk(t) =
1

bjk (t− cjk)

φ
(
z
(jk)
t

)
1− Φ

(
z
(jk)
t

) (3)

z
(jk)
t =

log(t− cjk)− ajk

bjk

ajk = A(jk)α(jk)

bjk = exp
{

B(jk)β(jk)
}

cjk = exp
{

C(jk)γ(jk)
}

In both cases, it is assumed that the first component of each of the
covariate (row) vectors A(jk), B(jk), and C(jk) in the extended model, is
a constant equal to one. The associated coefficient vectors α(jk), β(jk),
and γ(jk), are the model parameters to be estimated.

Both versions of the log-normal model have the same model numbers,
12. The two versions are distinguished by the definition of a C-term of
the model. If this term is defined, TDA estimates an extended model,
otherwise a standard log-normal model. To request estimation of a log-
normal model of type II with a single constant in the C-term, one can
use the parameter ni=1 to link a single constant to the C term.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. Since the standard model is
a special case of the extended model, when c = 0, we only give formulas
for the extended model. To simplify the notation we omit indices for
transitions and use the abbreviations a, b, c, and zt, as defined in (3).
Furthermore, we define

Q(z) = 1− Φ(z) and V (z) =
φ(z)
Q(z)

(4)

Providing for the possibility of episode splitting by using the conditional
survivor function, the log-likelihood is

` =
∑
i∈E

log
{

V (zti)
b (ti − c)

}
+
∑
i∈N

log
{

Q(zti)
Q(zsi

)

}
(5)
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I. The first and second derivatives for the A and B-terms of the model
may then be written as

∂`

∂αja

=
∑
i∈E

1
b
{zti
− V (zti

}Ai,ja
+
∑
i∈N

1
b
{V (zti

)− V (zsi
)}Ai,ja

∂`

∂βjb

=
∑
i∈E
{zti

[zti
− V (zti

)]− 1}Bi,jb
+

∑
i∈N
{zti

V (zti
)− zsi

V (zsi
)}Bi,jb

∂2`

∂αja∂αka

=
∑
i∈E

1
b2
{V (zti) [V (zti)− zti ]− 1}Ai,jaAi,ka+

∑
i∈N

1
b2
{V (zti

) [zti
− V (zti

)]− V (zsi
) [zsi

− V (zsi
)]}Ai,ja

Ai,ka

∂2`

∂βjb
∂βkb

=
∑
i∈E

{
ztiV (zti) [1 + zti(V (zti)− zti)]− 2z2

ti

}
Bi,jb

Bi,kb
+∑

i∈N
{zti

V (zti
) [zti

(zti
− V (zti

))− 1]−

zsiV (zsi) [zsi(zsi − V (zsi))− 1]}Bi,jb
Bi,kb

∂2`

∂αja
∂βkb

=
∑
i∈E

1
b
{(1 + zti

V (zti
)) [V (zti

)− zti
]− zti

}Ai,ja
Bi,kb

+

∑
i∈N

1
b
{V (zti

) [zti
(zti
− V (zti

))− 1]−

V (zsi) [zsi (zsi − V (zsi))− 1]}Ai,jaBi,kb

II. In the case of an extended model, if c > 0, one also needs the deriva-
tives with respect to the γ coefficients. They can be written as follows.

∂`

∂γja

=
∑
i∈E

c

b (ti − c)
{b + zti

− V (zti
}Ci,ja

+

∑
i∈N

c

b (ti − c)
V (zti

) Ci,ja
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∂2`

∂αja
∂γka

=
∑
i∈E

c

b2 (ti − c)
{V (zti

) [V (zti
)− zti

]− 1}Ai,ja
Ci,ka

+

∑
i∈N

c

b2

{
V (zti) [zti − V (zti)]

ti − c
− V (zsi) [zsi − V (zsi)]

si − c

}
Ai,jaCi,ka

∂2`

∂βjb
∂γkb

=
∑
i∈E

c

b (ti − c)
{V (zti

) [1 + zti
(V (zti

)− zti
)]− 2zti

}Bi,jb
Ci,kb

+

∑
i∈N

c

b

{
V (zti

)
ti − c

[zti
(zti
− V (zti

))− 1]−

V (zsi)
si − c

[zsi
(zsi
− V (zsi

))− 1]
}

Bi,jb
Ci,kb

∂2`

∂γja
∂γkb

=
∑
i∈E

c

b (ti − c)2
{ti [b + zti

− V (zti
)]−

c

b
(1− V (zti

) [V (zti
)− zti

])
}

Ci,ja
Ci,kb

+

∑
i∈N

c

b

{
V (zti)

(ti − c)2
[
ti −

c

b
(V (zti)− zti)

]
−

V (zsi
)

(si − c)2
[
si −

c

b
(V (zsi

)− zsi
)
]}

Ci,ja
Ci,kb

Starting Values. In most situations, estimating standard log-normal
models does not need very accurate initial estimates. Therefore as default
starting values used by TDA all model coefficients are set to zero, with
the exception of the constant in the A-term of the model with is set
to the negative of the logarithm of the constant rate of an accordingly
defined exponential null model. On the other hand, initial estimates for
the extended log-normal model are critical, in particular the estimates
for the C-term of the model. This is implied by the shift operation done
with the c parameter. However, simple estimates of useful starting values
are not available, and therefore TDA uses as a default the same starting
values as with the standard log-normal model, and in addition sets all
C-term coefficients to zero. In many cases this will result in convergence
difficulties, in particular when episode splitting is applied. One way out
of such difficulties is first to estimate a standard log-normal model, and
then to use the resulting parameter estimates as starting values for the



6.17.3.6 log-normal models 6

Box 1 Output from command file rt12.cf

Model: Log-normal

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2437.52

Norm of final gradient vector: 0.000491553

Last absolute change of function value: 8.24072e-08

Last relative change in parameters: 0.00239838

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant 4.3688 0.0960 45.5055 1.0000

2 1 0 1 A COHO2 -0.4608 0.1255 -3.6707 0.9998

3 1 0 1 A COHO3 -0.6110 0.1272 -4.8036 1.0000

4 1 0 1 A W -0.3821 0.1062 -3.5992 0.9997

5 1 0 1 B Constant 0.2036 0.0342 5.9508 1.0000

Log likelihood (starting values): -2603.1677

Log likelihood (final estimates): -2437.5243

extended model, with the additional C-term coefficients set to zero or,
if available, to some better estimates.

Example 1 The standard log-normal model is similar to the log-logistic
model. One can see this by comparing the results from command file
rt12.cf, shown in Box 1 with the estimation results in 6.17.3.5.
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Generalized Residuals. For the log-normal model, one can use the
pres option to request a table with generalized residuals.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. The rrisk option cannot be used
with the log-normal model.
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6.17.3.7 Generalized Gamma Models

This section describes a model where, in the single transition case, the
duration is assumed to follow a generalized gamma distribution. The
model is useful since it contains as special cases the exponential, the
Weibull, and the log-normal models. Therefore it can be used to dis-
criminate between these models.

We follow the explanation of this model given by Lawless ([1982],
p. 237). Lawless shows that, if the duration variable T has a general-
ized gamma distribution, then by re-parameterization, log(T ) can be
expressed as

log(T ) = a + b W b > 0

where W has density function

fw(w) =
κκ−1/2

Γ(κ)
exp

{√
κ w − κ exp

(
w√
κ

)}
κ > 0

Γ(κ) is the gamma function. Now, given this re-parameterization, the
density of T can be written as

f(t ; a, b, κ) =
κκ−1/2

b t Γ(κ)
exp

{√
κ zt − qt

}
zt =

log(t)− a

b

qt = κ exp
(

zt√
κ

)
Of course, the density is only defined for t > 0. The associated cumulative
distribution function, F (t), can be derived as the integral of the density
to be

F (t ; a, b, κ) = I(qt, κ) =
∫ qt

0

τκ−1

Γ(κ)
exp(−τ) dτ

I(qt, κ) is called the incomplete gamma integral. Using this expression,
the survivor function is

G(t ; a, b, κ) = 1− I(qt, κ)
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Figure 1 Gamma transition rates. Plot created with command
file plot-g1.cf.
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Figure 2 Gamma transition rates. Plot created with command
file plot-g2.cf.

and the transition rate for this model can finally be written as

r(t ; a, b, κ) =
f(t ; a, b, κ)
G(t ; a, b, κ)

=
κκ−1/2 exp {

√
κ zt − qt}

b t Γ(κ) (1− I(qt, κ))

The model has three parameters, a, b, and κ. a can take arbitrary values,
b and κ must be positive. Special cases are the exponential model, if
b = 1 and κ = 1; the Weibull model, if κ = 1; and a log-normal model is
reached if κ→∞. Figures 1 and 2 show graphs of the rate function for
some parameter constellations.
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Implementation. The generalized gamma model has three parameters
to be estimated. However, the current implementation in TDA follows a
proposal of Lawless to estimate only two of them, a and b, by maximum
likelihood, and to treat the κ-parameter as externally given. This very
much simplifies the calculations. The model approach implemented in
TDA may then be written as

rjk(t) =
κκ−1/2 exp

{√
κ z

(jk)
t − q

(jk)
t

}
bjk t Γ(κ) (1− I(q(jk)

t , κ))
(1)

z
(jk)
t =

log(t)− ajk

bjk

q
(jk)
t = κ exp

(
z
(jk)
t√
κ

)

ajk = A(jk)α(jk)

bjk = exp
(
B(jk)β(jk)

)
κ > 0 externally given

It is assumed that the first component of each of the covariate (row)
vectors A(jk) and B(jk) is a constant equal to one. The associated coeffi-
cient vectors, α(jk) and β(jk), are the model parameters to be estimated.
κ is assumed to be given externally, so there are in effect only two model
terms.

The generalized gamma model has model number 13. The κ coefficient
can be specified with the parameter

kgam = κ,

Default is kgam=1. Note that this coefficient must be positive.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify the notation we
omit indices for transitions and use the abbreviations defined in (1).
Providing for the possibility of episode splitting by using the conditional
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survivor function the log-likelihood is

` =
∑
i∈E

log
{

κκ−1/2

b t Γ(κ)
exp

(√
κ zt − qt

)}
+

∑
i∈Z

log {1− I(qt, κ)} −
∑
i∈N

log {1− I(qs, κ)}

Using the notation

Qt =
qκ
t exp(−qt)√

κ Γ(κ) [1− I(qt, κ)]

Qs =
qκ
s exp(−qs)√

κ Γ(κ) [1− I(qs, κ)]

the first and second derivatives with respect to the α- and β-coefficients
are

∂`

∂αja

=
∑
i∈E

{
qt√
κ
−
√

κ

}
1
b

Ai,ja
+
∑
i∈Z

Qt

b
Ai,ja

−
∑
i∈N

Qs

b
Ai,ja

∂`

∂βjb

=
∑
i∈E

{(
qt√
κ
−
√

κ

)
zt − 1

}
Bi,jb

+

∑
i∈Z

Qt zt Bi,jb
−
∑
i∈N

Qs zs Bi,jb

∂2`

∂αja
∂αka

=
∑
i∈E
− qt

κ b2
Ai,ja

Ai,ka
+

∑
i∈Z

{
qt√
κ
−
√

κ−Qt

}
Qt

b2
Ai,ja

Ai,ka
−

∑
i∈N

{
qs√
κ
−
√

κ−Qs

}
Qs

b2
Ai,ja

Ai,ka
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∂2`

∂βjb
∂βkb

=
∑
i∈E

{√
κ−

(
zt√
κ

+ 1
)

qt√
κ

}
zt Bi,jb

Bi,kb
+

∑
i∈Z

{(
qt√
κ
−
√

κ−Qt

)
zt − 1

}
Qt zt Bi,jb

Bi,kb
−

∑
i∈N

{(
qs√
κ
−
√

κ−Qs

)
zs − 1

}
Qs zs Bi,jb

Bi,kb

∂2`

∂αja
∂βkb

=
∑
i∈N

{√
κ−

(
zt√
κ

+ 1
)

qt√
κ

}
1
b

Ai,ja
Bi,kb

+

∑
i∈Z

{(
qt√
κ
−
√

κ−Qt

)
zt − 1

}
Qt

b
Ai,jaBi,kb

−

∑
i∈N

{(
qs√
κ
−
√

κ−Qs

)
zs − 1

}
Qs

b
Ai,ja

Bi,kb

Example 1 To illustrate, we use command file rt13.cf. The parame-
ter estimates are shown in Box 1.

Generalized Residuals. For the gamma models, one can use the pres
option to request a table with generalized residuals.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. Note that, for t = 0, the rate and
density is always set to zero, and the survivor function is set to 1; this
might not be correct. The rrisk option cannot be used with the gamma
model.
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Box 1 Output from command file rt13.cf

Model: Generalized Gamma (kgam=1).

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2473.54

Norm of final gradient vector: 9.1704e-08

Last absolute change of function value: 2.03216e-12

Last relative change in parameters: 4.57906e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant 5.0055 0.0906 55.2452 1.0000

2 1 0 1 A COHO2 -0.5339 0.1201 -4.4448 1.0000

3 1 0 1 A COHO3 -0.6671 0.1235 -5.4003 1.0000

4 1 0 1 A W -0.5191 0.1012 -5.1274 1.0000

5 1 0 1 B Constant 0.0700 0.0366 1.9119 0.9441

Log likelihood (starting values): -2514.0199

Log likelihood (final estimates): -2473.5432
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6.17.3.8 Inverse Gaussian Models

This section describes the Inverse Gaussian model introduced for du-
ration analysis by Chhikara and Folks [1977]. We follow the description
given by Lancaster ([1990], p. 49). In the single transition case the model
is derived by assuming that the duration variable, T , follows an Inverse
Gaussian distribution with density function

f(t) =
1

b t3/2
φ

(
a t− 1
b
√

t

)
b > 0 (1)

As in 6.17.3.6, φ and Φ are used, respectively, to denote the standard
normal density and distribution function. The model has two parameters.
The parameter a can take arbitrary values, the parameter b generates
dispersion and should be positive. The survivor function corresponding
to (1) is

G(t) = Φ
(

1− a t

b
√

t

)
− exp

(
2 a

b2

)
Φ
(
−1− a t

b
√

t

)
Figure 1 shows graphs of the rate function, defined as r(t) = f(t)/G(t),
for b = 1 and some values of a. As is seen, the graphs are similar to
log-normal rates.

Implementation. The Inverse Gaussian model has two parameters,
so there are two possibilities to include covariates. Similar to the log-
normal model, TDA uses a linear link function for the parameter a, and
additionally provides the possibility to link covariates to the dispersion
parameter b via an exponential link function. So one gets the following
model formulation for the transition rate from origin state j to destina-
tion state k.

rjk(t) =
1

bjk t3/2 φ
(

ajk t−1

bjk

√
t

)
Φ
(

1−ajk t

bjk

√
t

)
− exp

(
2 ajk

b2jk

)
Φ
(
−1−ajk t

bjk

√
t

)
ajk = A(jk)α(jk)

bjk = exp
{

B(jk)β(jk)
}
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Figure 1 Inverse Gaussian transition rates. Plot created with
command file plot-ig.cf.

It is assumed that the first component of each of the covariate (row)
vectors A(jk) and B(jk) is a constant equal to one. The associated coeffi-
cient vectors α(jk) and β(jk) are the model parameters to be estimated.
The transition rate model with inverse Gaussian duration distribution
has model number 14.

Maximum Likelihood Estimation. The model is estimated following
the outline given in 6.17.1.2 and 6.17.1.3. To simplify the formulas we
omit indices for transitions and use the following abbreviations:

z1(t) =
a t− 1
b
√

t
z2(t) =

a t + 1
b
√

t
E = exp

{
2 a

b2

}
f(t) =

1
b t3/2

φ (z1(t))

fa(t) = −z1(t)
√

t

b
f(t)

fb(t) =
[
z1(t)2 − 1

]
f(t)

faa(t) =
[
z1(t)2 − 1

] t

b2
f(t)

fbb(t) =
[
z1(t)2 − 1

]
fb(t)− 2 z1(t)2 f(t)

fab(t) =
z1(t)

√
t

b
{2 f(t)− fb(t)}
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G(t) = Φ (−z1(t))− E Φ (−z2(t))

Ga(t) =
√

t

b
{E φ (z2(t))− φ (z1(t))} −

2 E

b2
Φ (−z2(t))

Gb(t) = z1(t)φ (z1(t)) + E

{
4 a

b2
Φ (−z2(t))− z2(t)φ (z2(t))

}

Gaa(t) =
4
b2

E

{√
t

b
φ (z2(t))−

1
b2

Φ (−z2(t))
}

+

t

b2
{z1(t) φ (z1(t))− z2(t)E φ (z2(t))}

Gbb(t) = z1(t)
[
z1(t)2 − 1

]
φ (z1(t))+

z2(t)
[
1− z2(t)2 +

8 a

b2

]
E φ (z2(t))−[

1 +
2 a

b2

]
8 a

b2
E Φ (−z2(t))

Gab(t) =
√

t

b

{[
1− z1(t)2

]
φ (z1(t))[

1− z2(t)2 +
4 a

b2

]
E φ (z2(t))

}
+

2
b2

E

{[
2 +

4 a

b2

]
Φ (−z2(t))− z2(t)φ (z2(t))

}

Using these abbreviations and providing for the possibility of episode
splitting by using conditional survivor functions, the log-likelihood is

` =
∑
i∈E

log (f(ti)) +
∑
i∈Z

log (G(ti))−
∑
i∈N

log (G(si))

E , Z, and N , are the sets of episodes with an event, of censored episodes,
and of all episodes, respectively. The subscript i indexes single episodes
with starting time si and ending time ti. Omitting terms for starting
times, the first and second derivatives are

∂`

∂αja

=
∑
i∈E

fa(ti)
f(ti)

Ai,ja
+
∑
i∈Z

Ga(ti)
G(ti)

Ai,ja
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∂`

∂βjb

=
∑
i∈E

fb(ti)
f(ti)

Bi,jb
+
∑
i∈Z

Gb(ti)
G(ti)

Bi,jb

∂2`

∂αja
∂αka

=
∑
i∈E

{
faa(ti)
f(ti)

−
[
fa(ti)
f(ti)

]2}
Ai,ja

Ai,ka
+

∑
i∈Z

{
Gaa(ti)
G(ti)

−
[
Ga(ti)
G(ti)

]2}
Ai,ja

Ai,ka

∂2`

∂βjb
∂βkb

=
∑
i∈E

{
fbb(ti)
f(ti)

−
[
fb(ti)
f(ti)

]2}
Bi,jb

Bi,kb
+

∑
i∈Z

{
Gbb(ti)
G(ti)

−
[
Gb(ti)
G(ti)

]2}
Bi,jb

Bi,kb

∂2`

∂αja
∂βkb

=
∑
i∈E

{
fab(ti)
f(ti)

− fa(ti)
f(ti)

fb(ti)
f(ti)

}
Ai,jaBi,kb

+

∑
i∈Z

{
Gab(ti)
G(ti)

− Ga(ti)
G(ti)

Gb(ti)
G(ti)

}
Ai,ja

Bi,kb

Starting Values. For models which are not too complicated, maximum
likelihood estimation seems to be relatively robust with respect to initial
estimates. TDA takes the following default values: The constant of the
A-term of the model is taken to be the rate of an accordingly defined
exponential model, the constant of the B-term of the model is defined
as the logarithm of the square root of this rate. All other coefficients are
set to zero.

Example 1 As an illustration we use the main example data set. The
command file is rt14.cf, estimation results are shown in Box 1.

Generalized Residuals. For the inverse Gaussian model, one can use
the pres option to request a table with generalized residuals.

Printing Estimated Rates. The prate option can be used to request
tables with estimated rates, survivor and density functions, depending
on selected covariate constellations. The rrisk option cannot be used
with the inverse Gaussian model.
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Box 1 Output from command file rt14.cf

Model: Inverse Gaussian

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 5

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2434.34

Norm of final gradient vector: 9.30888e-05

Last absolute change of function value: 8.96273e-10

Last relative change in parameters: 0.00415467

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A Constant 0.0007 0.0015 0.4225 0.3273

2 1 0 1 A COHO2 0.0067 0.0024 2.8243 0.9953

3 1 0 1 A COHO3 0.0088 0.0026 3.4284 0.9994

4 1 0 1 A W 0.0093 0.0021 4.4894 1.0000

5 1 0 1 B Constant -1.7092 0.0311 -55.0104 1.0000

Log likelihood (starting values): -2699.6178

Log likelihood (final estimates): -2434.3446
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6.17.4 Mixture Models

This section deals with transition rate models where the distribution of
the waiting times for an event is a mixture distribution. Currently we
have only a single subsection that describes parametric models with a
gamma mixing distribution.

6.17.4.1 Gamma Mixture Models

d061704.tex April 21, 1998
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6.17.4.1 Gamma Mixture Models

Introduction

It is assumed that the transition rate, r(t |x, v), depends on a vector, x,
of observed time-invariant variables and on a scalar stochastic term, v,
which is not observed. The question is how the variables comprised in
x influence the transition rate, but this can not be observed directly. In
any observed sample of episodes, the transition rate depends also on the
values of the stochastic term v.

The same is true for the associated density and survivor functions.
The relation between transition rate, density and survivor function must
therefore be written as

r(t | x, v) =
f(t | x, v)
G(t | x, v)

(1)

G(t | x, v) = exp
(
−
∫ t

0

r(τ | x, v) dτ

)
(2)

To find an estimation approach, we shall make some simplifying assump-
tions. First, that the transition rate can be expressed as

r(t | x, v) = ru(t | x) v v ≥ 0 (3)

In fact, we assume that the component ru(t | x) of this expression,
called the underlying rate, is parametrically given according to one of
the models discussed in 6.17.3. The cumulative transition rate may then
be written as

H(t | x, v) = v Hu(t | x) = v

∫ t

0

ru(τ | x) dτ (4)

The second basic assumption is that the stochastic term, v, follows a
gamma distribution with expectation E(v) = 1. Implied by this assump-
tion, the density function of v can be written as

fv(v) =
κκ vκ−1

Γ(κ)
exp(−κ v) κ > 0

d06170401.tex April 21, 1998
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The variance of this distribution is Var(v) = 1/κ. The next step is to
calculate the resulting mixture distribution for the observed durations.
First, for the density and survivor functions, one gets

f(t | x) =
∫ ∞

0

f(t | x, v) fv(v) dv

G(t | x) =
∫ ∞

0

G(t | x, v) fv(v) dv

The mixtures are expectations according to the distribution of v. The
calculation is easy because the gamma distribution implies the basic
equality∫ ∞

0

exp(−v s(t)) fv(v) dv =
[
1 +

1
κ

s(t)
]−κ

(5)

which holds for any real valued function s(t) (see, e.g., Lancaster [1990,
p. 328]). Therefore, using (2) and (4), the unconditional survivor function
is

G(t | x) =
∫ ∞

0

exp (−v Hu(t | x)) fv(v) dv =
[
1 +

1
κ

Hu(t | x)
]−κ

(6)

The unconditional density function can be found by differentiating the
negative value of the unconditional survivor function, resulting in

f(t | x) = ru(t | x)
[
1 +

1
κ

Hu(t | x)
]−κ−1

(7)

Finally, the unconditional transition rate is

r(t | x) =
f(t | x)
G(t | x)

= ru(t | x)
[
1 +

1
κ

Hu(t | x)
]−1

(8)

Note that the unconditional transition rate cannot be derived directly
as an expectation according to the mixing distribution since, in general,

r(t | x) 6=
∫ ∞

0

r(t | x, v) fv(v) dv

Also, there is no linear relation between r(t | x) and ru(t | x). Instead
(cf. Lancaster [1990, p. 63f]), the relation (8) may be expressed as

r(t | x) = ru(t | x) E(v | x, T ≥ t)
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where E(v | x, T ≥ t) is the expectation of v for the part of the popu-
lation which stays in the origin state at least until t. This expectation
is decreasing with t if the variance of the mixing distribution is posi-
tive. For example, the underlying rate ru(t | x) may be assumed to be
time-independent, a standard exponential model, but if there is unob-
served heterogeneity, this is compatible with an decreasing observed rate
r(t | x).

Several Transitions. Extension to a situation with several transitions
is straightforward. To simplify notation, we omit dependence on covari-
ates. Following the basic idea formulated in (3), for each transition from
origin state j ∈ O to destination state k ∈ Dj , transition-specific rates
can be defined by

rjk(t | vjk) = ru
jk(t) vjk vjk ≥ 0 (9)

ru
jk(t) is the underlying rate used for model formulation. The stochastic

term vjk, to provide for the possibility of unobserved heterogeneity, is
assumed to be specific for each transition, and stochastically independent
across transitions. And as before, it is assumed that these stochastic
terms are gamma distributed with unit expectation. The overall exit
rate from origin state j is then

rj(t | vj) =
∑

k∈Dj

ru
jk(t) vjk (10)

where vj is a vector of the stochastic terms vjk, k ∈ Dj . To simplify
notation we also define

Hu
jk(t) =

∫ t

0

ru
jk(τ) dτ

The next step is to define transition-specific sub-density functions f̃jk(t |
vjk), and the overall survivor function Gj(t | vj), in order to express
transition-specific rates as

rjk(t | vjk) =
f̃jk(t | vjk)
Gj(t | vj)

(11)

Then, analogously to the single transition case, one has to derive the mix-
ture distributions describing the data on the observational level. First,
to derive the unconditional survivor function Gj(t), one can take the ex-
pectation of Gj(t | vj) over all components of the vector vj . This is easy
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because we have assumed transition-specific stochastic terms. Therefore,
using (10), one finds

Gj(t | vj) =
∏

k∈Dj

exp
(
−vjk

∫ t

0

ru
jk(τ) dτ

)
(12)

Obviously, the expectation can be taken for each term separately, and
using (5), one gets

Gj(t) =
∏

k∈Dj

[
1 +

1
κjk

Hu
jk(t)

]−κjk

(13)

which may be written as

Gj(t) =
∏

k∈Dj

G̃jk(t) where G̃jk(t) =
[
1 +

1
κjk

Hu
jk(t)

]−κjk

(14)

Secondly, one has to derive the expectation of f̃jk(t | vjk). This can be
done by starting with (9) and (11), resulting in

f̃jk(t) = ru
jk(t) vjk Gj(t | vj)

Using then (12), the expectation of the right-hand side is a product
of transition-specific expectations. Except for the transition (j, k), the
expectation is directly given by (5). The kth term contains vjk, but
differentiating the mixing integral with respect to Hu

jk gives∫ ∞

0

vjk exp(−vjk Hu
jk(t)) fvjk

(vjk) dvjk =
[
1 +

1
κjk

Hu
jk(t)

]−κjk−1

The expectation of f̃jk(t | vjk) is therefore given by

f̃jk(t) = ru
jk(t)

[
1 +

1
κjk

Hu
jk(t)

]−1 ∏
k∈Dj

[
1 +

1
κjk

Hu
jk(t)

]−κjk

(15)

Finally, taking together (13) and (15), the unconditional transition-
specific rates are

rjk(t) =
f̃jk(t)
Gj(t)

= ru
jk(t)

[
1 +

1
κjk

Hu
jk(t)

]−1

(16)
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Maximum Likelihood Estimation. The approach to derive transi-
tion rate models with an additional gamma distributed stochastic term,
discussed in the previous section, can be summarized as follows. One
starts with a parametrically given transition rate, as in (3), and assumes
that the unobserved heterogeneity is gamma distributed with unit mean
and variance 1/κ. Then one derives the observed mixture distribution,
described by f(t | x), G(t | x), and r(t | x), given by (6), (7), and (8),
respectively.

It follows that the log-likelihood can be set up in the usual way. First,
for a single transition (with E and N denoting the sets of episodes with
an event, and of censored episodes, respectively) the log-likelihood may
be written as

` =
∑
i∈E

log(r(ti)) +
∑
i∈N

log(G(ti)) (17)

=
∑
i∈E

log (ru(ti))− log
(

1 +
1
κ

Hu(ti)
)
−

∑
i∈N

κ log
(

1 +
1
κ

Hu(ti)
)

Unfortunately, the standard method of episode splitting cannot be ap-
plied. Assume an episode (0, t), starting at time zero, and ending at
time t, and assume there is a covariate that changes its value at tx
(0 < tx < t). Then it would be quite possible to include this information
into the calculation of the cumulated rate Hu(t | x) which is needed for
the calculation of the density and survivor function of the unconditional
distribution. But the method of episode splitting only works when this
calculation can be separated into two steps, the first step has informa-
tion about the split (0, tx), and the second step has information about
the split (tx, t). But obviously, the unconditional density and survivor
function can not be calculated in this two distinct steps. Therefore, all
models described in the following subsections assume that covariates do
not change during the given episodes. Of course, it would be possible to
include information about time-dependent variables in the description
of episodes in other ways; but this is currently not supported by tda.

Secondly, one has to consider a situation with two or more transitions.
In the same way as was shown in 6.17.1.2 for models without unobserved
heterogeneity, it is possible to factor the total likelihood into transition-
specific terms. Using the pseudo-survivor functions defined in (14), the
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total likelihood can be written

L =
∏
j∈O

∏
k∈Dj

∏
i∈Ejk

rjk(ti)
∏

i∈Nj

G̃j(ti)

Then, by inserting the expressions given in (16) and (14), and by taking
the logarithm, the total log-likelihood becomes

` =
∑
j∈O

∑
k∈Dj

∑
i∈Ejk

log
(
ru
jk(ti)

)
− log

(
1 +

1
κ

Hu
jk(ti)

)
−

∑
i∈Nj

κ log
(

1 +
1

κjk
Hu

jk(ti)
)

(18)

As already mentioned, the models described in this paper are extensions
of parametric transition rate models discussed in 6.17.3. The underlying
rate, ru

jk(t), always corresponds to one of those models. Therefore, as
seen by (17) or (18), maximum likelihood estimation requires only little
modifications.

In fact, the formulation of log-likelihoods and derivatives can use
most of the formulas already given in 6.17.3. For this reason, we will use
the following notation. First we define new variables, djk, denoting the
transition-specific variances of the gamma distributed stochastic terms
in the models. These model parameters are analogously called the D-
terms of the models. The possibility to link covariates to these model
parameters is provided by exponential link functions, that is

djk =
1

kjk
= exp

{
D(jk) δ(jk)

}
D(jk) is a (row) vector of covariates with the first component always a
constant one. δ(jk) is the vector of associated coefficients to be estimated.

Secondly, to simplify the log-likelihood formulation, we define indi-
cator variables

ui =

{
− 1

d − 1 if i ∈ E
− 1

d otherwise

where E is the set of uncensored episodes. Furthermore, it is possible
to omit indices for transitions since the total likelihood factors into
transition-specific terms. The log-likelihood can be written, then, as

` =
∑
i∈E

log (ru(ti)) +
∑
i∈N

ui log (1 + d Hu(ti))
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with ru(t) and Hu(t), respectively, the rate and the cumulative rate of
the underlying model.

Finally, one can write the first and second derivatives of this log-
likelihood in a way that can be used for all of the following models.

∂`

∂αja

=
∑
i∈E

∂ log(ru(ti))
∂αja

+
∑
i∈N

ui
d

1 + d Hu(ti)
∂Hu(ti)

∂αja

∂`

∂δjd

=
∑
i∈N

{
log(1 + d Hu(ti))

d
+ ui

d Hu(ti)
1 + d Hu(ti)

}
Di,jd

∂2`

∂αja∂αka

=
∑
i∈E

∂2 log(ru(ti))
∂αja∂αka

+

∑
i∈N

ui
d

1 + d Hu(ti)

{
∂2 log(Hu(ti))

∂αja
∂αka

−

d

1 + d Hu(ti)
∂Hu(ti)

∂αja

∂Hu(ti)
∂αka

}
∂2`

∂δjd
∂δkd

=
∑
i∈N

{
2 Hu(ti)

1 + d Hu(ti)
− log(1 + d Hu(ti))

d
+

ui
d Hu(ti)

1 + d Hu(ti)

[
1− d Hu(ti)

1 + d Hu(ti)

]}
Di,jd

Di,kd

∂2`

∂αja
∂δkd

=
∑
i∈N

d

1 + d Hu(ti){
1
d

+ ui

[
1− d Hu(ti)

1 + d Hu(ti)

]}
∂Hu(ti)

∂αja

Di,kd

These formulas, appropriate for a model with a single model term, can
obviously be generalized for models with two or more terms. Conse-
quently, maximum likelihood estimation of the models described in sec-
tion 6.17.3, with a stochastic term added, can use most of the expressions
for the log-likelihood and its derivatives given there.

Exponential Models

This section describes the exponential model with a gamma-distributed
stochastic term, v. The transition rate, now conditional on v, may be
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written as

r(t | v) = a v a, v ≥ 0

The underlying model, already described in 6.17.2.1, is the exponential,
implying that

ru(t) = a and Hu(t) = a t

The observed mixture distribution is described by

G(t) = [1 + d a t]−
1
d

f(t) = a [1 + d a t]−
1
d−1

r(t) = a [1 + d a t]−1

d is the variance of the gamma distributed stochastic term. Obviously, if
d > 0, there will be a negative time-dependence, although the underlying
rate is a time-independent constant.

The model has two parameters. a, the constant transition rate of the
underlying exponential model, and d, the variance of the mixing gamma
distribution. In the tda implementation of this model both parameters,
the A- and D-term of the model, can be linked to covariates by an
exponential link function. The model formulation for the transition rate
from origin state j to destination state k is

rjk(t) =
ajk

1 + djk ajk t

ajk = exp
(
A(jk)α(jk)

)
djk = exp

(
D(jk)δ(jk)

)
It is assumed that the first component of each of the covariate (row)
vectors, A(jk) and D(jk), is a constant equal to one. The associated coef-
ficient vectors, α(jk) and δ(jk), are the model parameters to be estimated.

The model can be requested by adding the mix=1 parameter to the
rate command for an exponential model. Maximum likelihood estima-
tion is done following the outline given above. Using the notation intro-
duced there, and dropping indices for transitions, the log-likelihood may
be written as

` =
∑
i∈E

log(a) +
∑
i∈N

ui log(1 + d a ti)
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The first and second derivatives are easily found following the remarks
given above.

Weibull Models

This section describes the Weibull model with a gamma-distributed
stochastic term, v. The transition rate, now conditional on v, is

r(t | v) = ru(t) v v ≥ 0

with an underlying rate and cumulative rate given by

ru(t) = b ab tb−1 and Hu(t) = (a t)b

(see 6.17.3.3). The observed mixture distribution is described by

G(t) =
[
1 + d (a t)b

]− 1
d

f(t) = b ab tb−1
[
1 + d (a t)b

]− 1
d−1

r(t) = b ab tb−1
[
1 + d (a t)b

]−1

The model has three parameters. a, and b, are the parameters of the
underlying Weibull distribution, and d represents the variance of the
mixing gamma distribution. In the tda implementation of this model
all three parameters, the A-, B-, and D-term of the model, can be linked
to covariates by an exponential link function. The model formulation for
the transition rate from origin state j to destination state k is

rjk(t) =
bjk a

bjk

jk tbjk−1

1 + djk (ajk t)bjk

ajk = exp
(
A(jk)α(jk)

)
bjk = exp

(
B(jk)β(jk)

)
djk = exp

(
D(jk)δ(jk)

)
It is assumed that the first component of each of the covariate (row) vec-
tors, A(jk), B(jk), and D(jk), is a constant equal to one. The associated
coefficient vectors, α(jk), β(jk), and δ(jk), are the model parameters to
be estimated.



6.17.4.1 gamma mixture models 10

The model can be requested by adding the mix=1 parameter to the
rate command for a Weibull model. Maximum likelihood estimation is
done following the outline given in the introduction to this section. Using
the notation introduced there, and dropping indices for transitions, the
log-likelihood may be written as

` =
∑
i∈E

log(b ab tb−1
i ) +

∑
i∈N

ui log(1 + d (a ti)b)

First and second derivatives are easily found following the remarks given
above, and using the formulas for derivatives given in 6.17.3.3.

Sickle Models

This section describes the sickle model with a gamma-distributed stochas-
tic term, v. The transition rate, now conditional on v, is

r(t | v) = ru(t) v v ≥ 0

with an underlying rate and cumulative rate defined by

ru(t) = a t exp
(
− t

b

)
Hu(t) = a b

[
b− (t + b) exp

(
− t

b

)]
(see 6.17.3.4). The observed mixture distribution is described by

G(t) =
[
1 + d a b

{
b− (t + b) exp

(
− t

b

)}]− 1
d

f(t) = a t exp
(
− t

b

)[
1 + d a b

{
b− (t + b) exp

(
− t

b

)}]− 1
d−1

r(t) = a t exp
(
− t

b

)[
1 + d a b

{
b− (t + b) exp

(
− t

b

)}]−1

The model has three parameters. a, and b, are the parameters of the
underlying sickle model, and d represents the variance of the mixing
gamma distribution. In the tda implementation of this model all three
parameters, the A-, B-, and D-term of the model, can be linked to co-
variates by an exponential link function. The model formulation for the
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transition rate from origin state j to destination state k is

rjk(t) = ajk t exp
(
− t

bjk

)
[
1 + djk ajk bjk

{
bjk − (t + bjk) exp

(
− t

bjk

)}]−1

ajk = exp
(
A(jk)α(jk)

)
bjk = exp

(
B(jk)β(jk)

)
djk = exp

(
D(jk)δ(jk)

)
It is assumed that the first component of each of the covariate (row) vec-
tors, A(jk), B(jk), and D(jk), is a constant equal to one. The associated
coefficient vectors, α(jk), β(jk), and δ(jk), are the model parameters to
be estimated.

The model can be requested by adding the mix=1 parameter to the
rate command for a sickle model. Maximum likelihood estimation is
done following the outline given in the introduction. Using the notation
introduced there, and dropping indices for transitions, the log-likelihood
may be written as

` =
∑
i∈E

log(b ab tb−1
i ) +

∑
i∈N

ui log(1 + d (a ti)b)

First and second derivatives are easily found following the remarks given
above, and using the formulas for derivatives given in 6.17.3.4.

Log-Logistic Models

This section describes the log-logistic model with a gamma-distributed
stochastic term, v. The transition rate, now conditional on v, is

r(t | v) = ru(t) v v ≥ 0

with an underlying rate and cumulative rate defined by

ru(t) =
b ab tb−1

1 + (a t)b
and Hu(t) = log

(
1 + (a t)b

)
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(see 6.17.3.5). The observed mixture distribution is described by

G(t) =
[
1 + d log(1 + (a t)b)

]− 1
d

f(t) =
b ab tb−1

1 + (a t)b

[
1 + d log(1 + (a t)b)

]− 1
d−1

r(t) =
b ab tb−1

1 + (a t)b

[
1 + d log(1 + (a t)b)

]−1

The model has three parameters. a, and b, are the parameters of the
underlying log-logistic distribution, and d represents the variance of the
mixing gamma distribution. In the tda implementation of this model all
three parameters, the A-, B-, and D-term of the model, can be linked
to covariates by an exponential link function. The model formulation for
the transition rate from origin state j to destination state k is

rjk(t) =
bjk a

bjk

jk tbjk.1

1 + (ajk t)bjk

[
1 + djk log(1 + (ajk t)bjk)

]−1

ajk = exp
(
A(jk)α(jk)

)
bjk = exp

(
B(jk)β(jk)

)
djk = exp

(
D(jk)δ(jk)

)
It is assumed that the first component of each of the covariate (row) vec-
tors, A(jk), B(jk), and D(jk), is a constant equal to one. The associated
coefficient vectors, α(jk), β(jk), and δ(jk), are the model parameters to
be estimated.

The model can be requested by adding the mix=1 parameter to the
rate command for a log-logistic model. Maximum likelihood estimation
is done following the outline given in the introduction. Using the notation
introduced there, and dropping indices for transitions, the log-likelihood
may be written as

` =
∑
i∈E

log(b ab tb−1
i ) +

∑
i∈N

ui log(1 + d (a ti)b)

First and second derivatives are easily found following the remarks given
above, and using the formulas for derivatives given in 6.17.3.5.
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Log-Normal Models

This section describes the log-normal model with a gamma-distributed
stochastic term, v. The transition rate, now conditional on v, is

r(t | v) = ru(t) v v ≥ 0

with an underlying rate and cumulative rate defined by

ru(t) =
1
b t

φ (zt)
1− Φ (zt)

zt =
log(t)− a

b

Hu(t) = − log (1− Φ (zt))

(see 6.17.3.6). The observed mixture is described by

G(t) = [1− d log {1− Φ (zt)}]−
1
d

f(t) =
1
b t

φ (zt)
1− Φ (zt)

[1− d log {1− Φ (zt)}]−
1
d−1

r(t) =
1
b t

φ (zt)
1− Φ (zt)

[1− d log {1− Φ (zt)}]−1

The model has three parameters. a, and b, are the parameters of the
underlying log-normal model, and d represents the variance of the mix-
ing gamma distribution. In the tda implementation of this model all
three parameters, the A-, B-, and D-term of the model, can be linked
to covariates by an exponential link function. The model formulation for
the transition rate from origin state j to destination state k is

rjk(t) =
1

bjk t

φ (zjk(t))
1− Φ (zjk(t))

[1− djk log {1− Φ (zjk(t))}]−1

with

zjk(t) =
log(t)− ajk

bjk

ajk = exp
(
A(jk)α(jk)

)
bjk = exp

(
B(jk)β(jk)

)
djk = exp

(
D(jk)δ(jk)

)
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It is assumed that the first component of each of the covariate (row) vec-
tors, A(jk), B(jk), and D(jk), is a constant equal to one. The associated
coefficient vectors, α(jk), β(jk), and δ(jk), are the model parameters to
be estimated.

The model can be requested by adding the mix=1 parameter to the
rate command for an log-normal model. Maximum likelihood estimation
is done following the outline given in the introduction. Using the notation
introduced there, and dropping indices for transitions, the log-likelihood
may be written as

` =
∑
i∈E

log
(

1
b t

φ (zt)
1− Φ (zt)

)
+
∑
i∈N

ui log {1− d log (1− Φ (zt))}

First and second derivatives are easily found following the remarks given
above, and using the formulas for derivatives given in 6.17.3.6.
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6.17.5 User-defined Rate Models

This chapter describes the frml command that can be used to estimate
transition rate models based on a user-defined likelihood. In addition,
the chapter discusses some examples. We thank Francesco Billari who
developed these applications of the frml command. The sections are:

6.17.5.1 The frml Command

6.17.5.2 The Hernes Model

6.17.5.3 The Coale-McNeil Model

6.17.5.4 Model with Several Domains
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6.17.5.1 The frml Command

The command for estimating user-defined rate models is

frml (parameters) = log-likelihood function;

This command is basically identical with the fml command described
in 6.11.2. The main difference is that the frml command requires an
episode data structure, and the log-likelihood function is summed over
all episodes (or episode splits) which are currently defined; furthermore,
one can use the episode data operators (org, des, ts, tf) and type 5
variables (defined inside the edef command) in the definition of the
log-likelihood function.

The right-hand side of the command must provide the log-likelihood
function for a transition rate model. All other parameters (on the left-
hand side) are optional and can be used to select an algorithm for func-
tion minimization, to define starting values, to change the print format,
and so on. In principle, one can use all parameters to control maximum
likelihood estimation which have been explained in 5.6. It should also be
possible to use the con parameter to define equality constraints.

All minimization algorithms discussed in 5.6.2 can be used; default is
the Newton I algorithm (mina=5). If required, Wengert’s method is used
to calculate first and second derivatives of the log-likelihood function.

The remainder of this section provides some elementary examples to
illustrate the frml command. Additional discussion and examples will
be given in subsequent sections. All examples will use the episode data
set rrdat.1 described in 3.3.3.

Example 1 Box 1 shows the command file frml1.cf that can be used
to replicate the estimation of a simple exponential model (see the exam-
ple in 6.17.2.1). The log-likelihood function is

` =
∑
i∈E

log(r(ti)) +
∑
i∈N

log(G(ti))

In our example, the rate does not depend on time,

r(ti) = r = exp(α0 + COHO2α1 + COHO3α2 + Wα3)
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Box 1 Command file frml1.cf (exponential model)

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

# define additional variables

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1,

DUR [3.0] = TF - TS + 1,

);

edef( # define single episode data

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

frml (

xp = -4,0,0,0, # starting values

) = rate = exp(a0 + COHO2 * a1 + COHO3 * a2 + W * a3),

l1 = if(DES,log(rate),0),

fn = l1 - rate * DUR;

and the survivor function is simply

G(ti) = exp(−r ti)

yielding the log-likelihood function

` =
∑
i∈E

log(r)−
∑
i∈N

rti
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Box 2 Part of standard output from frml1.cf

ML estimation of user-defined rate model.

Function definition:

rate = exp(a0+COHO2*a1+COHO3*a2+W*a3)

l1 = if(DES,log(rate),0)

fn = l1-rate*DUR

Function will be summed over 600 data matrix cases.

Using episode data.

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Got 4 starting value(s) from xp parameter.

Idx Parameter Starting value

1 a0 -4.00000000e+00

2 a1 0.00000000e+00

3 a2 0.00000000e+00

4 a3 0.00000000e+00

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2475.44

Norm of final gradient vector: 1.10499e-11

Last absolute change of function value: 3.30667e-15

Last relative change in parameters: 5.84648e-07

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 a0 -5.0114 0.0843 -59.4446 1.0000

2 a1 0.5341 0.1120 4.7686 1.0000

3 a2 0.6738 0.1152 5.8472 1.0000

4 a3 0.5065 0.0942 5.3746 1.0000

Log likelihood (starting values): -2578.9484

Log likelihood (final estimates): -2475.4383
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Box 3 Part of Command file frml1m.cf

frml (

xp = -4,0,0,0, # starting values

-4,0,0,0,

-4,0,0,0,

) = rate1 = exp(a10 + COHO2 * a11 + COHO3 * a12 + W * a13),

rate2 = exp(a20 + COHO2 * a21 + COHO3 * a22 + W * a23),

rate3 = exp(a30 + COHO2 * a31 + COHO3 * a32 + W * a33),

rate = rate1 + rate2 + rate3,

l1 = if(eq(DES,1),log(rate1),

if(eq(DES,2),log(rate2),

if(eq(DES,3),log(rate3),0))),

fn = l1 - rate * DUR;

This expression is used in the command file frml1.cf. Part of the stan-
dard output is shown in Box 2. The estimated model parameters and
standard errors are identical with the results shown in 6.17.2.1.

Example 2 To replicate the estimation of an exponential model with
three alternative destination states (see 6.17.2.1), one can use the frml
command shown in Box 3. This command is part of command file frml1m.cf
(not shown) which is basically identical to command file rt1m.cf to set
up an episode data structure for three alternative destination states.

Example 3 The frml command in Box 4 illustrate the definition of a
log-likelihood function for a piecewise constant exponential model with 9
time periods. The specification is identical with the example discussed in
6.17.2.2 and should provide identical results. Of course, there are many
different possibilities to define this log-likelihood function.

This example can also be used to illustrate equality constraints. If
adding the parameters

con = bi − bi+1 = 0, (i = 1, . . . , 8)

to the frml command in frml2.cf, one should get the estimation re-
sults for a simple exponential model (see command file frml2c.cf in
the example archive).

Example 4 The frml command in Box 5 estimates a Weibull model.
It is a replication of the example discussed in 6.17.3.3. The log-likelihood
can easily be modified to provide alternative specifications of the Weibull
model. For example, removing the line bb=exp(b0), would result in a
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Box 4 Part of Command file frml2.cf

frml (

xp = -4,-4,-4,-4,-4,-4,-4,-4,-4,0,0,0, # starting values

) = bb = COHO2 * b1 + COHO3 * b2 + W * b3,

p1 = ge(tf, 0) & lt(tf,12),

p2 = ge(tf,12) & lt(tf,24),

p3 = ge(tf,24) & lt(tf,36),

p4 = ge(tf,36) & lt(tf,48),

p5 = ge(tf,48) & lt(tf,60),

p6 = ge(tf,60) & lt(tf,72),

p7 = ge(tf,72) & lt(tf,84),

p8 = ge(tf,84) & lt(tf,96),

p9 = ge(tf,96),

rr = if(p1,a1,

if(p2,a2,

if(p3,a3,

if(p4,a4,

if(p5,a5,

if(p6,a6,

if(p7,a7,

if(p8,a8,

if(p9,a9,0))))))))),

s1 = 12 * exp(a1 + bb),

s2 = s1 + 12 * exp(a2 + bb),

s3 = s2 + 12 * exp(a3 + bb),

s4 = s3 + 12 * exp(a4 + bb),

s5 = s4 + 12 * exp(a5 + bb),

s6 = s5 + 12 * exp(a6 + bb),

s7 = s6 + 12 * exp(a7 + bb),

s8 = s7 + 12 * exp(a8 + bb),

lsurv = if(p1,tf * exp(a1 + bb),

if(p2,s1 + (tf - 12) * exp(a2 + bb),

if(p3,s2 + (tf - 24) * exp(a3 + bb),

if(p4,s3 + (tf - 36) * exp(a4 + bb),

if(p5,s4 + (tf - 48) * exp(a5 + bb),

if(p6,s5 + (tf - 60) * exp(a6 + bb),

if(p7,s6 + (tf - 72) * exp(a7 + bb),

if(p8,s7 + (tf - 84) * exp(a8 + bb),

if(p9,s8 + (tf - 96) * exp(a9 + bb),0))))))))),

l1 = if(DES,rr + bb,0),

fn = l1 - lsurv;
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Box 5 Part of Command file frml3.cf (Weibull model)

frml (

xp = -4,0,0,0,0,

) = aa = exp( a0 + COHO2 * a1 + COHO3 * a2 + W * a3 ),

bb = exp( b0 ),

l1 = if(DES,log(bb * aa^bb * tf^(bb - 1)),0),

fn = l1 - (aa * tf)^bb;

Box 6 Part of Command file frml4.cf (log-normal model)

frml (

xp = 4,0,0,0,0,

) = aa = a0 + COHO2 * a1 + COHO3 * a2 + W * a3,

bb = exp( b0 ),

zz = (log(tf) - aa) / bb,

qz = 1 - nd(zz),

vz = ndf(zz) / qz,

l1 = if(DES,log(vz / (bb * tf)),0),

fn = l1 + log(qz);

direct estimate of bb and its standard error. (One should change, then,
the starting value for this parameter into a 1.)

Example 5 Box 6 shows an frml command to estimate a log-normal
model. It is a replication of the example discussed in 6.17.3.6. The def-
inition of the log-likelihood function uses the operators nd and ndf for
the standard normal distribution and density function, respectively. This
is possible since these operators allow for automatic differentiation.

Example 6 To replicate the estimation of a generalized gamma model
(see 6.17.3.7), we use command file frml5.cf. Part of this command
file is shown in Box 7. As discussed in 6.17.3.7, the log-likelihood re-
quires the gamma function and the incomplete gamma integral. Since
TDA automatically provides derivatives for the logarithm of the gamma
function (lgam operator) and for the incomplete gamma integral (icg
operator), the log-likelihood can be directly written, without numerical
integration. See Box 7. The resulting parameter estimates are identical
to those achieved with the rate command in 6.17.3.7. Note that we have
used the BFGS algorithm (mina=4), since the default Newton algorithm
would need better starting values. However, the final covariance matrix
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Box 7 Part of Command file frml5.cf (gamma model)

frml (

mina = 4,

xp = 5,0,0,0,0,

) = kk = 1,

aa = a0 + COHO2 * a1 + COHO3 * a2 + W * a3,

bb = exp(b0),

zz = (log(tf) - aa) / bb,

qt = kk * exp(zz / sqrt(kk)),

rr = (kk - 0.5) * log(kk) + (sqrt(kk) * zz - qt) -

(b0 + log(tf) + lgam(kk)),

icc = icg(qt,kk),

fn = if (DES,rr,log(1 - icc));

is based on (automatically calculated) second derivatives.

Episode Splitting. The frml command expects the definition of a
log-likelihood function on the right-hand side. In general, this will be a
function of data matrix variables (including possibly type 5 variables)
and model parameters. This function is summed over all episodes, or
episode splits, which are available in the currently defined episode data
structure. Consequently, if the episode data structure contains episode
splits (given by the input data or by using the split option in the
edef command), summation is over episode splits. It is easy, therefore,
to apply the method of episode splitting to user-defined transition rate
models.

Example 7 To illustrate, we use the simple exponential model (Exam-
ple 1). The new command file is frml1s.cf, shown in Box 8. Purely for
illustration, we define a variable SV=50 to be used in the edef command
for episode splitting. Every episode which is longer than 50 is then split
at t = 50, resulting in 845 episode splits.

To get the same results as in Example 1, the definition of the log-
likelihood must be modified. Instead of using the duration (previously
DUR), we have to use starting and ending times of the splits. This infor-
mation is available by the ts and tf operators. Also, instead of using
the exit status of the episodes (previously given by DES), we now have to
use the exit status of the episode splits; available by the operator des.
Using this modified set up of the log-likelihood function, we get identical
results as seen in Box 9.



6.17.5.1 the frml command 8

Box 8 Command file frml1s.cf

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1,

DUR [3.0] = TF - TS + 1,

SV = 50,

);

edef( # define single episode data

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

split = SV, # episode splitting at t = 50

);

frml (

xp = -4,0,0,0, # starting values

) = rate = exp(a0 + COHO2 * a1 + COHO3 * a2 + W * a3),

l1 = if(des,log(rate),0),

fn = l1 - rate * (tf - ts);
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Box 9 Part of standard output from command file frml1s.cf

ML estimation of user-defined rate model.

Function definition:

rate = exp(a0+COHO2*a1+COHO3*a2+W*a3)

l1 = if(des,log(rate),0)

fn = l1-rate*(tf-ts)

Function will be summed over 600 data matrix cases.

Using episode data (845 episode splits).

Convergence reached in 6 iterations.

Number of function evaluations: 7 (7,7)

Maximum of log likelihood: -2475.44

Norm of final gradient vector: 1.08916e-11

Last absolute change of function value: 1.83704e-16

Last relative change in parameters: 5.84648e-07

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 a0 -5.0114 0.0843 -59.4446 1.0000

2 a1 0.5341 0.1120 4.7686 1.0000

3 a2 0.6738 0.1152 5.8472 1.0000

4 a3 0.5065 0.0942 5.3746 1.0000

Log likelihood (starting values): -2578.9484

Log likelihood (final estimates): -2475.4383
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6.17.5.2 The Hernes Model

To illustrate estimation of the Hernes model (originally proposed by
Hernes [1972], see also Diekmann [1990], Wu [1990]), we follow the model
formulation given by Wu [1990]. The (defective) distribution function is
given by

F (t) =
1

1 + σ exp(βλt)

with parameters σ > 0, β > 0, and 0 < λ < 1. The corresponding
survivor function is

G(t) =
1

1 + exp(−βλt)/σ

and the density function is

f(t) =
−σ exp(βλt)βλt log(λ)

(1 + σ exp(βλt))2

The log-likelihood for model estimation can be written

` =
∑
i∈E

log(f(ti;σ, β, λ) +
∑
i∈Z

log(G(ti;σ, β, λ) (1)

In general, one can link covariates to all three model parameters. It seems
reasonable to use the following link functions:

β = exp(b)
σ = exp(s) (2)
λ = exp(l)/(1 + exp(l))

Example 1 To illustrate, we begin with a model formulation without
covariates. A suitable command file to be used with our standard episode
data set is frml8.cf. Part of this command file (the frml command) is
shown in Box 1. The log-likelihood formulation follows (1) and uses the
link functions proposed in (2). Part of the standard output is shown in
Box 2. Some numerical problems occurred since we have not specified
suitable starting values.
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Box 1 Part of command file frml8.cf

frml (

mina = 4,

) = sigma = exp(s),

lambda = exp(l)/(1 + exp(l)),

beta = exp(b),

ff = sigma * exp(beta * lambda^tf),

ff1 = ff + 1,

dens = -(ff * beta * lambda^tf * log(lambda)) / (ff1 * ff1),

surv = 1 - 1 / ff1,

fn = if(des,log(dens),log(surv));

Example 2 The TDA example archive contains another command file,
frml8a.cf, that can be used to estimate a Hernes model with covariates
linked to the β parameter of the model. To achieve convergence, we have
used the parameter estimates from Example 1 as starting values.
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Box 2 Part of standard output from command file frml8.cf

ML estimation of user-defined rate model.

Function definition:

sigma = exp(s)

lambda = exp(l)/(1+exp(l))

beta = exp(b)

ff = sigma*exp(beta*lambda^tf)

ff1 = ff+1

dens = -(ff*beta*lambda^tf*log(lambda))/(ff1*ff1)

surv = 1-1/ff1

fn = if(des,log(dens),log(surv))

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 3

Type of covariance matrix: 2

Idx Parameter Starting value

1 b 0.00000000e+00

2 l 0.00000000e+00

3 s 0.00000000e+00

Convergence reached in 10 iterations.

Number of function evaluations: 25 (25,25)

Numerical problems.

1 : overflow/underflow in exp() or log().

3 : log-likelihood positive.

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 b 1.5856 0.0378 41.9814 1.0000

2 l 3.8236 0.0599 63.8607 1.0000

3 s -1.8379 0.1305 -14.0821 1.0000

Log likelihood (starting values): -16552.9633

Log likelihood (final estimates): -2526.3743
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6.17.5.3 The Coale-McNeil Model

Another model sometimes used in demographical research is the Coale-
McNeil model, originally proposed by Coale and McNeil [1972]. For a
discussion of the model, see Huinink and Henz [1993], Wu [1990]. The
density function is

f(t) = σλ exp {−β(t− µ)− exp(−λ(t− µ))− log(Γ(β/λ))}

with parameters µ > 0, β > 0, and λ > 0. Slightly more general, one can
also consider the defective density

fσ(t) = σ f(t) 0 ≤ σ ≤ 1

To derive the distribution function

Fσ(t) =
∫ t

−∞
fσ(τ) d τ

one can apply the substitution τ = µ− log(u)/λ, to get

Fσ(t) = σ (1− I(exp(−λ(t− µ)), β/λ))

where I denotes the incomplete gamma integral. To estimate this model,
one often assumes that β/λ is constant. As proposed by Rodriguez and
Trussell, β/λ = 0.604 (see Wu [1990], p. 192). It seems reasonable, then,
to use the parameterization

β/λ = constant
λ = exp(l)
µ = exp(m)
σ = exp(s)/(1 + exp(s))

Example 1 To illustrate, we begin with β/λ = 0.604 and σ = 1, and
use our standard episode data set. The frml command for model es-
timation (part of command file frml9.cf) is shown in Box 1. The log-
likelihood uses TDA’s operators for the logarithm of the gamma function
(lgam) and the incomplete gamma integral (icg). We use the BFGS al-
gorithm (mina=4) since the default Newton algorithm is very sensitive
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Box 1 Part of command file frml9.cf

frml (

mina = 4,

xp = -3,2,

)= bg = 0.604,

sigma = exp(s) / (1 + exp(s)),

lambda = exp(l),

mue = exp(m),

beta = bg * lambda,

tl = exp(-lambda * (tf - mue)),

ldens = log(sigma) + l - beta * (tf - mue) - tl - lgam(bg),

surv = 1 - sigma * (1 - icg(tl,bg)),

fn = if (DES,ldens,log(surv));

to starting values. (In fact, the BFGS algorithm could also be used with
default zero starting values.) Estimation results are shown in Box 2.

It should also be possible to link covariates to the model parameters.
As an illustration, the TDA example archive contains the command file
frml9a.cf where our standard covariates (COHO2, COHO3, and W) are
linked to the λ parameter. This results in a significantly better fit, the
log-likelihood is −2322.96.
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Box 2 Part of standard output from command file frml9.cf

ML estimation of user-defined rate model.

Function definition:

bg = 0.604

sigma = exp(s)/(1+exp(s))

lambda = exp(l)

mue = exp(m)

beta = bg*lambda

tl = exp(-lambda*(tf-mue))

ldens = log(sigma)+l-beta*(tf-mue)-tl-lgam(bg)

surv = 1-sigma*(1-icg(tl,bg))

fn = if(DES,ldens,log(surv))

Function evaluation: sum over 600 data matrix cases.

Using episode data.

Maximum likelihood estimation.

Algorithm 4: BFGS

Idx Parameter Starting value

1 l -3.00000000e+00

2 m 2.00000000e+00

3 s 0.00000000e+00

Convergence reached in 13 iterations.

Number of function evaluations: 22 (22,1)

Maximum of log likelihood: -2529.59

Norm of final gradient vector: 8.34764e-07

Idx Parameter Value Error Value/E Signif

--------------------------------------------------------

1 l -3.0653 0.0454 -67.4629 1.0000

2 m 2.8902 0.0685 42.1764 1.0000

3 s 1.8505 0.1421 13.0217 1.0000

Log likelihood (starting values): -2699.6069

Log likelihood (final estimates): -2529.5933
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6.17.5.4 Models with Several Domains

In unpublished papers, Francesco Billari has proposed to consider tran-
sition rate models with two (or more) domains. In the most simple case,
the modeling approach is

r(t) =
{

ra(t) if t ≤ ta
ra(t) + rb(t) if t > ta

where ra(t) is the rate for the first domain, [0, ta], and ra(t) + rb(t) is
the rate for the second domain, (ta,∞). A possible application, proposed
by Billari, is to investigate age at first marriage. Until a certain age ta,
a very low constant rate ra(t) is assumed, then, beginning at age ta,
individuals enter the ”‘essential”’ risk period for becoming married and
the rate is given by ra(t) + rb(t).

In principle, it should be possible to regard ta as a model parameter
that can be estimated. The problem is, of course, that the log-likelihood
is not continuously differentiable in ta. As a possible strategy, one can try
an algorithm that does not require derivatives. Another strategy would
be to estimate the model with a series of differently fixed values of ta. Of
course, the best strategy would be to apply an algorithm for non-smooth
function optimization; however, this is not yet available in TDA.

Since this modeling approach is not well suited for our standard ex-
ample data set, we do not give an illustration. However, the TDA ex-
ample archive contains the command file frml10.cf which can be used
for some experiments. It uses a simple exponential model for ra(t) and
a log-normal model for rb(t).
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6.17.6 Discrete Time Rate Models

This chapter discusses discrete time transition rate models. Basic ref-
erences are Allison [1982] and Hamerle and Tutz [1989]. The sections
are:

6.17.6.1 Introduction

6.17.6.2 Logistic Regression Models

6.17.6.3 Complementary Log-Log Models
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6.17.6.1 Introduction

Discrete time models begin with the assumption that transitions from
a given origin state to a new destination state can only occur at some
discrete points in time. It is possible then to represent the time axis by
the natural numbers (1, 2, 3, . . .). To describe episodes in a discrete time
framework we can use the same notation as introduced in 3.3.1 for a
continuous time framework:

(oi, di, t
s
i , t

f
i , xi(t)) i = 1, . . . , N

tsi is the starting time of the episode, tfi is the ending time. oi is the origin
state of the episode, and di is the destination state. xi(t) is a vector of
covariates, possibly time-varying, connected with the episode.

The only important difference is in the interpretation of starting and
ending times. We first concentrate on ending times and assume that all
starting times are zero. As already mentioned, values of ending times
are natural numbers indexing the discrete points in time when events
can take place. Consequently, the duration of episodes is represented by
a discrete random variable T ∗. (To distinguish discrete time concepts
from the corresponding continuous time concepts we mark all symbols
by an asterisk.) For all practical purposes we can restrict T ∗ to be finite
with possible values 1, . . . , q.

T ∗i = ti means that in the ith episode an event takes place at ti, or
the episode is censored at this point in time. To understand this, it may
be helpful to imagine an underlying continuous time axis with intervals
defined by

τ0 < τ1 < τ2 < . . . < τq with τ0 = 0

A continuous variable T , defined on this time axis, may then be used to
define a one-to-one relation

T ∗ = t ⇔ T ∈ [τt−1, τt) t = 1, . . . , q

That an event takes place at the discrete point in time t may be inter-
preted, then, as an event taking place in the tth interval on the under-
lying continuous time axis. The meaning of a right censored episode at
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the discrete point in time t is, accordingly, that no event has happened
up to the end of the tth interval.

With these guidelines for interpretation, we can define some concepts
for a statistical description; first assuming a single possible event. We
may start with the discrete analogon to the density function for a con-
tinuous time variable which is the probability function for the discrete
time variable T ∗. It is simply defined as

f∗(t) = Pr (T ∗ = t) t = 1, . . . , q

with
q∑

t=1

f∗(t) = 1

Next we can define a discrete analogon for the survivor function. To be
consistent with the interpretation of right censored episodes, the defini-
tion is

G∗(t) = Pr (T ∗ > t) (1)

meaning that at least at t the individual is still in the origin state. Finally,
a discrete analogon for the transition rate can be defined as

r∗(t) = Pr (T ∗ = t | T ∗ ≥ t)

Obviously, this is a conditional probability, meaning that the episode
ended with an event at t given that no event occurred before t. This
implies that

0 ≤ r∗(t) ≤ 1

what is different from the continuous time case. In that case the transi-
tion rate can assume values greater than one; now the rate is restricted
to the range zero to one, and of course, the formulation of models must
be consistent with this fact.

Another difference to the continuous time case is in the expression
of the transition rate by the density and survivor functions. As a conse-
quence of the definition in (1), the formulation is

r∗(t) =
f∗(t)

G∗(t− 1)
=

f∗(t)
G∗(t)

(1− r∗(t))
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The right-hand side of this equation follows from

1− r∗(t) = 1− Pr (T ∗ = t)
Pr (T ∗ ≥ t)

=
Pr (T ∗ > t)
Pr (T ∗ ≥ t)

=
G∗(t)

G∗(t− 1)
(2)

This equation also implies an expression for the survivor function in
terms of transition rates:

G∗(t) =
t∏

l=1

(1− r∗(l))

We can now extend these concepts to situations with several transitions.
The terminology is analogous to the continuous time case. There are
origin states j ∈ O with destination states k ∈ Dj ; and with each origin
state is associated a two-dimensional discrete random variable (T ∗j , Dj).
The variable T ∗j describes the duration in the origin state j until an
event occurs; and the variable Dj gives the destination state if an event
occurs.

A description of this two-dimensional variable is given by the two-di-
mensional probability function

f∗jk(t) = Pr (T ∗j = t, Dj = k)

expressing the probability that a transition from origin state j to desti-
nation state k takes place at the discrete point in time t. Next, as in the
continuous time case, transition-specific rates can be defined by

r∗jk(t) = Pr (T ∗j = t, Dj = k | T ∗j ≥ t)

This is the conditional probability that a transition from origin state j to
destination state k occurs at t, given the origin state j and that no event
occurred until this point in time. It follows that the transition-specific
rates add together to the overall exit rate

r∗j (t) =
∑

k∈Dj

r∗jk(t) (3)

The associated survivor function now depends on the given origin state
j and is defined by

G∗
j (t) = Pr (T ∗j > t) (4)
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This is the probability that no event occurs up to, and including, the
discrete point in time t. The transition rate from the given origin state
j to destination state k may finally be written as

r∗jk(t) =
f∗jk(t)

Gj(t− 1)

Having introduced the basic concepts, the idea of transition rate models
in discrete time can be described analogously to the continuous time case
by

r∗jk(t) = gjk(t, xjk, βjk, εjk)

The basic idea is again to make the transition rate from origin state
j to destination state k dependent on a vector of possibly transition-
specific covariates xjk with associated coefficients βjk, and possibly on
some not observed stochastic influences comprised in the variables εjk.
The dependence is formulated by assuming a function gjk; each different
specification of this function gives a different discrete time rate model.

Maximum Likelihood Estimation. Before dealing with some possi-
ble model specifications we shortly describe maximum likelihood estima-
tion in the discrete time framework. The approach is basically the same
as in the continuous time case, but there are some small differences. The
most important one is that the likelihood in the case of several transitions
does not factorize into transition-specific terms.

1. In the case of a single transition, the likelihood may be written as

L =
∏
i∈E

f∗(ti)
∏
i∈Z

G∗(ti)

where E denotes the set of episodes ending with an event, and Z denotes
the set of censored episodes. The contribution to the likelihood of an
episode that has an event at ti is simply the probability that an event
takes place at this point in time. The contribution of an episode that is
censored at ti is the value of the survivor function at ti, the probability
that no event has occurred until, and including, ti.

2. In the case of a given origin state j, but possibly more than one
destination state, the likelihood is

Lj =
∏

k∈Dj

∏
i∈Ejk

f∗jk(ti)
∏

i∈Zj

G∗
j (ti) (5)
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where Ejk is the set of episodes with origin state j and destination state
k (implying that these episodes are not censored), and Zj is the set of
censored episodes with origin state j. The contribution of an uncensored
episode to the likelihood is now the value of the tow-dimensional prob-
ability function f∗jk(ti); the contribution of a censored episode is again
the overall survivor function as defined in (4).

3. If there are several origin states, the total likelihood is simply the
product of the likelihoods for each given origin state as defined in (5):

L =
∏
j∈O

∏
k∈Dj

∏
i∈Ejk

f∗jk(ti)
∏

i∈Zj

G∗
j (ti) (6)

This may be rewritten to reach a somewhat more convenient expression.
By using (2) and (4) we get

f∗jk(t) =
r∗jk(t)

1− r∗j (t)
G∗

j (t)

and

G∗
j (t) =

t∏
l=1

(1− r∗j (l))

By substituting these expressions in (6) and taking the logarithm, the
overall log-likelihood becomes

` =
∑
j∈O

∑
k∈Dj

∑
i∈Ejk

log

{
r∗jk(ti)

1− r∗j (ti)

}
+
∑
i∈Nj

ti∑
l=1

log
{
1− r∗j (l)

}
(7)

where Nj denotes the set of all episodes with origin state j. This for-
mulation shows that we only need expressions for the transition rates to
derive maximum likelihood estimates.

Episode Splitting. To include covariates, transition rates must be con-
ditioned on their values. If covariates do not change during episodes the
log-likelihood (7) can be used without modification. If covariates change
their values at some discrete points in time the method of episode split-
ting can be used.

In order to apply this method, TDA uses conditional survivor func-
tions, defined by

G∗
j (t | s) = Pr (T ∗j > t | T ∗j > s) =

G∗
j (t)

G∗
j (s)
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with the convention that G∗
j (0) = 1. Substituting these conditional sur-

vivor functions in (7), the log likelihood becomes

` =
∑
j∈O

∑
k∈Dj

∑
i∈Ejk

log

{
r∗jk(ti)

1− r∗j (ti)

}
+
∑
i∈Nj

ti∑
l=si+1

log
{
1− r∗j (l)

}
This modified log likelihood is used by TDA and provides for the possi-
bility to use split episodes and to condition on given starting times not
necessarily equal to zero.
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6.17.6.2 Logistic Regression Models

This section describes the logistic regression model. It was discussed
by several authors in somewhat different versions. Here we follow the
exposition given by Allison [1982]. In the single transition case the model
can be written as

r∗(t) =
exp(Aα + β1t + β2t

2 + . . . + βntn)
1 + exp(Aα + β1t + β2t2 + . . . + βntn)

t = 1, . . . , q

A is a (row) vector of covariates with the first component equal to one,
and α is a vector of associated coefficients. The time dependence is as-
sumed to be a polynomial of order n in t. Therefore, the model is quite
flexible, and one can test how many terms of the polynomial are needed
for a sufficient fit.

Implementation. The logistic regression model has model number 20;
the command to request model estimation is

rate (parameter) = 20;

For a description of the syntax and options see 6.17.1.4. Implementation
of the model provides for possibly more than one transition and can be
described by

r∗jk(t) =
ajk bjk(t)

1 + ajk bjk(t)
(1)

ajk = exp
{

A(jk)α(jk)
}

bjk(t) = exp
{

β
(jk)
1 t + β

(jk)
2 t2 + . . . + β(jk)

n tn
}

There are two model terms. The product of a (row) vector A(jk) of possi-
bly transition-specific covariates (with first component equal to one) and
of associated coefficients α(jk) is linked via an exponential link function
to the first, the A-term, of the model. In addition, a transition-specific
polynomial in t, with coefficient vector β(jk), is linked to the second, the
B-term, of the model. Linking is again via an exponential link function.
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The degree of the polynomial, n, can be specified with the deg parameter
in the rate command; default is deg=0.

Maximum Likelihood Estimation. Model estimation follows the
outline given in 6.17.6.1. Since the likelihood does not factor into transi-
tion-specific terms, mixed derivatives across different destination states
must be included. First, following (3), the overall exit rate from origin
state j is

r∗j (t) =
∑

k∈Dj

r∗jk(t)

where r∗jk(t) is given by (1). The log-likelihood for a given origin state j
is

`j =
∑

k∈Dj

∑
i∈Ejk

log

{
r∗jk(ti)

1− r∗j (ti)

}
+
∑
i∈Nj

ti∑
l=si+1

log
{
1− r∗j (l)

}
(2)

A small simplification is possible if we define a variable

t∗i =

{
ti − 1 if i ∈ Ej
ti if i ∈ Zj

where Ej and Zj are, respectively, the set of uncensored and of censored
episodes with origin state j. (2) may then be rewritten as

`j =
∑

k∈Dj

∑
i∈Ejk

log
{
r∗jk(ti)

}
+
∑
i∈Nj

t∗i∑
l=si+1

log
{
1− r∗j (l)

}
(3)

This log-likelihood is used for the formulation of derivatives. We denote
the left-hand part of the right side, that is the additional part for un-
censored episodes, by `L

j , the right-hand part, for all episodes, by `R
j . To

write down the derivatives we will use the following abbreviations.

UL
jk(t) = 1− r∗jk(t)

V L
jk(t) = −r∗jk(t)

(
1− r∗jk(t)

)
UR

jk(t) = −
r∗jk(t)(1− r∗jk(t))

1− r∗j (t)
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V R
jk(t) =

r∗jk(t)(1− r∗jk(t))
1− r∗j (t)

[
2 r∗jk(t)− 1−

r∗jk(t)(1− r∗jk(t))
1− r∗j (t)

]

WR
jkk′(t) =

−r∗jk(t)(1− r∗jk(t)) r∗jk′(t)(1− r∗jk′(t))
(1− r∗j (t))2

The derivatives of the left part on the right-hand side of (3), `L
j , with

respect to α(jk) and β(jk) may then be written as

∂`L
j

∂α
(jk)
ja

=
∑

k∈Dj

∑
i∈Ejk

UL
jk(ti) A

(jk)
ja

∂`L
j

∂β
(jk)
jb

=
∑

k∈Dj

∑
i∈Ejk

UL
jk(ti) tjb

i

∂2`L
j

∂α
(jk)
ja

α
(jk)
ka

=
∑

k∈Dj

∑
i∈Ejk

V L
jk(ti) A

(jk)
ja

A
(jk)
ka

∂2`L
j

∂β
(jk)
jb

β
(jk)
kb

=
∑

k∈Dj

∑
i∈Ejk

V L
jk(ti) tjb+kb

i

∂2`L
j

∂α
(jk)
ja

β
(jk)
kb

=
∑

k∈Dj

∑
i∈Ejk

V L
jk(ti) A

(jk)
ja

tkb
i

The derivatives of the right-hand side of (3), `R
j , with respect to α(jk)

and β(jk), are

∂`R
j

∂α
(jk)
ja

=
∑
i∈Nj

t∗i∑
l=si+1

UR
jk(l) A

(jk)
ja

∂`R
j

∂β
(jk)
jb

=
∑
i∈Nj

t∗i∑
l=si+1

UR
jk(l) ljb

∂2`R
j

∂α
(jk)
ja

α
(jk)
ka

=
∑
i∈Nj

t∗i∑
l=si+1

V R
jk(l) A

(jk)
ja

A
(jk)
ka
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∂2`R
j

∂β
(jk)
jb

β
(jk)
kb

=
∑
i∈Nj

t∗i∑
l=si+1

V R
jk(l) ljb+kb

∂2`R
j

∂α
(jk)
ja

β
(jk)
kb

=
∑
i∈Nj

t∗i∑
l=si+1

V R
jk(l) A

(jk)
ja

lkb

Finally, the mixed derivatives, k 6= k′, are

∂2`R
j

∂α
(jk)
ja

α
(jk′)
ka

=
∑
i∈Nj

t∗i∑
l=si+1

WR
jkk′(l) A

(jk)
ja

A
(jk′)
ka

∂2`R
j

∂β
(jk)
jb

β
(jk′)
kb

=
∑
i∈Nj

t∗i∑
l=si+1

WR
jkk′(l) ljb+kb

∂2`R
j

∂α
(jk)
ja

β
(jk′)
kb

=
∑
i∈Nj

t∗i∑
l=si+1

WR
jkk′(l) A

(jk)
ja

lkb

Initial Estimates. Without duration-dependence (deg=0), the logis-
tic regression model is similar to the exponential model and TDA uses
identical default starting values. If the polynomials to capture duration-
dependence have higher degrees these default starting values can eas-
ily lead to numerical problems and convergence difficulties. A sensible
strategy is to estimate a series of models with increasing degrees of the
polynomial and to use the parameter estimates of previously estimated
models to define starting values.

Example 1 To illustrate the logistic regression model, we use our main
episode data set (rrdat.1) described in 3.3.3. Box 1 shows the command
file, rtd.1, to estimate a logistic regression model without duration-
dependence. Standard output is shown in Box 2.

To estimate models with duration dependence, one can add the pa-
rameter

deg = degree of polynomial,

to the rate command. As we have mentioned, higher degree polynomials
can lead to numerical difficulties due to very different magnitudes of the
model parameters. Also, if there are many time points, the estimation
process can be very slow.
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Box 1 Command file rtd1.cf for logistic regression

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

rate (

xa(0,1) = COHO2,COHO3,W,

) = 20;

Example 2 The TDA example archive contains another command file,
rtd1m.cf, that can be used to estimate logistic regression models for
episodes with three alternative destination states. It is basically identical
with command file rt1m.cf described in 6.17.2.1.

Additional Remarks. TDA cannot calculate generalized residuals for
the logistic regression model and the pres option will be ignored. Also
the rrisk and prate parameters cannot be used with this model.
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Box 2 Standard output from command file rtd1.cf

Model: Discrete time logistic regression, degree 0.

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Changed scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -2472.39

Norm of final gradient vector: 1.04739e-07

Last absolute change of function value: 2.93992e-11

Last relative change in parameters: 3.51238e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

---------------------------------------------------------------

1 1 0 1 A Constant -5.0056 0.0847 -59.1117 1.0000

2 1 0 1 A COHO2 0.5402 0.1127 4.7944 1.0000

3 1 0 1 A COHO3 0.6822 0.1160 5.8808 1.0000

4 1 0 1 A W 0.5133 0.0949 5.4097 1.0000

Log likelihood (starting values): -2511.4674

Log likelihood (final estimates): -2472.3890



6.17.6.3 complementary log-log models 1

6.17.6.3 Complementary Log-Log Models

Following again the exposition by Allison [1982], this section describes
the complementary log-log model. In the single transition case, the tran-
sition rate is

r∗(t) = 1− exp
{
− exp(Aα + β1t + β2t

2 + . . . + βntn)
}

Implementation. The command to request model estimation is

rate (parameter) = 21;

For a description of the syntax and options see 6.17.1.4. Implementation
of the model provides for possibly more than one transition and can be
described by

r∗jk(t) = 1− exp {−ajk bjk(t)}

ajk = exp
{

A(jk)α(jk)
}

bjk(t) = exp
{

β
(jk)
1 t + β

(jk)
2 t2 + . . . + β(jk)

n tn
}

Again, there are two model terms. The product of a (row) vector A(jk) of
possibly transition-specific covariates (with the first component equal to
one), and of associated coefficients α(jk), is linked via an exponential link
function to the first, the A-term, of the model. In addition, a transition-
specific polynomial in t, with coefficient vector β(jk), is linked to the
second, the B-term, of the model. The degree of the polynomial can be
specified with the deg parameter in the rate command; default is deg=0.

Maximum Likelihood Estimation. Model estimation follows the
outline given in 6.17.6.1 and is similar to the estimation procedure for
the logistic regression model. Using the notation introduced in 6.17.6.2,
the log-likelihood for the complementary log-log model can be written
as

`j =
∑

k∈Dj

∑
i∈Ejk

log
{
r∗jk(ti)

}
+
∑
i∈Nj

t∗i∑
l=si+1

log
{
1− r∗j (l)

}
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Also the expressions for the derivatives are the same as for the logistic
regression model, one only has to change the abbreviations defined in
6.17.6.2 into

UL
jk(t) = ajk bjk(t)

[
1

r∗jk(t)
− 1

]

V L
jk(t) = ajk bjk(t)

[
1

r∗jk(t)
− 1

][
1− ajk bjk(t)

r∗jk(t)

]

UR
jk(t) = ajk bjk(t)

r∗jk(t)− 1
1− r∗j (t)

V R
jk(t) = ajk bjk(t)

1− r∗jk(t)
1− r∗j (t)

[
ajk bjk(t)

r∗jk(t)− r∗j (t)
1− r∗j (t)

− 1

]

WR
jkk′(t) =

−ajk bjk(t)(1− r∗jk(t)) ajk′bjk′(t)(1− r∗jk′(t))
(1− r∗j (t))2

Using these abbreviations, the first and second derivatives of the log
likelihood have the same formulation as described in 6.17.6.2.

Initial Estimates. By default, TDA uses the default starting values for
an exponential null model. Similar to the logistic regression model, there
can occur numerical difficulties if duration dependence is specified by a
higher degree polynomial.

Example 1 To illustrate estimation of a complementary log-log model
we use command file rtd2.cf (not shown). This command file identical
to rtd1.cf (see 6.17.6.2), only the model number was changed into 21.
Part of the standard output is shown in Box 1.

The TDA example archive contains another command file, rtd2m.cf,
which can be used to estimate a complementary log-log model for episodes
with alternative destination states.

Additional Remarks. As with the logistic regression mode, TDA can-
not calculate generalized residuals for the complementary log-log model
and the pres option will be ignored. Also the rrisk and prate param-
eters are ignored.
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Box 1 Part of standard output from command file rtd2.cf

Model: Discrete time complementary log-log, degree 0.

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Number of model parameters: 4

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Changed scaling factor for log-likelihood: -0.001

Using default starting values.

Convergence reached in 5 iterations.

Number of function evaluations: 6 (6,6)

Maximum of log likelihood: -2472.42

Norm of final gradient vector: 1.31763e-07

Last absolute change of function value: 3.60281e-11

Last relative change in parameters: 3.83396e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

---------------------------------------------------------------

1 1 0 1 A Constant -5.0081 0.0843 -59.4116 1.0000

2 1 0 1 A COHO2 0.5371 0.1120 4.7959 1.0000

3 1 0 1 A COHO3 0.6773 0.1152 5.8768 1.0000

4 1 0 1 A W 0.5094 0.0942 5.4044 1.0000

Log likelihood (starting values): -2511.4459

Log likelihood (final estimates): -2472.4212
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6.17.7 Semi-parametric Rate Models

This chapter describes a semi-parametric transition rate model proposed
by Cox [1972].

6.17.7.1 Partial Likelihood Estimation

6.17.7.2 Time-dependent Covariates

6.17.7.3 Episode Splitting

6.17.7.4 The Proportionality Assumption

6.17.7.5 Stratification

6.17.7.6 The Baseline Rate
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6.17.7.1 Partial Likelihood Estimation

The transition rate models described in 6.17.3 are based on parametrical
assumptions about the distribution of episode durations. This allows
for straightforward maximum likelihood estimation. However, one not
always has sufficient reasons to choose a specific model. The best strategy
seems then to use a variety of different model specifications and to look
for similar outcomes.

An alternative was proposed by Cox [1972] and subsequently dis-
cussed by many other authors. For the single transition case, and based
on a continuous time variable t ≥ 0, the model, generally called a Cox
model, is

r(t) = h(t) exp (A(t) α) (1)

The transition rate r(t) depends on an unspecified baseline rate, h(t),
and on a vector of covariates A(t) with coefficients α.1 The covariates
may depend on the process time, t.

Implementation. Implementation of the Cox model in TDA is based
on the following model formulation.

rjk(t) = hjk(t) exp
{

A(jk)(t) α(jk)
}

(2)

rjk(t) is the transition rate at time t for the transition from origin state
j to destination state k. hjk(t) is the unspecified baseline rate for the
same transition.2 A(jk)(t) is a (row) vector of covariates, specified for
the transition (j, k), and α(jk) is a vector of associated coefficients. The
covariates may have time-dependent values, examples will be given in
6.17.7.2 and 6.17.7.3.

Furthermore, it is possible to explain each transition by a specific set
of covariates. One should note, however, that model estimation requires
that all covariates are defined for all members of a sample of episodes.

1We use the convention to write covariates as row vectors, the accompanying coeffi-
cients as column vectors.
2The formulation implies that the baseline rates are allowed to vary between different
transitions. A special type of Cox models arises if the baseline rates are constrained
to be identical for all transitions; cf. Kalbfleisch and Prentice [1980], p. 170.
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This is necessary to calculate the risks for all transitions, regardless of
the transition that actually happens at the end of an episode. One should
also note that it is necessary to include at least one covariate for each
transition because Cox models do not contain any intercept terms; all
constant effects are included in the baseline rates.

Model estimation is based on the method of partial likelihood (Cox
[1972], [1975]). To explain this method, we will first consider the case
of a single transition (j, k) from origin state j to destination state k.
Indices referring to transitions are dropped to simplify notation. With
the assumption of no ties, i.e. all ending times in the sample are different,
the partial likelihood, Lp, may be written as

Lp =
∏
i∈E

exp(Ai(ti) α)∑
l∈R(ti)

exp(Al(ti)α)
(3)

E denotes the set of all not censored episodes belonging to the (single)
transition (j, k), i.e. having an event at their ending time. R(ti) is the
risk set at the ending time, say ti, of the ith episode contained in E . The
definition of the risk set is exactly the same as was given for the product-
limit estimator: the set of all episodes, exiting with an event or censored,
with starting time less than ti and ending time equal to or greater than
ti. Ai(ti) is the (row) vector of covariates for the ith episode (evaluated
at ti), and α is the vector of associated coefficients to be estimated.

Given this notation, the calculation of the partial likelihood is easily
understood: One looks at the ending times of episodes ending with an
event, then, for each of these points in time, the risk set is created,
and finally the expression on the right-hand side of (3) is evaluated.
This expression may be interpreted as the probability that it is just
the ith individual to have an event at this point in time, given the risk
set containing all individuals who could have an event. Note that in
the calculation of these probabilities time-dependent covariates can be
accounted for in a simple way: at each successive point in time the actual
covariate values can be used.

As was shown by Cox and other authors, the partial likelihood de-
fined in (3) may be treated as if it was a standard likelihood. Estimates
of model coefficients reached by maximizing the partial likelihood have
properties similar to those of standard maximum likelihood estimates.

The only difficulty arises if there are tied ending times. It is compli-
cated, then, to calculate the partial likelihood exactly. Therefore several
simplifying approximations have been proposed. As is done, for instance,
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by BMDP and SAS, the TDA algorithm for the partial likelihood calcu-
lation uses an approximation proposed by Breslow [1974].3

Assume there are di episodes, with indices contained in a set Di, all
having the same ending time, ti. The partial likelihood factor for this
point in time is approximated, then, by

exp(Si(ti)α)[∑
l∈R(ti)

exp(Al(ti) α)
]di

=
∏

j∈Di

exp(Aj(ti) α)∑
l∈R(ti)

exp(Al(ti) α)

with Si(ti) defined as the sum of the covariate vectors for the di episodes
with events at ti (evaluated at ti). As is easily seen, using this approxima-
tion is already accounted for in the formulation of the partial likelihood
in (3), because in this formulation the product goes over all episodes,
tied or not, contained in E .

As is generally assumed, this approximation is sufficient if there are
only “relatively few” ties in a sample of episode data. If there are “too
many” ties it seems preferable to use a discrete time model. Box 1 shows
how the partial likelihood calculation is done in TDA. The algorithm
includes the possibility of stratification variables and time-dependent
covariates explained in later sections.

Alternative Destination States. To extend the Cox model for sets
of episode data with several transitions, we follow the general remarks in
3.3.1. First it should be restated that, in the context of duration anal-
ysis, all estimations are performed conditional on given origin states.
Therefore, with two or more origin states, the (partial) likelihood may
be built separately for all origin states; each single term may be maxi-
mized separately, or the product of all origin-specific terms is taken and
maximized simultaneously.4

Also the case of two or more transitions, from a given origin state,
is simple.5 One only needs an appropriate definition of the risk set. The
risk set is now conditional on a given origin state, so we shall writeRj(t);
but one has to include all episodes, with given origin state j, that are at

3We follow the formulation given by Lawless [1982], p. 346. An introduction to Bres-
low’s approximation may also be found in Namboodiri and Suchindran [1987], p. 213.
4The algorithm in TDA maximizes the partial likelihood simultaneously for all tran-
sitions to provide for the possibility of constraints on model parameters across tran-
sitions. In this case the transition-specific terms of the likelihood are no longer inde-
pendent, and the maximization must be done simultaneously.
5Cf. Kalbfleisch and Prentice [1980], p. 169.
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Box 1 Partial Likelihood Algorithm in TDA

For all transitions: tran = 1,...,NT {
org = origin state of transition tran
des = destination state of transition tran

For all groups: g = 1,...,NG {
time = 0

For all episodes: ep = 1,...,NE (according to their ending times) {
org1 = origin state of episode ep
des1 = destination state of episode ep
tf = ending time of episode ep

If (org1 = org and des1 = des and ep belongs to group g) {
If (no time-dependent covariates) {

Add to the risk set all episodes which belong to
group G, have origin state org, and starting time
less than tf.

}
If (tf greater than time) {

If (no time-dependent covariates) {
Eliminate from the risk set all episodes which
belong to group g, have origin state org,
and have ending time less than tf.

}
If (time-dependent covariates) {

Create a new risk set: all episodes that belong
to group g, have origin state org, starting
time less than tf and ending time greater or
equal to tf. While creating this new risk
set, use the values of time-dependent covariates
at tf.

}
time = tf

}
Update partial likelihood (and derivatives) with
episode ep.

}
}

}
}

Note: If no groups (strata) are defined, this algorithm assumes that there is
exactly one group containing all episodes.
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risk for a transition to state k at time t, regardless of which destination
state they actually will reach at some later point in time. Therefore, the
risk set Rj(t) is defined as the set of all episodes with origin state j
provided that their starting time is less than t and their ending time is
equal to or greater than t.

The partial likelihood in the case of possibly more than one origin
and/or destination state may then be written as

Lp =
∏
j∈O

∏
k∈Dj

∏
i∈Ejk

exp
(
A(jk)(ti) α(jk)

)∑
l∈Rj(ti)

exp
(
A(jk)(tl) α(jk)

) (4)

Box 1 shows the implementation of this partial likelihood calculation in
TDA. If there is only one transition this reduces to the partial likelihood
given in (3). Also the approximation, if there are tied ending times, is
the same as in the single transition case.

Maximizing the Partial Likelihood. Maximum partial likelihood
estimates are found by maximizing (4). Dropping indices referring to
transitions and time-dependence of covariates, the logarithm of (4) may
be written as

`p =
∑
i∈E

Ai α− log

{∑
l∈Ri

exp(Al α)

}
(5)

Denoting by Ai,j the jth element of the covariate vector for the episode
i ∈ E , the first and second derivatives are

∂`p

∂αja

=
∑
i∈E

Ai,ja
−
∑

l∈Ri
exp(Al α) Al,ja∑

l∈Ri
exp(Al α)

∂2`p

∂αja
∂αka

=
∑
i∈E

∑
l∈Ri

exp(Al α) Al,ja∑
l∈Ri

exp(Al α)

∑
l∈Ri

exp(Al α) Al,ka∑
l∈Ri

exp(Al α)
−

∑
l∈Ri

exp(Al α) Al,ja
Al,ka∑

l∈Ri
exp(Al α)

Example 1 To illustrate partial likelihood estimation with TDA, the
first example will be based on our main example data set, rrdat.1,
described in 3.3.3. For this example we only consider a single transition
and select two covariates: birth cohort and sex. Estimation is done with
command file pl1.cf, basically identical with the command files used in
previous chapters. Estimation results are shown in Box 3.
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Box 2 Command file pl1.cf

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

rate (

xa(0,1) = COHO2,COHO3,W,

) = 1; model number 1 for Cox model

Example 2 For a second example, we distinguish three destination
states. The command file is pl1m.cf, estimation results are shown in
Box 4. Actually, one would get the same result if estimating separate
models for each of the three destination states taking into account all
other episodes as censored.

Example 3 Lawless ([1982], p. 367) has given an example for the Cox
model with some biometrical data. This example can be replicated with
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Box 3 Output from command file pl1.cf

Model: Cox (partial likelihood)

Maximum Likelihood Estimation.

Algorithm 5: Newton (I)

Number of model parameters: 3

Type of covariance matrix: 2

Maximum number of iterations: 20

Convergence criterion: 1

Tolerance for norm of final gradient: 1e-06

Mue of Armijo condition: 0.2

Minimum of step size value: 1e-10

Scaling factor: -1

Log-likelihood of exponential null model: -2514.02

Scaling factor for log-likelihood: -0.001

Using default starting values.

Sorting episodes according to ending times.

Convergence reached in 4 iterations.

Number of function evaluations: 5 (5,5)

Maximum of log likelihood: -2565.43

Norm of final gradient vector: 8.94115e-09

Last absolute change of function value: 1.45822e-11

Last relative change in parameters: 5.14129e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A COHO2 0.3797 0.1134 3.3501 0.9992

2 1 0 1 A COHO3 0.4585 0.1177 3.8937 0.9999

3 1 0 1 A W 0.4078 0.0949 4.2988 1.0000

Log likelihood (starting values): -2584.5701

Log likelihood (final estimates): -2565.4257

command file pl2.cf, contained in the TDA example archive.
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Box 4 Part of output from command file pl1m.cf

Model: Cox (partial likelihood)

Convergence reached in 4 iterations.

Number of function evaluations: 5 (5,5)

Maximum of log likelihood: -2550.89

Norm of final gradient vector: 1.07487e-06

Last absolute change of function value: 1.9399e-09

Last relative change in parameters: 0.000489307

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------------

1 1 0 1 A COHO2 0.0893 0.2640 0.3381 0.2647

2 1 0 1 A COHO3 0.1624 0.2696 0.6024 0.4531

3 1 0 1 A W -0.2411 0.2352 -1.0254 0.6948

-------------------------------------------------------------------

4 1 0 2 A COHO2 0.5017 0.1641 3.0564 0.9978

5 1 0 2 A COHO3 0.5487 0.1714 3.2010 0.9986

6 1 0 2 A W 0.1879 0.1387 1.3547 0.8245

-------------------------------------------------------------------

7 1 0 3 A COHO2 0.3726 0.1964 1.8966 0.9421

8 1 0 3 A COHO3 0.4909 0.2039 2.4069 0.9839

9 1 0 3 A W 1.0651 0.1678 6.3482 1.0000

Log likelihood (starting values): -2584.5701

Log likelihood (final estimates): -2550.8900
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6.17.7.2 Time-dependent Covariates

There is an easy way to include time-dependent covariates into Cox
models. The method is based on the fact that the partial likelihood
calculation goes gradually through all points in time where at least one of
the uncensored episodes has an event. It is possible, then, to re-evaluate
the values of time-dependent covariates at these time points. Actually,
this is already provided for in the partial likelihood formulas given in
6.17.7.1. As shown by the algorithm in Box 6.17.7.1-1 the risk set is
re-calculated at every new point in time.

To define time-dependent covariates, TDA provides a special opera-
tor, time. Note that this operator is only valid for type 5 variables defined
inside the edef command. All type 5 variables are re-evaluated during
partial likelihood estimation substituting time by the current process
time.

Example 1 To illustrate time-dependent covariates we continue with
Example 6.17.7.1-1 and investigate the hypothesis that marriage has
some influence on job duration. Box 1 shows command file pl3.cf using
a time-dependent dummy variable MARR. Estimation results are shown
in Box 2.

One should note that estimation results, when using time-dependent
covariates, can depend critically on the point in time when the variable
changes its value, in particular when the data are heavily tied. In general,
one should expect different results if using the gt or the ge operator
in defining the time-dependent variable.1 For practical applications, one
should also consider the introduction of lags, see the discussion of “effect
shapes” in Blossfeld et al. [1996].

1Since process time in TDA is treated as a floating point number, there is also a
problem of rounding errors. Different from previous versions of TDA, the evaluation
of the logical operators ge, gt, etc. now uses a “safe” comparison that tries to minimize
rounding errors.

d06170702.tex April 21, 1998
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Box 1 Command file pl3.cf

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

MDATE = if le(TMAR,0) then 10000 else TMAR - TS, # marriage date

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

MARR = gt(time,MDATE), # time-dependent dummy for married

);

rate (

xa(0,1) = COHO2,COHO3,W,MARR,

) = 1;
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Box 2 Part of standard output from command file pl3.cf

Model: Cox (partial likelihood)

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Maximum of log likelihood: -2562.51

Norm of final gradient vector: 1.73888e-08

Last absolute change of function value: 2.16271e-11

Last relative change in parameters: 7.73306e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-----------------------------------------------------------------

1 1 0 1 A COHO2 0.3920 0.1135 3.4548 0.9994

2 1 0 1 A COHO3 0.4668 0.1179 3.9604 0.9999

3 1 0 1 A W 0.3947 0.0950 4.1543 1.0000

4 1 0 1 A MARR -0.2408 0.1000 -2.4083 0.9840

Log likelihood (starting values): -2584.5701

Log likelihood (final estimates): -2562.5089
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6.17.7.3 Episode Splitting

A disadvantage of the standard method to include time-dependent vari-
ables into Cox models is that the partial likelihood calculation becomes
very time-consuming. The reason is that the risk set must be re-calcu-
lated, and the values of the covariates must be re-evaluated (including
comparisons with the process time), for every point in time where at
least one event occurs.

If time-dependent covariates change their values only at some discrete
points in time, one can use, instead, the method of episode splitting. The
original episodes are split at every time point where one of the time-
dependent covariates changes its value. Each of the original episodes is
substituted by a set of sub-episodes (splits) with appropriate values of
the covariates. The last of these splits has the same exit status as the
original episode, all other splits are regarded as right censored.

To use this method with partial likelihood maximization, it is only
necessary to be precise in the definition of the risk set. At every time
point t, the risk set should contain all episodes, or splits, which have
a starting time less than t and ending time greater than, or equal to t,
regardless of their exit status. Consequently, the risk set at every point in
time contains only a single split—associated with appropriate values of
the time-dependent covariates—for each of the original episodes. Clearly,
it is necessary that the partial likelihood algorithm takes into account
both the different ending and starting times of the episodes (splits). As
shown in Box 1 in 6.17.7.1, this is a general feature of TDA’s partial
likelihood algorithm. (The method is inspired by the program RATE

(Tuma [1980]) which, we presume, was the first using starting and ending
times for updating the risk set.)

Unfortunately, one cannot use TDA’s method of internal episode
splitting with the partial likelihood algorithm. This is due to the fact
that, to save storage space, episode splits are only virtually created. How-
ever, to be sorted according to starting and ending times, they must be
present in the program’s data matrix. Consequently, to use the method
of episode splitting to estimate Cox models, or analogously for product-
limit estimates, one has to proceed in two steps.

1. The first step is to create a new data file containing split episodes

d06170703.tex April 21, 1998
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Box 1 Command file pl4.cf for episode splitting

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

MDATE = if le(TMAR,0) then 10000 else TMAR - TS, # marriage date

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

split = MDATE, # split with MDATE

);

epdat(

v = COHO1,COHO2,COHO3,W,MDATE, # additional variables

dtda = pl4.tda, # description file

) = pl4.dat;

instead of the original ones. This can be done with the split parameter
in the edef command and then writing the new data file with the epdat
command. Time-dependent covariates can be generated during this first
step, but equally well based on the resulting output file containing the
episode splits.

2. In a second step, the data file containing the episode splits can be used



6.17.7.3 episode splitting 3

Box 2 First records in data file pl4.dat

ID SN NSPL SPL ORG DES TS TF COHO1 COHO2 COHO3 W MDATE

--------------------------------------------------------------

1 1 2 1 0 0 0.00 124.00 1 0 0 0 124

1 1 2 2 0 0 124.00 428.00 1 0 0 0 124

2 1 1 1 0 1 0.00 46.00 1 0 0 1 169

3 1 1 1 0 1 0.00 34.00 1 0 0 1 123

4 1 2 1 0 0 0.00 89.00 1 0 0 1 89

4 1 2 2 0 1 89.00 220.00 1 0 0 1 89

5 1 1 1 0 1 0.00 12.00 0 1 0 1 182

6 1 1 1 0 1 0.00 30.00 0 1 0 1 170

7 1 1 1 0 1 0.00 12.00 0 1 0 1 140

8 1 1 1 0 1 0.00 75.00 0 1 0 1 128

9 1 1 1 0 1 0.00 12.00 0 1 0 1 53

10 1 1 1 0 1 0.00 55.00 0 0 1 1 0

11 1 1 1 0 1 0.00 68.00 1 0 0 0 118

12 1 2 1 0 0 0.00 50.00 1 0 0 0 50

12 1 2 2 0 1 50.00 137.00 1 0 0 0 50

as if it was a set of “original” episodes. Based on the new input data, one
can estimate Cox models and, of course, all of the parametric transition
rate models discussed in 6.17.2 and 6.17.3. It is also possible to request
product-limit estimates based on a set of episode splits; one should get
exactly the same results as if one had used the original episodes.

Example 1 To illustrate the method of episode splitting, we replicate
Example 1 in 6.17.7.2. The first step is to create a new data file con-
taining episode splits, with splitting at the date of marriage. This is
done with the command file pl4.cf shown in Box 1. There are three
commands. The first command (nvar) reads the data file and creates
the basic variables. The following edef command defines episode data
and requests internal episode splitting with variable MDATE. Finally, the
epdat command writes the new episode data into the output file pl4.dat
and creates a data description file with the dtda parameter. The first
records of the new data file, pl4.dat, are shown in Box 2. This new
data file is then used by command file pl5.cf shown in Box 3.1 The
nvar command reads the data file, creates the basic variables and, in
addition, the time-dependent dummy variable MARR. This variable gets
the value 1 for each split where the marriage data is less than, or equal
to the starting time of the split. The edef command specifies the episode
data structure and creates the time-dependent dummy variable MARR1 as

1This command file was created by using the description file pl4.tda.
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Box 3 Command file pl5.cf

nvar(

dfile = pl4.dat,

noc = 761,

ID [6.0] = c1, # id number

SN [3.0] = c2, # spell number

NSPL [3.0] = c3, # number of splits

SPL [3.0] = c4, # split number

ORG [3.0] = c5, # origin state

DES [3.0] = c6, # destination state

TS [6.2] = c7, # starting time

TF [6.2] = c8, # ending time

COHO1 [0.0] = c9,

COHO2 [0.0] = c10,

COHO3 [0.0] = c11,

W [0.0] = c12,

MDATE [0.0] = c13,

MARR = le(MDATE,TS),

);

edef(

ts = TS, # starting time

tf = TF, # ending time

org = ORG, # origin state

des = DES, # destination state

MARR1 = le(MDATE,ts),

);

rate ( # without time-dep covariates

xa(0,1) = COHO2,COHO3,W,

) = 1;

rate ( # using episode splitting

xa(0,1) = COHO2,COHO3,W,MARR,

) = 1;

rate ( # using standard approach

xa(0,1) = COHO2,COHO3,W,MARR1,

) = 1;

a type 5 variable, meaning that this variable will be re-evaluated when
TDA estimates a Cox model which contains this variable. Then follow
three rate commands.

1. The first one re-estimates the model discussed in Example 6.17.7.1-
1. Although model estimation now uses split episodes, one should get
identical estimation results.

2. The second rate command re-estimates the model discussed in Ex-
ample 6.17.7.2-1, using now the method of episode splitting for the time-
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dependent variable MARR.

3. The third rate command estimates the same model, but uses the
conventional method for time-dependent covariates in Cox models; the
model specification contains now MARR1 instead of MARR. Since MARR1 is a
type 5 variable, it is re-evaluated whenever the risk set must be updated.
Consequently, the estimation procedure is much more time consuming.
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6.17.7.4 The Proportionality Assumption

A basic feature of the Cox model is that transition rates for different
values of covariates are proportional. If, for instance, we compare the
transition rates r1(t) and r2(t), corresponding to the values of the ith
covariate, Ai and A′i, then

r1(t)
r2(t)

= exp {(Ai −A′i) αi}

Models having this feature are called proportional transition rate models.
This is, of course, not specific for the Cox model but also implied in
at least some versions of most of the parametric models discussed in
6.17.3. This section discusses three methods to check whether a sample
of episode data allows for this proportionality assumption.

Graphical Methods. If there are only a few categorical covariates in
a model, it is possible to perform simple graphical checks. Assume that
this is the case, and that A and A′ are two different vectors with covari-
ate values. The sample can then be split into two groups, and one can
calculate nonparametric Kaplan-Meier estimates of the survivor func-
tions, say G(t) and G′(t), for both of these groups. The proportionality
assumption implies that

log (G(t))
log (G′(t))

= exp {(A−A′) α}

Or, taking logarithms once more, this becomes

log {− log (G(t))} = log {− log (G′(t))}+ (A−A′) α (1)

Therefore, a plot of the logarithms of the survivor functions may be used
to check if the proportionality assumption is (nearly) admissible. Similar
ideas can be used to check parametric model assumptions, see Wu [1990].

Testing Time-dependence. Another method to check the propor-
tionality assumption is to look at possible interaction effects between
covariates and process time. Assuming that the ith component of the
covariate vector A shall be tested, a model like the following could be
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Box 1 Command file pl6.cf

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

W = SEX[2], # women = 1

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

WTEST = W * (log(time) - 4.22),

);

rate (

xa(0,1) = COHO2,COHO3,W,WTEST,

) = 1;

set up and estimated.

r(t) = h(t) exp {A α + Ai (log(time)−M) α′i} (2)

The constant M is added to facilitate the estimation. It should be the
logarithm of the mean (or median) duration of the sample episodes used
for the estimation. If the added variable gives a significant coefficient, i.e.,
if there are significant interaction effects, the proportionality assumption
for this covariate is probably not in order.
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Box 2 Part of standard output from command file pl6.cf

Maximum of log likelihood: -2562.9

Norm of final gradient vector: 6.79524e-07

Last absolute change of function value: 1.71305e-09

Last relative change in parameters: 0.00104722

Idx SN Org Des MT Variable Coeff Error C/Error Signif

--------------------------------------------------------------

1 1 0 1 A COHO2 0.3816 0.1133 3.3682 0.9992

2 1 0 1 A COHO3 0.4381 0.1180 3.7136 0.9998

3 1 0 1 A W 0.5840 0.1215 4.8074 1.0000

4 1 0 1 A WTEST 0.2196 0.0974 2.2541 0.9758

Log likelihood (starting values): -2584.5701

Log likelihood (final estimates): -2562.9031

Example 1 To illustrate this procedure, we check variable W (sex=2,
women) that was used in Example 1 in 6.17.7.1. The command file is now
pl6.cf shown in Box 1. It is mostly identical to command file pl1.cf,
but we have added the time-dependent covariate WTEST. Simply following
(4), we use the definition

WTEST = W * (log(time) - 4.22),

where 4.22 is approximately the logarithm of the mean duration in our
example data set. Estimation results are shown in Box 2. Obviously,
variable W creates some conflicts with the proportionality assumption.

A Goodness-of-Fit Test. As proposed by Moreau et al. [1985], the
idea of checking for interactions between covariates and the process time
can be generalized for a global goodness-of-fit test for the Cox model.
We briefly describe this proposal and its implementation in TDA. Is is
assumed that all episodes start at the origin of the process time, i.e.
have starting time zero. The process time axis is divided into intervals
according to

0 ≤ τ1 < τ2 < . . . < τq, τ0 = 0, τq+1 =∞

The lth time interval is defined as

Il = {t | τl ≤ t < τl+1} l = 1, . . . , q

Moreau et al. [1985] propose to look at a general model formulation that
allows possibly different covariate effects in the time intervals. In the
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single transition case, the model can be formulated as

r(t) = h(t) exp{A(α + γl)} if t ∈ Il (3)

In the lth time interval, the coefficients associated with the covariate
vector A are given by α + γl. If the proportionality assumption holds,
then all γl vectors should be zero. Since one of these vectors is obviously
redundant, we set γ1 = 0, and the null hypothesis becomes

γ2 = γ3 = . . . = γq = 0 (4)

For testing this hypothesis, Moreau et al. [1985] propose a score test.
The test statistic, say S, is defined by

S = U ′ V −1 U

where U is a vector of first derivatives of the log-likelihood of model
(3), evaluated under the null hypothesis (4) and with maximum partial
likelihood estimates of the vector α. And V is the observed information
matrix, i.e. minus the matrix of second derivatives of the log-likelihood
of (3), evaluated the same way. Under the null hypothesis, the statistic
S is asymptotically χ2 distributed with degrees of freedom equal to the
number of parameters of model (3), that is (q − 1) p where p is the
dimension of α.

As shown by Moreau et al. [1985], the calculation of S can be greatly
simplified. It is possible to write the test statistic as

S =
q∑

l=1

U ′
l V −1

l Ul

with Ul and Vl restricted to the lth time interval. The elements of Ul

and Vl (s, s1, s2 = 1, . . . , p) may then be written as

Ul,s =
∑
i∈El

Ai,s −
∑

j∈Ri,l
exp (Aj α̂) Aj,s∑

j∈Ri,l
exp (Aj α̂)

Vl,s1s2 =
∑
i∈El

∑
j∈Ri,l

exp (Aj α̂) Aj,s1Aj,s2∑
j∈Ri,l

exp (Aj α̂)
−∑

j∈Ri,l
exp (Aj α̂) Aj,s1∑

j∈Ri,l
exp (Aj α̂)

∑
j∈Ri,l

exp (Aj α̂) Aj,s2∑
j∈Ri,l

exp (Aj α̂)
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These expressions are analogous to the derivatives of (5) given above,
restricted to single time periods. El is the set of episodes with events
in the lth time interval; Ri,l is the risk set at the ending time of the
ith episode in El, and α̂ is the maximum partial likelihood estimate of
α under the null hypothesis. As proposed by Moreau et al. [1985], the
formulation in (5) accounts for tied ending times by using Breslow’s
approximation.

A generalization to the case of multiple transitions is simple since
the log-likelihood factors into separate components for each transition.
Therefore, a separate test statistics can be calculated for each transi-
tion, say (j, k), taking into account all episodes with origin state j and
regarding all episodes as censored that do not end with destination state
k.

To request a calculation of the test statistics, one has to add a def-
inition of time periods to the specification of a Cox model. The test
statistics is printed, then, into the standard output. In addition to the
test statistics and associated degrees of freedom, TDA prints the corre-
sponding value of the χ2 distribution function.

If a time interval is empty, meaning that there are no episodes with
ending times in this interval, it is not used for the calculation of the
test statistic and not counted in the degrees of freedom. Sometimes,
mainly depending on the definition of time intervals, one or more of the
Vl matrices is rank-deficient and cannot be inverted. The test statistic is
not calculated, then, but some information about the underlying problem
is given, on request, in the protocol file.

Example 2 To illustrate the test procedure, we first reproduce an ex-
ample given by Moreau et al. [1985]. The data, rrdat.5, are survival
times of gastric carcinoma patients who are given two different thera-
pies. The command file, pl7.cf, is shown in Box 3. Part of the standard
output is shown in Box 4. The test statistic is significant, indicating that
the effect of the two therapies (groups) is not proportional.

Example 3 For a second illustration, we add the parameter

tp = 0 (12) 96,

to command files pl1.cf pl1m.cf, see the first two examples in 6.17.7.1.
The new command files are pl8.cf and pl8m.cf, not shown, but con-
tained in the example archive. Box 5 shows the test statistics created
by these command files. In the first example, without alternative des-
tination states, the test statistic is 37.108 with 24 degrees of freedom.
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Box 3 Command file pl7.cf

nvar(

dfile = rrdat.5, # data file

TF = c1, # ending time = duration

DES = c2, # destination state (= status)

G1 = c3[1], # definition of two groups

G2 = c3[2],

);

edef(

ts = 0, # starting time = 0

tf = TF, # ending time = duration

org = 0, # origin state = 0

des = DES, # destination state (= status)

);

rate(

xa(0,1) = G1, # included: group 1

tp = 0,170.1,354.1,535.1, # time periods

) = 1;

Box 4 Part of standard output from command file pl7.cf

Maximum of log likelihood: -282.744

Norm of final gradient vector: 9.13651e-08

Last absolute change of function value: 3.13773e-07

Last relative change in parameters: 0.0116559

Idx SN Org Des MT Variable Coeff Error C/Error Signif

-------------------------------------------------------------

1 1 0 1 A G1 -0.2666 0.2332 -1.1428 0.7469

Log likelihood (starting values): -283.3952

Log likelihood (final estimates): -282.7441

Global Goodness-of-fit.

SN Org Des TStat DF Signif

----------------------------------------

1 0 1 10.2351 3 0.9833

As expected, it shows a significant deviation from the proportionality
assumption. Again, this is mainly due to the W variable. Omitting this
variable from the model gives a test statistic of 21.04 with 16 degrees of
freedom which is no longer significant.
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Box 5 Test statistics created by command files pl8.cf and pl8m.cf

pl8.cf (corresponding to pl1.cf)

----------------------------------------

SN Org Des TStat DF Signif

----------------------------------------

1 0 1 37.1084 24 0.9573

pl8m.cf (corresponding to pl1m.cf)

----------------------------------------

SN Org Des TStat DF Signif

----------------------------------------

1 0 1 15.9066 24 0.1086

1 0 2 25.5454 24 0.6234

1 0 3 38.5791 24 0.9698
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6.17.7.5 Stratification

If the proportionality assumption is not acceptable, it is sometimes sen-
sible to estimate a stratified model. This is possible if the covariates that
cause conflicts with the proportionality assumption are categorical. The
whole sample can then be split into groups (strata), one group for each
of the possible combinations of categories. In the simplest case, with only
a single dummy variable, there will be only two groups.

Let G denote the set of groups. The model should be specified such
that the baseline rate can be different for each group. There are two
possibilities. One possibility is to define a different model for each group;
then not only the baseline rates, but also the covariate effects can vary
across groups.

This approach requires fairly large samples. When data sets are rela-
tively small, or when there are no significant interaction effects, it can be
sensible to build on the assumption that covariate effects are the same
in all groups. (See Kalbfleisch and Prentice [1980], p. 87; Lawless [1982],
p. 365; Blossfeld et al. [1989].) Based on this assumption, a model for the
single transition case can be written as

rg(t) = hg(t) exp(A α) g ∈ G

To estimate this model, the partial likelihood has to be calculated as
the product of the group-specific likelihoods. For the multiple transition
case, this may be written as

Lp =
∏
j∈O

∏
k∈Dj

∏
g∈Gj

∏
i∈Ejk,g

exp
(
A(jk)(ti) α(jk)

)∑
l∈Rj,g(ti)

exp
(
A(jk)(tl) α(jk)

)
with Gj denoting the set of groups of episodes with origin state j. Ejk,g is
the set of all not censored episodes having origin state j and destination
state k and belong to group g. Accordingly, Rj,g(t) is the risk set at
time t containing all episodes with origin state j, starting time less than
t, ending time equal to or greater than t, and belonging to group g. Box
1 in 6.17.7.1 shows how this is implemented in TDA’s partial likelihood
algorithm.

Example 1 To illustrate stratified estimation, we continue with the
first example in 6.17.7.1 and use the variable SEX for stratification. Box
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Box 1 Command file pl9.cf for stratified estimation

nvar(

dfile = rrdat.1, # data file

ID [3.0] = c1, # identification number

SN [2.0] = c2, # spell number

TS [3.0] = c3, # starting time

TF [3.0] = c4, # ending time

SEX [2.0] = c5, # sex (1 men, 2 women)

TI [3.0] = c6, # interview date

TB [3.0] = c7, # birth date

TE [3.0] = c8, # entry into labor market

TMAR [3.0] = c9, # marriage date (0 if no marriage)

PRES [3.0] = c10, # prestige of current job

PRESN [3.0] = c11, # prestige of next job

EDU [2.0] = c12, # highest educational attainment

COHO1 = ge(TB,348) & le(TB,384), # birth cohort 1

COHO2 = ge(TB,468) & le(TB,504), # birth cohort 2

COHO3 = ge(TB,588) & le(TB,624), # birth cohort 3

G1 = SEX[1], # group1 (men)

G2 = SEX[2], # group2 (women)

DES [1.0] = if eq(TF,TI) then 0 else 1, # destination state

DUR [3.0] = TF - TS + 1,

);

edef(

ts = 0, # starting time

tf = DUR, # ending time

org = 0, # origin state

des = DES, # destination state

);

rate (

xa(0,1) = COHO2,COHO3,

grp = G1,G2, # groups for stratification

) = 1;

1 shows the command file pl9.cf. The additional variables G1 and G2
define two groups, men and women.1 To request stratified estimation,
one has to use the parameter

grp = G1,G2,...,

in the rate command. TDA then assumes that the right-hand side is

1In TDA, groups are always defined by indicator variables. Nonzero values indicate
that a case belongs to the respective group.
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Box 2 Part of standard output from command file pl9.cf

Model: Cox (partial likelihood)

Stratified with 2 groups.

Maximum likelihood estimation.

Algorithm 5: Newton (I)

Convergence reached in 4 iterations.

Number of function evaluations: 5 (5,5)

Maximum of log likelihood: -2250.58

Norm of final gradient vector: 8.82782e-09

Last absolute change of function value: 1.43084e-11

Last relative change in parameters: 4.27658e-05

Idx SN Org Des MT Variable Coeff Error C/Error Signif

--------------------------------------------------------------

1 1 0 1 A COHO2 0.3840 0.1133 3.3878 0.9993

2 1 0 1 A COHO3 0.4428 0.1183 3.7433 0.9998

Log likelihood (starting values): -2259.5669

Log likelihood (final estimates): -2250.5832

a list of indicator variables specifying groups and performs the strati-
fied estimation procedure based on these groups. Estimation results are
shown in Box 2. As is seen the cohort effects have not changed very
much. This is consistent with that both variables do not give significant
results when tested for proportionality.
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6.17.7.6 The Baseline Rate

The partial likelihood method provides estimates of the parameters of
a Cox model but no direct estimate of the underlying baseline rate.
Clearly, this would be useful in order to provide some information about
the structure of time-dependence and could be used, for instance, to
check whether also a fully parametric model could be appropriate.

There are different proposals for estimators of the baseline rate.
TDA’s approach is based on a proposal by Breslow [1974], discussed also
in Blossfeld et al. [1989]. To explain the method, we begin with assuming
a single transition where all episodes have starting time zero. Then, in
the usual notation, E denotes the set of, say q, not censored episodes,
and the ordered ending times may be given by

τ1 < τ2 < . . . < τq

Let Ei be the number of events at τi, let Ri be the risk set at τi. Further-
more, let α̂ be the partial likelihood estimate of the model parameters.
Then, defining τ0 = 0, we may regard

ĥb
i =

Ei

(τi − τi−1)
∑

l∈Ri
exp(Al α̂)

i = 1, . . . , q

as an estimate of the baseline rate of the model. It is a constant during
each interval (τi−1, τi], resulting in a step function with steps at the
points in time where at least one event occurs. This step function can
be integrated to provide an estimate of the cumulative baseline rate.

Ĥb(t) =
i∑

l=1

(τl − τl−1) ĥl + (t− τi) ĥi+1 τi < t ≤ τi+1

The resulting estimate of the baseline survivor function is

Ĝb(t) = exp
{
−Ĥb(t)

}
Finally, because of the assumption of proportional effects, the cumulative
transition rate for an arbitrary covariate vector A can be estimated by

Ĥ(t) = Ĥb(t) exp (Aα̂) (1)
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Box 1 rate command in command file pl1r.cf

rate (

xa(0,1) = COHO2,COHO3,W,

prate (COHO3=1) = r.dat,

prate (COHO3=1,W=1) = r.dat,

) = 1;

and the corresponding survivor function estimate is

Ĝ(t) = exp
{
−Ĥb(t) exp (Aα̂)

}
= Ĝb(t)

exp(Aα̂)
(2)

TDA uses these formulas to provide estimates of the cumulative base-
line transition rate and the corresponding baseline survivor function.
A generalization to the case of multiple transitions is done analogously
to a product-limit estimation for several transitions: each transition is
treated separately. For instance, with respect to the transition (j, k),
the procedure outlined above is applied to all episodes with origin state
j; all episodes not ending in destination state k are regarded as cen-
sored. The resulting estimates are then pseudosurvivor functions and
transition-specific cumulative rates, respectively.

To request an estimation of cumulated (baseline) rates, one can use
the prate option described in 6.17.1.4. Note that TDA calculates cu-
mulated rates. To get estimates of the rates, one should first smooth the
cumulated rates and then use numerical differentiation.

Example 1 To illustrate the calculation of cumulative baseline rates,
we use command file pl1r.cf (not shown). It is basically identical with
command file pl1.cf (Example 1 in 6.17.7.1). Two prate parameters
have been added to the rate command as shown in Box 1. The first
prate parameter calculates an estimate of the cumulated rate with the
covariate values COHO2=0, COHO3=1, and W=0. The table is written into the
output file r.dat. The second prate parameter creates a second table,
written to the same output file, for covariate values COHO2=0, COHO3=1,
and W=1. Part of the first table in output file r.dat is shown in Box 2.
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Box 2 Part of output file r.dat

# Cox Model. Baseline Rate Calculation.

# Idx SN Org Des MT Variable Coeff Covariate

# ------------------------------------------------

# 1 1 0 1 A COHO2 0.3797 0.0000

# 2 1 0 1 A COHO3 0.4585 1.0000

# 3 1 0 1 A W 0.4078 0.0000

# Transition: SN 1 Org 0 Des 1

# ID Time Events Censored Risk Set Surv.F. Cum.Rate

# ----------------------------------------------------------------

0 0.0000 0.0000 0.0000 600.0000 1.0000 0.0000

0 2.0000 2.0000 0.0000 600.0000 0.9967 0.0033

0 3.0000 5.0000 1.0000 597.0000 0.9885 0.0115

0 4.0000 9.0000 2.0000 590.0000 0.9737 0.0266

0 5.0000 3.0000 0.0000 581.0000 0.9688 0.0317

0 6.0000 10.0000 1.0000 577.0000 0.9523 0.0488
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6.18 Regression Models for Events

This chapter describes a simple approach to model conditions for the
occurrence of events, based on sequence data (see 3.4). The sections are:

6.18.1 A Simple Modelling Approach

6.18.2 Investigating Events

6.18.3 Data Generation
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6.18.1 A Simple Modeling Approach

We assume a K-dimensional sequence data structure (see 3.4). (yik)
denotes the sequence of the ith individual (sample member) in the kth
sequence data structure. We are interested in a model that shows how
the occurrence of events depends on certain conditions. Such a model
can be constructed for each type of event. To simplify the approach, we
focus on just one event, say [k, s1, s2], that is, a transition from state
s1 to state s2 in the kth state space (sequence data structure). In the
following, this will be called the target event. We can then construct an
indicator variable

Zit =
{

1 if yi,t−1 = s1 and yi,t = s2

0 otherwise

Zit is 1 if, for individual i, the target event occurs at t. In general, we
will say that an event occurs at t if the corresponding transition occurs
between t − 1 and t. This implies that we can observe events only in a
time interval [ta, tb] with

Tmin
k < ta ≤ tb ≤ Tmax

k

(Tmin
k and Tmax

k define the time axis for the kthe sequence data structure,
see 3.4.2.) Of course, to set up a model we are free to choose any subset
Tm ⊂ [ta, tb]. Note that Tm can be a calendar time axis or a process time
axis.

Focus of the model is the conditional probability for the occurrence of
the target event. For a time point t ∈ Tm, a general parametric approach
can be written as

Pr (Zit = 1 |xit) = g(t, xt, θt) (1)

g(.) is some function, constrained to 0 ≤ g(.) ≤ 1, depending on time
t, a time-dependent vector of covariates, xt, and a parameter vector,
θt. Model specification will then consist of two parts. First, to choose
a specification of the function g(.). The most simple choice would be a
logistic regression specification. Second, and in a sense more important,
is then a specification of the covariates. This will be discussed below.
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To estimate the model, one needs the concept of a risk set. Consistent
with our definition of events, the risk setRt for the target event [k, s1, s2]
contains all sample members who are in state s1 at time t− 1 and have
some valid state at t. Using zit to denote realized values of Zit, the
log-likelihood of model (1) can then be written as

`t =
∑
i∈Rt

zitg(t, xt, θt) + (1− zit)(1− g(t, xt, θt)) (2)

So far, we have separate models for each time point t ∈ Tm. To arrive at
a single model for the whole time axis Tm, we can simply consider and
estimate the models simultaneously. The log-likelihood then becomes

` =
∑

t∈Tm

∑
i∈Rt

zitg(t, xt, θt) + (1− zit)(1− g(t, xt, θt)) (3)

This allows to consider constraints for the time-specific parameter vec-
tors θt and should be seen as an essential part of the model specification.

Models of this kind can be easily estimated if one uses some standard
specification, e.g., a logit or probit model. The only difficulty consists in
the construction of sensible covariates. A causal modeling approach can
begin with the idea that, what happens at some time point t, can, in
principle, depend on any facts earlier than t. Here, we only shortly indi-
cate some different kinds of covariates. How to construct these covariates
will be discussed in 6.18.3.

1. Without any covariates, (3) will give an estimate of a mean probability
for the occurrence of the target event during the time axis Tm. In many
applications one would like to consider also period effects. This can be
achieved by constructing dummy variables for each time point and then
estimating a single coefficient for each of these variables.

2. Also time-independent covariates can be specified as an identical part
in each of the covariate vectors xit, and it would normally suffice to
estimate a single effect for each of these variables.

3. More interesting are events in the past history of the process. Given
a time point t, one should consider all possibly important events which
occurred earlier than t. Let E denote the set of possibly important events.
A simple way would be to define, for each e ∈ E , a variable ei,t that
simply counts how often the event e occurred before t. Depending on the
kind of event and its frequency of occurrence, these variables can be used
directly as part of xit, or transformed into suitable dummy variables.
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4. In addition, one can consider the duration between the occurrence of
an event, say at t′, and the current process time t. This could make sense
if the event should have happened for each individual before entering the
time axis of the model, Tm. The most important example is birth, and
the duration until t is simply age.

5. However, duration between occurrence of an event and current process
time t is only defined if the event has, in fact, occurred in the past of
t. In general, events in E are contingent and may, or may not, occur. It
seems preferable, then, to use the concept of an effect shape (instead of
duration).1 To provide a formulation, we will use (e, τ) to denote events;
e ∈ E is the type of the event, and τ is the time when it occurred.2 For
each event (e, τ), we can define an effect shape as a function of time in
the following way:

h(t; e, τ, θe) =
{

he(t− τ ; θe) if t > τ
0 otherwise

The idea is, given an event of type e occurred at τ < t, its possible
impact on the occurrence of the target event at t is given by the value of
its effect shape at t. In this way, one can consider the combined impact of
any number of events that happened before t; and, of course, this impact
dynamically changes while t runs through the time axis, Tm.

Unfortunately, we most often cannot justify a priori assumptions about
the functional form, he(.), of an effect shape. Instead, we would like to
get some evidence about effect shapes from the data. However, since
our time axis is discrete, we can simply consider, for each type of event
e ∈ E , a set of d + 1 dummy variables ei,t,(j), j = 0, . . . , d, d ≥ 0; using
the definition

ei,t,(j) =
{

1 if there is an event (e, τ) and t = τ + j
0 otherwise

The effects of these event-specific dummy variables can then provide

1For a discussion of this concept, see Blossfeld and Rohwer [1995]. In a certain sense,
the approach can be viewed as a generalization of conventional transition rate mod-
eling based on the duration of episodes. For some background discussion, see Mayer
and Huinink [1990], Rohwer [1996].
2Notice that we should always distinguish between kinds of events, here given by
the set E, and ”‘concrete”’ events that actually occurred. For a discussion of this
distinction see, e.g., Galton [1984], ch. 2.
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some evidence about the effect shapes.3

How to construct these different kinds of covariates, based on a K-
dimensional sequence data structure, will be discussed in 6.18.3.

3For an application of this approach to estimate the effect shape of pregnancies for
the target event marriage (in consensual unions), see Blossfeld et al. [1996].
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6.18.2 Investigating Events

Before trying to construct regression models for events, one should inves-
tigate the events actually occurring in a given sample of sequence data.
TDA provides two simple commands. The first command is seqev with
syntax shown in the following box.

seqev (

sn=..., number of sequence data structure, def. 1
sel=..., expression for sequence selection

) = fname;

All parameters are optional and have their usual meaning. If no file
name is given on the right-hand side, the command prints information
about the events in the selected sequence data structure into the stan-
dard output; otherwise into the file specified on the right-hand side. The
information about events is a table with three columns and a separate
line for each type of event. The first two columns indicate the type of
event (origin and destination state), and the third column shows how
often this event occurs in the selected sequence data structure.

Example 1 To illustrate the seqev command, we use the data file
seq.d4 shown in Box 1. There are two sequences for each of three in-
dividuals, both defined on the same time axis, t = 0, 1, . . . , 5; and in
addition, two variables, V1 and V2, which will be used for some illustra-
tions in 6.18.3. Box 2 shows the command file, seq8.cf, that was used
to read the data, define two sequence data structures, and count the
number of events in the first one. Part of the standard output is shown
in Box 3. There are two types of events. The first one, (1, 2), occurs four
times, the second one, (2, 1) occurs three times.
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Box 1 Sequence data file seq.d4

ID 0 1 2 3 4 5 0 1 2 3 4 5 V1 V2

-- ----------- ----------- -- --

1 1 1 2 2 1 1 1 3 3 1 1 3 1 -10

2 1 2 1 1 1 2 1 1 1 3 3 3 2 -15

3 2 2 1 1 2 2 1 1 3 1 3 3 2 -20

Box 2 Command file seq8.cf

nvar(

dfile = seq.d4,

ID = c1,

Y{0,5} = c2,

S{0,5} = c8,

V1 = c14,

V2 = c15,

);

seqdef(sn=1) = Y0,,Y5;

seqdef(sn=2) = S0,,S5;

seq; info about current sequence data

seqev; count events in first sequence data structure

Box 3 Part of standard output from seq8.cf

Sequence State Time axis Number

Structure Type Variables Minimum Maximum of States States

--------------------------------------------------------------

1 1 6 0 5 2 1 2

2 1 6 0 5 2 1 3

Range of common time axis: 0 to 5.

Counting events.

Using sequence data structure 1.

Event type Number

--------------------

1 2 4

2 1 3
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The seqevd command. The second command is seqevd with syntax
shown in the following box.

seqevd (

sn=..., number of sequence data structure, def. 1
sel=..., expression for sequence selection
dtda=..., request TDA description file

) = fname;

A file name must be given on the right-hand side, all other parameters
are optional and have their usual meaning. The command creates the
specified output file and writes into this output file a table showing,
for each time point, the number of events occurring at that time point.
We say that an event occurs at t if there is a corresponding transition
between t− 1 and t.
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Box 4 Illustration of seqevd command

Output file from command: seqevd(dtda=t)=d

Time Cases EV1_2 EV2_1 NEV

---------------------------

1 3 1 0 1

2 3 1 2 3

3 3 0 0 0

4 3 1 1 2

5 3 1 0 1

Output file created by dtda=t

nvar(

dfile = d,

noc = 5,

TIME <5>[6.0] = c1 , # time

NCAS <5>[6.0] = c2 , # number of cases

EV1_2 <5>[4.0] = c3 , # number of events (1,2)

EV2_1 <5>[4.0] = c4 , # number of events (2,1)

NEV <5>[6.0] = c5 , # total number of events

);

Example 2 To illustrate the structure of the output file, we add the
command

seqevd (dtda = t) = d;

to command file seq8.cf. Box 4 shows the resulting output file. The
column labelled Cases contains the number of sequences having a valid
state at t − 1 and t. The additional output file created by the dtda
parameter provides an nvar command to read the data file. This is useful,
for instance, if one wishes to create plots of the frequency distributions
of events.
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6.18.3 Data Generation

This section describes how to create a data file which can subsequently be
used for estimating regression models for events, following the approach
discussed in 6.18.1. Having created such a data file, model estimation
can use any of the models for binary response variables described in 6.12.
The command to create a data file is seqmd with syntax shown in the
following box.

seqmd (

ev=..., definition of target event
sel=..., expression for sequence selection
tp=..., definition of time axis
v=..., time-independent covariates
xe=..., event-specific covariates
dtda=..., request TDA description file

) = fname;

With the exception of ev, all parameters are optional. The ev parameter
must be used to define a target event. The syntax is

ev = [k, s1, s2],

where k is the number of a sequence data structure and s1 and s2 are
the origin and destination state of the event.

1. The parameter

sel = expression,

can be used to select a subset of sequences. The command then uses only
sequences (data matrix cases) where expression evaluates to a nonzero
value.

2. The command uses a time axis [ta, tb] with ta = Tmin
k + 1 and tb =

Tmax
k by default. Alternatively, one can specify a time axis with the tp

parameter. The syntax is

tp = t1, t2, . . . , tn or tp = t1 (d) t2
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Box 1 Illustration of seqmd command

Command: seqmd (ev=[1,1,2]);

Selected target event: [1,1,2]

Using sequence data structure 1.

Selected time axis for events: 1 -- 5

Time Risk Set Events

----------------------

1 2 1

2 1 1

3 2 0

4 2 1

5 2 1

or a mixture of both expressions. Assuming d > 0, the second expression
is expanded into the sequence t1 + id (i = 0, 1, 2, . . .), as long as the
result is less than or equal to t2. Note that a time axis defined with the
tp parameter must be a subset of the default time axis. As in 6.18.1, we
will use Tm to denote the selected time axis.

3. If the seqmd command is used without providing a file name on the
right-hand side, the command only displays a table showing the risk set
and the number of events for the specified time axis. To illustrate, we
use the data file seq.d4 (see 6.18.2) and add the following command to
command file seq8.cf:

seqmd(ev = [1,1,2]);

This command specifies the target event [1, 2] in sequence data structure
1 and uses the default time axis. The resulting table is shown in Box 2. In
this example, the risk set Rt contains all individuals (sample members)
being in state 1 at t− 1 and having a valid state at t.

4. The command only creates a data file if a name is given on the right-
hand side. The data file will contain n = Σni records where ni is the
number of time points the individual i belongs to the risk set. Without
any additional parameters specifying covariates, the data file will contain
the following variables:
• An ID variable which is equal to the case number of the sequence

in the data matrix.
• The current time point, t.
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Box 2 Illustration of seqmd command

Command: seqmd(ev = [1,1,2]) = out.d;

Output file:

period

ID Time Z dummies

-----------------------

1 1 0 1 0 0 0 0

1 2 1 0 1 0 0 0

1 5 0 0 0 0 0 1

2 1 1 1 0 0 0 0

2 3 0 0 0 1 0 0

2 4 0 0 0 0 1 0

2 5 1 0 0 0 0 1

3 3 0 0 0 1 0 0

3 4 1 0 0 0 1 0

Box 3 Illustration of seqmd command

Command: seqmd(ev = [1,1,2], v = V1,V2) = out.d;

Output file:

period

ID Time Z dummies V1 V2

-------------------------------

1 1 0 1 0 0 0 0 1 -10

1 2 1 0 1 0 0 0 1 -10

1 5 0 0 0 0 0 1 1 -10

2 1 1 1 0 0 0 0 2 -15

2 3 0 0 0 1 0 0 2 -15

2 4 0 0 0 0 1 0 2 -15

2 5 1 0 0 0 0 1 2 -15

3 3 0 0 0 1 0 0 2 -20

3 4 1 0 0 0 1 0 2 -20

• An indicator variable, Zit, being 1 if the target event occurs for
individual i at time t, and otherwise zero.
• For each j ∈ Tm, a dummy variable Pit,(j), being 1 if j = t and zero

otherwise. These dummy variables can be used to model period effects.

To illustrate this option, we add the command

seqmd(ev = [1,1,2]) = out.d;

to command file seq8.cf. The new command file is seq8a.cf. The out-
put file, out.d, is shown in Box 3.
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5. The v parameter can be used to add time-independent covariates to
the output file. The syntax is

v = varlist,

where varlist is a list of variables which must be available in the cur-
rently defined TDA data matrix. To illustrate this option, we use the
two variables, V1 and V2, from the data file seq.d4 (see 6.18.2). The
command is

seqmd(ev = [1,1,2], v=V1,V2) = out.d;

The new command file is seq8b.cf. The resulting output file is shown
in Box 3. For writing these variables, TDA uses their associated print
formats. In our example, it is a free format.

6. We have finally to discuss how to create event-specific covariates. This
can be done with the xe parameter. The syntax is

xe = [....],[....],...,

where each pair of square brackets specifies one set of covariates, related
to one type of event. There are two possibilities to define the event-
specific covariates.

7. As a first option, one can use variables contained in TDA’s currently
defined data matrix. For example, xe=[V], where V is the name of a
variable. It is assumed, then, that V records the dates of an event. The xe
parameter then creates a covariate, named V D, containing the duration
between the date in V and the current process time, t.

To illustrate this option, we use the variables V1 and V2 in data file
seq.d4 and add the command

seqmd(ev = [1,1,2], v=V1,V2, xe=[V1],[V2]) = out.d;

The new command file is seq8c.cf. The resulting output file is shown in
Box 4. Note that the values of these covariates will be negative if the date
is greater than the current process time. In general, using this option only
makes sense with variables recording the dates of events which occurred
for all individuals before the process time begins. A typical example is
date of birth with age as the corresponding duration variable.

8. As a second option, one can refer to events occurring in the currently
defined sequence data structures. The syntax is

xe = [k′, s′1, s
′
2, d],...,
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Box 4 Illustration of seqmd command

Command: seqmd(ev = [1,1,2], v=V1,V2, xe=[V1],[V2]) = out.d;

Output file:

period

ID Time Z dummies V1 V2 V1_D V2_D

------------------------------------------

1 1 0 1 0 0 0 0 1 -10 0 11

1 2 1 0 1 0 0 0 1 -10 1 12

1 5 0 0 0 0 0 1 1 -10 4 15

2 1 1 1 0 0 0 0 2 -15 -1 16

2 3 0 0 0 1 0 0 2 -15 1 18

2 4 0 0 0 0 1 0 2 -15 2 19

2 5 1 0 0 0 0 1 2 -15 3 20

3 3 0 0 0 1 0 0 2 -20 1 23

3 4 1 0 0 0 1 0 2 -20 2 24

where k′ is the number of a sequence data structure and (s′1, s
′
2) are two

states specifying an event which must occur at least once in the data
structure k′. Furthermore, there must be an integer, d, that will be used
for the specification of effect shapes.

This option creates at least two variables. A variable E s′1 s′2 that
counts the number of events of type [s′1, s

′
2] which occurred before the

present process time; and a variable ED s′1 s′2 which records the date of
the last occurrence of the event [s′1, s

′
2] before the current process time,

or -1 if the event has not yet occurred.
If d ≥ 0, there will be d + 1 additional dummy variables El s′1 s′2,

l = 0, . . . , d, defined as

El s′1 s′2 =
{

1 if ED s′1 s′2 ≥ 0 and t = ED s′1 s′2 + l
0 otherwise

where t denotes the current process time; meaning that the lth dummy
variable gets value 1 if the last event occurred l time units before the
current process time.

To illustrate this option, we use the command

seqmd(ev = [1,1,2], v=V1,V2,

xe=[V1],[V2],[1,2,1,4]) = out.d;

The new command file is seq8d.cf. The command should create ad-
ditional event-specific covariates for the event [2, 1] in sequence data
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Box 5 Illustration of seqmd command

Command: seqmd(ev = [1,1,2], v=V1,V2, xe=[V1],[V2],[1,2,1,4])

= out.d;

Output file:

period

ID Time Z dummies V1 V2 V1_D V2_D E_2_1 ED_2_1 E0_2_1...

------------------------------------------------------------------

1 1 0 1 0 0 0 0 1 -10 0 11 0 -1 0 0 0 0 0

1 2 1 0 1 0 0 0 1 -10 1 12 0 -1 0 0 0 0 0

1 5 0 0 0 0 0 1 1 -10 4 15 1 4 0 1 0 0 0

2 1 1 1 0 0 0 0 2 -15 -1 16 0 -1 0 0 0 0 0

2 3 0 0 0 1 0 0 2 -15 1 18 1 2 0 1 0 0 0

2 4 0 0 0 0 1 0 2 -15 2 19 1 2 0 0 1 0 0

2 5 1 0 0 0 0 1 2 -15 3 20 1 2 0 0 0 1 0

3 3 0 0 0 1 0 0 2 -20 1 23 1 2 0 1 0 0 0

3 4 1 0 0 0 1 0 2 -20 2 24 1 2 0 0 1 0 0

structure 1; and since d = 4, there should be 5 dummy variables for the
effect shape. Box 5 shows the resulting output file.

9. The dtda parameter can be used to request an additional output file
containing an nvar command which can be used to read the data file.
For example, adding the parameter dtda=t to the seqmd command used
to create the data file in Box 5, would create the TDA description file
shown in Box 6.
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Box 6 TDA description file for data file in Box 5

nvar(

dfile = out.d,

noc = 9,

ID <5>[6.0] = c1 , # ID

TIME <5>[4.0] = c2 , # time

Z <1>[1.0] = c3 , # target event

P1 <1>[1.0] = c4 , # period 1

P2 <1>[1.0] = c5 , # period 2

P3 <1>[1.0] = c6 , # period 3

P4 <1>[1.0] = c7 , # period 4

P5 <1>[1.0] = c8 , # period 5

V1 <4>[0.0] = c9,

V2 <4>[0.0] = c10,

V1_D <5>[4.0] = c11,

V2_D <5>[4.0] = c12,

E_2_1 <2>[4.0] = c13,

ED_2_1 <2>[4.0] = c14,

E0_2_1 <2>[4.0] = c15,

E1_2_1 <2>[4.0] = c16,

E2_2_1 <2>[4.0] = c17,

E3_2_1 <2>[4.0] = c18,

E4_2_1 <2>[4.0] = c19,

);
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6.19 Loglinear Models

This chapter describes commands for contingency tables and loglinear
models. The sections are:

6.19.1 Contingency Tables explains our notion of contingency tables
and how to create such tables.

6.19.2 Loglinear Models explains the loglin command that can be
used to estimate loglinear models.
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6.19.1 Contingency Tables

Let X1, . . . , Xm denote a set of m integer-valued variables and let

X̃j = {x̃1j , . . . , x̃njj}

denote the possible values of Xj , assumed to be in ascending order. A
complete contingency tables based on these variables is defined as a table
in the following way:

X1 . . . Xm F

x̃11 . . . x̃1m F (x̃11, . . . , x̃1m)
...

...
...

x̃11 . . . x̃nmm F (x̃11, . . . , x̃nmm)
...

...
...

x̃n11 . . . x̃1m F (x̃n11, . . . , x̃1m)
...

...
...

x̃n11 . . . x̃nmm F (x̃n11, . . . , x̃nmm)

The table has n1 · · ·nm rows, one row for each constellation of possible
values. The additional variable, F , is used to record the frequencies.

In order to create such tables one can use the loglin command with
syntax shown in the following box. (Actually, the command has more
parameters that will be explained in Section 6.19.2.)

loglin (

w=..., name of weights variable
ptab=..., output file for contingency table
nfmt=..., print format for table entries, def. 2
maxcat=..., max number of categories, def. 1000

) = X1,...,Xm;

All parameters are optional except for a list of variables on the right-hand
side. It is assumed that these variables are integer-valued. The maximal
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Box 1 Example data file ll1.dat

X1 X2 H

-----------

1 2 1

5 3 2

2 4 3

1 2 2

Box 2 Command file ll1.cf

nvar(

dfile = ll1.dat,

X1 = c1,

X2 = c2,

H = c3,

);

loglin(

w = H,

ptab = ll1.tab,

) = X1,X2;

number of variables is 26 (corresponding to the letters A,. . . ,Z). It is as-
sumed that each variable has at most maxcat different values. The com-
mand creates a complete contingency table and records its dimensions
and number of non-empty cells in the standard output. As an option, the
table is written to an output file specified with the ptab parameter. As
an option, one can specify the name of a further integer-valued variable
with the w parameter. The command then uses the values of this variable
to calculate frequencies for each data matrix row.

Example 1 To illustrate, we use the data file ll1.dat shown in Box
1. The command file, ll1.cf, is shown in Box 2, and the resulting table
is shown in Box 3. Note that a similar table can be creates with the freq
command. However, the freq command always suppresses empty table
rows. Instead, the loglin command always creates a complete table.
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Box 3 Table created with ll1.cf

Idx X1 X2 F

----------------------

1 1 2 3

2 1 3 0

3 1 4 0

4 2 2 0

5 2 3 0

6 2 4 3

7 5 2 0

8 5 3 2

9 5 4 0
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6.19.2 Loglinear Models

Assume a set of m Variables, X1, . . . , Xm. All variables are integer-
valued, Xj has the possible values

x̃lj l = 1, . . . , Lj

As described in Section 6.19.1, a complete contingency table has m
columns and

n = L1 · · ·Lm

rows. In the following, the table will be referred to as a matrix T = (tij).
In addition, there is a variable F such that fi, for i = 1, . . . , n, provides
a count for the ith row of the table.

A loglinear model tries to explain the counts, fi, with the help of design
variables and parameters. (We follow Haberman, 1978. In fact, the algo-
rithm behind the loglin command explained below is adapted from his
FREQ program.) The modeling approach is:

log(fi) = α +
p∑

k=1

dikβk + ε

where dik are values of K design variables and α and βk are the model
parameters to be estimated.

In order to explain the notion of design variables we refer to the example
data in Box 1. There are two variables, X1 and X2, having 3 and 2
categories, respectively. The complete table has 6 cells. The variable W
provides the counts. We can then set up a model like:

log(f1) = α + d1β + ε

log(f2) = α + d2β + ε

log(f3) = α + d3β + ε

log(f4) = α + d4β + ε

log(f5) = α + d5β + ε

log(f6) = α + d6β + ε

containing just a single design variable. The parameters, α and β, may
then be estimated with the maximum likelihood method.
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Box 1 Example data file ll2.dat

X1 X2 F S

--------------

1 1 3 1

1 2 4 1

2 1 0 0

2 2 2 1

3 1 3 1

3 2 5 1

Standard Design Vectors

As shown by the example, it is completely arbitrary how to set up a
design matrix for a loglinear model. In practice, however, it is convenient
to use some standardized design. The idea is to begin with a complete set
of design vectors that allow for an exact fit of the counts, f1, . . . , fn. Our
approach to the definition of standardized design vectors is as follows.
We treat the highest level (value) of each variable Xj as a reference
category and can then define for each variable Xj a set of Lj − 1 design
variables Dj1, . . . , DjLj−1. Variable Djl is conceived as a column vector

Djl =

 d1,jl

...
dn,jl


with elements defined by

di,jl =

 1 if tij = l
−1 if tij = Lj

0 otherwise

Using all design vectors that can be defined in this way would result in
a first-order design matrix containing the variables:

D = (D11, . . . , D1L1 , D21, . . . , D2L2−1, . . . , Dm1, . . . , DmLm−1)

It would be a matrix with n rows and (L1 − 1) · · · (Lm − 1) columns.
For the example data shown in Box 1 the saturated design matrix would
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look as follows:

D =


1 0 1
1 0 −1
0 1 1
0 1 −1
−1 −1 1
−1 −1 −1


In addition to first-order design vectors, one can define interaction ef-
fects. In general, second-order design vectors result from multiplying two
first-order design vectors from two different variables, third-order design
vectors result from multiplying three first-order design vectors from three
different variables, and so on. In our example we have only two variables
and can therefore only create two design vectors for interaction effects,
namely D11D21 and D12D21. A complete design matrix corresponding
to a saturated model for our example data would then be:

Dc =


1 0 1 1 0
1 0 −1 −1 0
0 1 1 0 1
0 1 −1 0 −1
−1 −1 1 −1 −1
−1 −1 −1 1 1


Note that we do not take an intercept column, corresponding to α, as
part of a design matrix.

Standard Approach to Model Specification

The standard approach to model specification begins with a complete
design matrix that contains all first-order design vectors and, in addition,
all possible interaction effects. Then subsets of this complete set of design
vectors are used to define specific models. The loglin command that will
be described below allows for this standard approach and also provides
the option that the user defines an arbitrarily specified design matrix.

Notation for Model Specification

In order to allow for a flexible way to specify different models, the loglin
command uses a specific syntax. Upper case letters,

A,B, C, . . .
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are used to refer to the variables X1, . . . , Xm which define the contin-
gency tables. (There can be up to 26 dimensions corresponding to the
letters A, . . . , Z.) A first order design vector Djl is referred to by the no-
tation X[l] where X is an upper case letter corresponding to dimension
j, i.e., to Xj , and l is one of the possible values of Xj , except for the
highest value which is always used as a reference category. To illustrate,
the design matrix D for our example could be specified by

A[1] + A[2] + B[1]

If one uses a single letter without referring to categories, this is equivalent
to the design vectors for all categories (except the highest). Therefore,
assuming the categories of A are 1, . . . , LA, we would have

A ≡ A[1] + A[2] + · · ·+ A[LA − 1]

Both notations can be combined. In the example we might use

A + B[1]

instead of A[1]+A[2]+B[2]. Design variables corresponding to interaction
effects can be created by simply multiplying first-order design vectors.
In general:

X[i].Y [j].Z[k]

where X, Y and Z are upper case letters referring to dimensions of a
table, results in a new design variable that is created from multiplying
the components. For example, to create the design matrix Dc for our
example, one can use:

A[1] + A[2] + B[1] + A[1].B[1] + A[2].B[1]

To simplify notation one can also use X.Y to create the set of all design
variables that correspond to interaction effects between the two dimen-
sions, X and Y (any upper case letters). Therefore, a more parsimonious
notation for the saturated model for our example data would be

A[1] + A[2] + B[1] + A.B

or, taking into account that X expands into all of its first-order terms,
one might also write

A + B + A.B



6.19.2 loglinear models 5

Box 2 Syntax for loglin command

loglin (

w=..., name of weights variable
ptab=..., output file for contingency table
nfmt=..., print format for table entries, def. 2
maxcat=..., max number of categories, def. 1000

mod=..., model specification
scale=..., name of scaling variable
mxit=..., max number of iterations, def. 20
tolf=..., tolerance for convergence, def. 1.e-8
df=..., output file for design matrix
pres=..., output file for fitted table and residuals
ppar=..., output file for model parameters
pcov=..., output file for covariance matrix
tfmt=..., print format for parameters, def. 10.4
mfmt=..., print format for pcov option, def. 12.4
screen, screening for marginal associations

) = X1,...,Xm;

Finally, the notation XY might be used as an abbreviation for X + Y +
X.Y , and the saturated model for our example data might simply be
specified by AB. Note that the same syntax applies to more than two
dimensions. For example, XY Z = X(Y Z), and so on.

The loglin Command

The syntax for the loglin command is shown in Box 2. Except for
a list of variable names on the right-hand side, all other parameters
are optional. If no further parameters are used, the command creates a
contingency tables as explained in Section 6.19.1.

1. The screen parameter can be used to request a calculation of partial
and marginal associations based on all hierarchical loglinear model. See
Lustbader and Stodola [1981] for further details.

2. The user can request model estimation by providing a model specifi-
cation with the mod parameter. (This parameter can be used up to 50
times in the same loglin command.) The syntax is:

mod = design matrix,
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There are two possibilities to specify a design matrix. One possibility is
to directly use the syntax explained above. Alternatively, one can use
the parameter as

mod = d:fname,

where fname is the name of a file that contains a design matrix. It is
assumed that the file has free-format numerical entries and the number
of records equals the number of rows of the contingency table. Note that
the file may only contain integers. In fact, TDA stores a design matrix
always in short integers (range is about ±32000).

3. If requested with the df parameter, the design matrix actually used
for model estimation is written into an output file. If the mod parameter
is used more than once, a separate design matrix is written for each of
the models.

4. Model estimation is done by maximum likelihood as described by
Haberman [1978]. The maximum number of iterations can be controlled
with the itmx parameter, the convergence tolerance with the tolf pa-
rameter.

5. Estimated parameters and standard errors are written into the stan-
dard output. Parameter estimated will be written into an output file if
requested with the ppar parameter; the covariance matrix will be written
into an output file if requested with the pcov parameter.

6. In addition one can request a further output file with the pres pa-
rameter. It will contain the contingency table and furthermore the fitted
counts and standardized residuals as explained in Haberman [1978, II,
p. 78].

7. As a further option one can provide the name of a scaling variable
with the scale parameter. The estimated model is then

log(fi/si) = α +
p∑

k=1

dikβk + ε

where si are the values of the scaling variable. If si ≤ 0, the fitted value,
f̂i, will be zero. So this option can also be used for tables that contain
”‘structural zeroes”’.

Example 1 To illustrate, we fit a main effects loglinear model to the
data shown in Box 1. The command file, ll2.cf, is shown in Box 3. Part
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Box 3 Command file ll2.cf

nvar(

dfile = ll2.dat,

X1 = c1,

X2 = c2,

F = c3,

);

loglin(

w = F,

mod = A+B,

pres = res,

) = X1,X2;

Box 4 Fitted values and residuals.

Residuals of Model: A+B

Index A B Observed Fitted Residual Scale

--------------------------------------------------------------

1 1 1 3 2.4706 0.5459 1.0000

2 1 2 4 4.5294 -0.5459 1.0000

3 2 1 0 0.7059 -1.1119 1.0000

4 2 2 2 1.2941 1.1119 1.0000

5 3 1 3 2.8235 0.1794 1.0000

6 3 2 5 5.1765 -0.1794 1.0000

of the standard output is shown in Box 5 and the file requested with the
pres option is shown in Box 4.
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Box 5 Part of standard output (command file ll2.cf)

Loglinear models.

Definition and structure of contingency table.

Frequencies defined by: F

Dimension Variable Categories

1 A X1 3 : 1 2 3

2 B X2 2 : 1 2

Table has 6 cells, 17 counts.

Table is incomplete: 5 (83.33%) of 6 cells.

Check of model requests.

Begin of model estimation.

Model: A+B

Number of model parameters: 4

Maximum number of iterations: 20

Tolerance for convergence: 1e-08

Convergence reached in 7 iterations

Likelihood Ratio Statistic 1.9287 Prob: 0.3812

Pearson’s Chi Square 1.2833 Prob: 0.5264

F-Statistic 0.9644

Degrees of Freedom 2

Idx Parameter Coeff Error T-Stat Signif

-------------------------------------------------------

0 Constant 0.8344 --- --- ---

1 A[1] 0.3731 0.3646 1.0232 0.6938

2 A[2] -0.8797 0.5020 -1.7524 0.9203

3 B[1] -0.3031 0.2538 -1.1943 0.7676

Residuals written to: res
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7. Relational Data

This part contains the following sections.

7.1 Introduction and Overview

7.2 General Graph Algorithms

7.3 Combinatorial Optimization

7.4 Representation of Proximities

7.5 Clustering Procedures

7.6 Social Network Analysis
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7.1 Introduction and Overview
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Command Section

gcd creating simple test data 3.6.3.1
gcliq standard cliques 7.2.9.1
gcon connected components 7.2.3.1
gcset compact sets 7.2.9.2
gcut cut nodes and blocks 7.2.3.3
gcyc fundamental set of cycles 7.2.6.1
gdcon reachable nodes in digraphs 7.2.3.2
gdcyc enumeration of cycles 7.2.6.2
gdd definition of data structure 3.6.2
gdln direct links 7.2.1.2
gdp writing relational data 3.6.4.1
gep enumeration of paths 7.2.4.1
gev eigenvalues and eigenvectors 7.2.7
gflow maximal flows 7.2.8.1
giset independent sets 7.2.9.3
gmst minimum spanning tree 7.2.5.2
gnst enumeration of spanning tree 7.2.5.3
gni degree of nodes 7.2.1.1
gsort topological sort 7.2.2.1
gsp all shortest paths 7.2.4.2
gst depth-first spanning trees 7.2.5.1
gtcl transitive closure 7.2.4.3

gap column permutations 7.3.1.1
gqap quadratic assignment 7.3.1.2

becl bond energy clustering 7.5.3.1
hcld simple divisive clustering 7.5.2.1
hcld partition with minimal diameter 7.5.2.2
hcls SAHN clustering procedures 7.5.1.1
nncl nearest-neighbor clustering 7.5.1.2

gbcf direct/indirect backward control 7.6.1.1
gfc measures of flow control 7.6.1.3
gfcf direct/indirect forward control 7.6.1.1
gio integrated ownership 7.6.1.2
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7.2 General Graph Algorithms

This section deals with general procedures for describing and analyzing
graphs. Available commands will be described in the following subsec-
tions.

7.2.1 Direct Links describes commands to find direct forward and
backwards links of the nodes of a graph, and to calculate the
degree of nodes.

7.2.2 Partial Orders deals with specific questions concerning partially
ordered sets, e.g., topological sorting of a directed graph.

7.2.3 Connectivity describes commands to investigate connectivity of
a graph and to find its components, cut nodes, and blocks.

7.2.4 Paths describes commands to find paths and, in particular, all
shortest paths connecting the nodes of a graph.

7.2.5 Spanning Trees describes commands to find spanning trees and,
in particular, minimum spanning trees in undirected graphs.

7.2.6 Cycles describes commands that find all cycles in directed and
undirected graphs.

7.2.7 Eigenvalues and Eigenvectors describes a command that calcu-
lates a subset of the eigenvalues and eigenvectors of a graph’s
adjacency matrix.

7.2.8 Flows describes commands that can be used to calculate max-
imal flows in networks.

7.2.9 Subgroups describes commands to find subgroups of a graph.
This includes cliques, compact sets, and independent sets.
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7.2.1 Direct Links

This section describes two simple commands that can be used to get
information about the nodes of a graph.

7.2.1.1 Degree of Nodes describes the gni command that calculates
the degree of the nodes in a graph.

7.2.1.2 Direct Links describes the gdln command that can be used to
find the nodes that are directly connected with a given set of
nodes.

Further commands, specifically designed to characterize nodes of a graph,
will be described in the section on social network analysis.
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7.2.1.1 Degree of Nodes

Given a graph, or multigraph, defined with the gdd command, one can
use the gni command to find for each node its degree. If the graph is
directed, the command calculates in-degrees and out-degrees separately.
The syntax is shown in the following box.

gni (

gn=..., graph number
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. By default, the command calculates degrees for all
graphs contained in the currently defined multigraph. Alternatively, one
can specify a graph number with the gn parameter.

The first two columns of the output file contain, respectively, the
internal and external node numbers. Then follow, for each graph, three
further columns.

1. The first column shows the in-degree of the node,

2. the second column shows the out-degree of the node, and

3. the third column shows whether the node has a loop.

Note that loops are not counted when calculating in-degrees and out-
degrees of a node. If the graph is undirected, in-degrees and out-degrees
will be identical.

Example 1 To illustrate we use the multigraph data file gd1.dat, see
Box 3.6.2-2. The command file is gd4.cf. Box 1 shows the resulting
output files, based on interpreting the graphs as directed and undirected,
respectively.
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Box 1 Output files created by gni command (example 1)

graph is directed

i N(i) ID1 OD1 NL1 ID2 OD2 NL2

---------------------------------------

1 1 1 2 0 2 0 0

2 5 1 0 0 0 1 0

3 7 1 1 0 1 1 0

4 8 1 1 1 0 1 0

5 9 0 0 0 0 0 0

6 11 0 1 0 1 0 0

7 12 1 0 0 0 1 0

graph is undirected

i N(i) ID1 OD1 NL1 ID2 OD2 NL2

---------------------------------------

1 1 2 2 0 2 2 0

2 5 1 1 0 1 1 0

3 7 1 1 0 2 2 0

4 8 0 0 1 1 1 0

5 9 0 0 0 0 0 0

6 11 1 1 0 1 1 0

7 12 1 1 0 1 1 0



7.2.1.2 direct links 1

7.2.1.2 Direct Links

When working with large directed graphs, one sometimes needs informa-
tion about the set of nodes that can be directly reached, or are reachable
from, other nodes. The gdln command provides this information. The
command requires a directed graph, defined as an edge list (option 1 in
the gdd command). The syntax is shown in the following box.

gdln (

opt=..., option, def. 1
1 = forward links
2 = backward links

nfmt=..., integer print format, def. 4
gn=..., graph number, def. 1

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. By default, the command uses the first graph (gn=1)
in the currently defined multigraph. There are two options.

Option 1. creates information about forward links. The output file will
contain one record for each node that is the starting point for at least
one edge (including loops). The first two columns contain respectively,
the internal and external node number. The third column contains the
number of edges, say ni, that begin in the current node. Then follow
ni columns containing the numbers of those nodes that can be directly
reached from the current node.

Option 2. creates information about backward links. The output file
will contain one record for each node that can be reached by at least one
other node (including loops). The first two columns contain respectively,
the internal and external node number. The third column contains the
number of edges, say ni, that end in the current node. Then follow ni

columns containing the numbers of those nodes that can directly reach
the current node.
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Box 1 Output files created with gdln command.

Forward links Backward links

i N(i) NF L1 L2 i N(i) NB L1

----------------------- -------------------

1 1 2 5 7 1 1 1 7

3 7 1 1 2 5 1 1

4 8 1 8 3 7 1 1

6 11 1 12 4 8 1 8

7 12 1 11

Example 1 To illustrate we use the multigraph data file gd1.dat, see
Box 3.6.2-2. The command file is gd5.cf. Box 1 shows the resulting
output files.
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7.2.2 Partial Orders

This section is intended to discuss approaches to partially ordered sets.
Currently, there is only a single subsection.

7.2.2.1 Topological Sorting describes a command that can be used for
a topological sorting of a directed graph.
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7.2.2.1 Topological Sorting

Let G = (N , E) denote a directed graph. For each i ∈ N , define

R(i) = {j ∈ N | j 6= i, ∃ (i, j) ∈ E}

If the graph G has no cycles it is possible to find new labels for its nodes,
say l(i) for i ∈ N , in such a way that

∀ i ∈ N : j ∈ R(i) =⇒ l(j) > l(i)

Using the new labels for representing the graph is then called topological
sorting of G. The gsort command uses an algorithm described in Neu-
mann and Morlock [1993, p. 198]. The syntax is shown in the following
box.

gsort (

opt=..., option, def. 1
1 = list of old/new labels
2 = graph with new labels

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify a
directed graph that is defined by option 1 of the gdd command, i.e., by
an edge list. If the algorithm finds a cycle it stops with an error message.
So the command also provides an easy way to check whether a directed
graph contains cycles.

Example 1 To illustrate we use the graph shown in Figure 1. The data
file gd6.dat (Box 1) is used to define a gdd data structure with option
1 (edge list). The command file is gd22.cf. Box 2 shows the output
files for the two options. N(i) and L(i) denote the old and new labels,
respectively.
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Box 1 Data file gd6.dat

I J V

---------

5 7 1

4 7 5

4 5 6

5 1 3

7 1 2

1 2 8

7 2 4

4 2 7

1 5

3 2 4 7

8

6

5 7 4

1 2

Figure 1 Graph (plotted with gd21.cf) of the
data shown in Box 1.

Box 2 Output files from gsort command

option 1 option 2

i N(i) L(i) L(i) L(j) N(i) N(j) value

-------------- -----------------------------

1 1 4 1 2 4 5 6.0000

2 2 5 1 3 4 7 5.0000

3 4 1 1 5 4 2 7.0000

4 5 2 2 3 5 7 1.0000

5 7 3 2 4 5 1 3.0000

3 4 7 1 2.0000

3 5 7 2 4.0000

4 5 1 2 8.0000
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7.2.3 Connectivity

Let G = (N , E) denote an undirected graph. A walk in G is a sequence of
nodes, (i1, . . . , im), all contained in N and each two consecutive nodes
are connected by an edge in E . A walk is called a path (from i1 to im)
if all nodes in the sequence are different. A walk is called a cycle, if all
nodes in the sequence are different and i1 = im.

Two nodes i, j ∈ N are said to be connected if there exists a path
from i to j. In an undirected graph, if there is a path from i to j, then
there is also a path from j to i.

A graph is called connected if every pair of its nodes is connected,
otherwise it is called disconnected . As is easily seen, in an undirected
graph the relation “connected to” defines an equivalence relation on the
set of nodes, N ; and this in turn defines a partition of N into equivalence
classes. The subgraphs induced by these equivalence classes are called
components of the graph. Alternatively, one can say that a component
is a maximally connected subgraph. Of course, a connected graph has
only one component, identical with itself.

Let now G be a directed graph. For every two nodes i, j ∈ N one can
then distinguish a path from i to j, and a path from j to i. Two nodes,
i and j, are said to be strongly connected if there is both a path from i
to j and from j to i. Again, “strongly connected with” is an equivalence
relation on N ; the subgraphs induced by its equivalence classes are called
the strongly connected components of the directed graph G.

Two nodes are said to be weekly connected if they are connected in the
corresponding underlying undirected graph. The connected components
in this underlying graph are called the weekly connected components of
the directed graph.

This section describes commands that can be used to investigate
connectivity in both undirected and directed graphs.

7.2.3.1 Connected Components describes the gcon command that finds
the connected components in an undirected graph.

7.2.3.2 Reachable Nodes in Digraphs describes the gdcon command
that finds, in directed graphs, all nodes that are reachable
from a given set of nodes.
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7.2.4.3 Cut Nodes and Blocks describes the gcut command that finds
the cut nodes and blocks in an undirected graph.
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7.2.3.1 Connected Components

This section describes the gcon command that can be used to find the
connected components in an undirected graph. The algorithm is based
on a version of depth-first search; for a general introduction see, e.g.,
Sedgewick [1990, ch. 29]. The graph can be defined with any of the op-
tions provided by the gdd command. The syntax is shown in the following
box.

gcon (

opt=..., option, def. 1
1 = node list
2 = edge list

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. By default, the command uses the first graph (gn=1)
in the currently defined multigraph. The contents of the output file de-
pends on the opt parameter. By default (opt=1), the command creates
a node list. The first column of the output file numbers the connected
components, then follows the number of nodes in the component, and
finally the internal and external node numbers. If opt=2, the data for
each component are written as an edge list.

Example 1 To illustrate the gcon command we use the graph shown
in Box 3.6.2-2 and Figure 3.6.2-2. The command file, gd7.cf, first
uses these data to define an undirected graph, and then uses the gcon
command to request information about the connected components in the
second graph. The output files for both options 1 and 2 are is shown in
Box 1. There are three components. The first one contains the nodes
1, 5, 7, and 8. The second and third components contain one and two
nodes, respectively.
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Box 1 Output files created by gcon command

option 1 option 2

C N i N(i) C N i j N(i) N(j) value

----------------- -------------------------------------

1 4 1 1 1 4 1 2 1 5 4.0000

1 4 2 5 1 4 1 3 1 7 15.0000

1 4 3 7 1 4 3 4 7 8 0.0000

1 4 4 8 2 1 5 5 9 9 -1.0000

2 1 5 9 3 2 6 7 11 12 14.0000

3 2 6 11

3 2 7 12
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7.2.3.2 Reachable Nodes in Digraphs

This section describes the gdcon command that finds, for each node i,
the set of other nodes that can be reached by a directed path from i.
The graph must be directed, but can be defined with any of the options
provided by the gdd command. The algorithm is based on a version of
depth-first search. The syntax is shown in the following box.

gdcon (

opt=..., option, def. 1
1 = number of reachable nodes
2 = plus list of node numbers

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
if=..., input file with nodes numbers

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. By default, the command uses the first graph (gn=1)
in the currently defined multigraph. If the if parameter is not used,
the command performs its calculations for all nodes in the input graph.
Alternatively, one can specify the name of an input file with the if
parameter. The first numerical entry in each of its records is then inter-
preted as a node number, and the command only considers these node
numbers.

The output file will contain one record for each node number that
has an out-degree of at least 1. The first two columns show, respectively,
the internal and external node number. The third column contains the
number of nodes which are reachable by a directed path. If opt=2, further
columns show the numbers of the nodes that are reachable.

Example 1 To illustrate the gdcon command we use the graph shown
in Box 3.6.2-2 and Figure 3.6.2-2. The command file, gd8.cf, first uses
these data to define a directed graph, and then uses the command

gdcon (gn=2,opt=2) = d;
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Box 1 Output file created by gdcon command

i N(i) N node numbers

----------------------------

2 5 1 1

3 7 1 1

4 8 2 1 7

7 12 1 11

The output file, d, is shown in Box 1.
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7.2.3.3 Cut Nodes and Blocks

Consider the connected components of an undirected graph. A node is
called a cut node, or articulation point , if removing the node makes the
component disconnected. If a connected component does not have cut
points it is called a block . For a discussion of these notions see, e.g.,
Gibbons [1985, ch. 1].

To find the cut nodes and blocks in an undirected graph one can
use the gcut command with syntax shown in the following box. The
algorithm is a version of depth-first search as described in Sedgewick
[1990, pp. 423–427].

gcut (

opt=..., option, def. 1
1 = one record for each component
2 = one record for each node

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected graph. The data written to the output file depends on the
opt parameter and will be explained in the example below.

Example 1 To illustrate we use the graph shown in Figure 7.2.5.1-1.
Since the graph doesn’t contain cut nodes we remove edges (3, 4) and
(3, 5). The new data file is gdat8.dat. The command file is gd26.cf.
Box 1 shows the output files from the gcut command for both options.

If opt=1, the output file will contain one record for each component.
The first column, labeled C, counts the components. The second column,
labeled N, shows the number of elements in the component. The third
column, labeled CN, shows the number of cut nodes in the component.
Then follow the external node numbers of the cut nodes. In this example,
the first component has two cut nodes, the second component is a block.

If opt=2, the output file contains one record for each node in the
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Box 1 Output files from gcut command

option 1 option 2

C N CN cut nodes C i N(i) CN F

---------------------- ----------------------

1 5 2 2 4 1 1 1 2 0

2 3 0 1 2 2 2 1

1 3 3 2 0

1 4 4 2 1

1 5 5 2 0

2 6 6 0 0

2 7 7 0 0

2 8 8 0 0

graph. The first three columns give the index number of the component
and the internal and external node number. CN is the number of cut
nodes in the component, and F indicates whether the current node is a
cut node.
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7.2.4 Paths

This section describes commands that can be used to investigate paths
in directed and undirected graphs.

7.2.4.1 Enumeration of Paths describes a command that finds all paths
in a graph.

7.2.4.2 Shortest Paths describes a command that finds all shortest
paths in a graph.

7.2.4.3 Transitive Closure describes a command that finds the tran-
sitive closure of a graph.
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7.2.4.1 Enumeration of Paths

The gep command can be used to find all paths connecting any two nodes
of a graph and to determine their minimal (or maximal) length and/or
value. The graph can be directed or undirected but must be defined with
gdd option 1 (edge list). The algorithm is based on a version of depth-first
search and ignores loops. The syntax is shown in the following box.

gep (

opt=..., output option, def. 1
1 = one record for each pair of nodes
2 = all paths
3 = distance matrix, minimal values
4 = distance matrix, maximal values
5 = location of nodes in paths, version 1
6 = location of nodes in paths, version 2

max=..., max number of paths (opt 6), def. 100
gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4
if=..., input file for node selection
ns=..., max edges in input file, def. 100

) = fname;

Except for the name of an output file on the right-hand side all param-
eters are optional. By default, the command considers all pairs of nodes
in the given graph. Optionally, one can specify a subset of nodes with
the if parameter. If a file is specified with this parameter, the command
tries to interpret the first two integer entries in each of its records as
external node numbers i and j, respectively, and then only considers
paths from i to j. If this option is used, the command needs to know a
maximal number of records (pairs of nodes) from the input file. This can
be specified with the ns parameter; default is a maximum of 100 pairs
of nodes.

In order to illustrate the options we shall use the graph shown in
Figure 1. (The data file is gd5.dat, the plot was creates with command
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Figure 1 A directed graph used for examples (gd18.cf).

file gd18.cf.) The command file for the examples is gd20.cf.

1. If opt = 1 (default), the output file will contain one record for each
pair of nodes that is connected by at least one path. In this case, the
columns are as follows:

1. Internal node number of first node, i.

2. Internal node number of second node, j.

3. External node number of first node.

4. External node number of second node.

5. Number of paths connecting i and j.

6. Number of paths connecting i and j that have minimal value.

7. Minimal length of a path connecting i and j.

8. Minimal value of a path connecting i and j.

9. Maximal length of a path connecting i and j.

10. Maximal value of a path connecting i and j.

This option is illustrated by the output file shown in Box 1. For instance,
there are three paths connecting nodes 1 and 3. The shortest path has
value 3 and contains two edges.

2. If opt = 2, the output file will contain one record for each path that
connects two nodes of the graph. In this case, the columns are as follows:

1. Internal node number of first node, i.

2. Internal node number of second node, j.

3. External node number of first node.

4. External node number of second node.

5. Number of the path connecting i and j.
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Box 1 Output file from gep command, option 1

i j N(i) N(j) NP NPS MINLEN MINVAL MAXLEN MAXVAL

----------------------------------------------------------

1 2 1 2 1 1 1 1.0000 1 1.0000

1 3 1 3 3 1 2 3.0000 4 13.0000

1 4 1 4 3 1 2 4.0000 4 13.5000

1 5 1 5 3 1 2 1.5000 4 14.0000

2 1 2 1 3 1 2 8.0000 4 18.0000

2 3 2 3 3 1 1 2.0000 3 12.0000

2 4 2 4 3 1 1 3.0000 3 12.5000

2 5 2 5 3 1 1 0.5000 3 13.0000

3 1 3 1 1 1 1 6.0000 1 6.0000

3 2 3 2 2 1 1 0.5000 2 7.0000

3 4 3 4 3 1 2 3.5000 3 10.0000

3 5 3 5 5 1 2 1.0000 4 14.0000

4 1 4 1 1 1 3 15.0000 3 15.0000

4 2 4 2 2 1 3 9.5000 4 16.0000

4 3 4 3 1 1 2 9.0000 2 9.0000

4 5 4 5 1 1 1 4.0000 1 4.0000

5 1 5 1 1 1 2 11.0000 2 11.0000

5 2 5 2 2 1 2 5.5000 3 12.0000

5 3 5 3 1 1 1 5.0000 1 5.0000

5 4 5 4 3 1 3 8.5000 4 15.0000

6. Length of the path.

7. Value of the path.

8. Sequence of external node numbers contained in the path.

This option is illustrated in Box 2. For example, there is now a separate
record for each of the three paths connecting nodes 1 and 3.

3. If opt = 3, the output file will contain one record for each node of
the graph. The first two columns contain, respectively, the internal and
external node number. Then follow n (= number of nodes) columns.
Being in record i, column j + 2 contains the minimal value of the paths
connecting i and j; or -1 if there is no path connecting i and j. If i = j,
the entry will always be zero. This option is illustrated in the upper half
of Box 3.

4. If opt = 4, the output file will the same format as with option 3.
The only difference is that the entries will show the maximal distance,
instead of the minimal distance. For an illustration, see the lower part
of Box 3.
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Box 2 Output file from gep command, option 2

i j N(i) N(j) NP MINLEN MINVAL nodes in path

--------------------------------------------------------------

1 2 1 2 1 1 1.0000 1 2

1 3 1 3 1 2 3.0000 1 2 3

1 3 1 3 2 4 13.0000 1 2 4 5 3

1 3 1 3 3 3 6.5000 1 2 5 3

1 4 1 4 1 3 10.0000 1 2 3 4

1 4 1 4 2 2 4.0000 1 2 4

1 4 1 4 3 4 13.5000 1 2 5 3 4

1 5 1 5 1 4 14.0000 1 2 3 4 5

1 5 1 5 2 3 8.0000 1 2 4 5

1 5 1 5 3 2 1.5000 1 2 5

2 1 2 1 1 2 8.0000 2 3 1

2 1 2 1 2 4 18.0000 2 4 5 3 1

2 1 2 1 3 3 11.5000 2 5 3 1

2 3 2 3 1 1 2.0000 2 3

2 3 2 3 2 3 12.0000 2 4 5 3

2 3 2 3 3 2 5.5000 2 5 3

2 4 2 4 1 2 9.0000 2 3 4

2 4 2 4 2 1 3.0000 2 4

2 4 2 4 3 3 12.5000 2 5 3 4

2 5 2 5 1 3 13.0000 2 3 4 5

2 5 2 5 2 2 7.0000 2 4 5

2 5 2 5 3 1 0.5000 2 5

3 1 3 1 1 1 6.0000 3 1

3 2 3 2 1 2 7.0000 3 1 2

3 2 3 2 2 1 0.5000 3 2

3 4 3 4 1 3 10.0000 3 1 2 4

3 4 3 4 2 2 3.5000 3 2 4

3 4 3 4 3 1 7.0000 3 4

3 5 3 5 1 4 14.0000 3 1 2 4 5

3 5 3 5 2 3 7.5000 3 1 2 5

3 5 3 5 3 3 7.5000 3 2 4 5

3 5 3 5 4 2 1.0000 3 2 5

3 5 3 5 5 2 11.0000 3 4 5

4 1 4 1 1 3 15.0000 4 5 3 1

4 2 4 2 1 4 16.0000 4 5 3 1 2

4 2 4 2 2 3 9.5000 4 5 3 2

4 3 4 3 1 2 9.0000 4 5 3

4 5 4 5 1 1 4.0000 4 5

5 1 5 1 1 2 11.0000 5 3 1

5 2 5 2 1 3 12.0000 5 3 1 2

5 2 5 2 2 2 5.5000 5 3 2

5 3 5 3 1 1 5.0000 5 3

5 4 5 4 1 4 15.0000 5 3 1 2 4

5 4 5 4 2 3 8.5000 5 3 2 4

5 4 5 4 3 2 12.0000 5 3 4
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Box 3 Output files from gep command, options 3 and 4

i N(i) option 3

-------------------------------------------------------------

1 1 0.0000 1.0000 3.0000 4.0000 1.5000

2 2 8.0000 0.0000 2.0000 3.0000 0.5000

3 3 6.0000 0.5000 0.0000 3.5000 1.0000

4 4 15.0000 9.5000 9.0000 0.0000 4.0000

5 5 11.0000 5.5000 5.0000 8.5000 0.0000

i N(i) option 4

-------------------------------------------------------------

1 1 0.0000 1.0000 13.0000 13.5000 14.0000

2 2 18.0000 0.0000 12.0000 12.5000 13.0000

3 3 6.0000 7.0000 0.0000 10.0000 14.0000

4 4 15.0000 16.0000 9.0000 0.0000 4.0000

5 5 11.0000 12.0000 5.0000 15.0000 0.0000

5. In social network analysis, one is sometimes interested in the charac-
terization of nodes by their ability to “control” communication between
other nodes.1 One version of this idea simply investigates the location
of nodes in paths connecting other nodes. This version is supported by
options 5 and 6 of the gep command. Option 5 considers all shortest
paths, option 6 takes all paths into account.

If opt = 5, the output file will contain one record for each pair of
nodes that is connected by at least one paths. The columns are:

1. Internal node number of first node, i.

2. Internal node number of second node, j.

3. External node number of first node.

4. External node number of second node.

5. Number of paths connecting i and j.

6. Number of paths connecting i and j that have minimal value.

7. Minimal length of a path connecting i and j.

8. Minimal value of a path connecting i and j.

9. Entries nk, for k = 1, . . . , n; n being the number of nodes in the graph,
and the nodes are sorted in ascending order. nk is the number of times
node k occurs in a path of minimal length connecting nodes i and j, i.e.,
the pair of nodes referred to in the current record.

An illustration is given in Box 4, based on the graph shown in Figure 1,
interpreted as directed and valued.

1See, e.g., the discussion in Freeman [1978].
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Box 4 Output from gep command, option 5

i j N(i) N(j) NP NPS MINLEN MINVAL 1 2 3 4 5

----------------------------------------------------------------

1 2 1 2 1 1 1 1.00 0 0 0 0 0

1 3 1 3 3 1 2 3.00 0 1 0 0 0

1 4 1 4 3 1 2 4.00 0 1 0 0 0

1 5 1 5 3 1 2 1.50 0 1 0 0 0

2 1 2 1 3 1 2 8.00 0 0 1 0 0

2 3 2 3 3 1 1 2.00 0 0 0 0 0

2 4 2 4 3 1 1 3.00 0 0 0 0 0

2 5 2 5 3 1 1 0.50 0 0 0 0 0

3 1 3 1 1 1 1 6.00 0 0 0 0 0

3 2 3 2 2 1 1 0.50 0 0 0 0 0

3 4 3 4 3 1 2 3.50 0 1 0 0 0

3 5 3 5 5 1 2 1.00 0 1 0 0 0

4 1 4 1 1 1 3 15.00 0 0 1 0 1

4 2 4 2 2 1 3 9.50 0 0 1 0 1

4 3 4 3 1 1 2 9.00 0 0 0 0 1

4 5 4 5 1 1 1 4.00 0 0 0 0 0

5 1 5 1 1 1 2 11.00 0 0 1 0 0

5 2 5 2 2 1 2 5.50 0 0 1 0 0

5 3 5 3 1 1 1 5.00 0 0 0 0 0

5 4 5 4 3 1 3 8.50 0 1 1 0 0

6. If opt = 6, similar information will be given for all path connecting
each pair of nodes in the graph. The output file will contain one record
for each path in the graph. The columns are:

1. Internal node number of first node, i.

2. Internal node number of second node, j.

3. External node number of first node.

4. External node number of second node.

5. Total number of paths connecting i and j.

6. Current number of path connecting i and j.

7. Length of the path.

8. Value of the path.

9. Entries nk, for k = 1, . . . , n; n being the number of nodes in the graph,
and the nodes are sorted in ascending order. nk = 1 if node k occurs in
the path connecting nodes i and j, i.e., the pair of nodes referred to in
the current record.

For each pair of nodes, i and j, the paths are sorted in ascending order
according to their value. An illustration is given in Box 5, based on the
graph shown in Figure 1, interpreted as directed and valued.
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Box 5 Output from gep command, option 6

i j N(i) N(j) NP MINLEN MINVAL 1 2 3 4 5

----------------------------------------------------------------

1 2 1 2 1 1 1 1.00 0 0 0 0 0

1 3 1 3 3 1 2 3.00 0 1 0 0 0

1 3 1 3 3 2 3 6.50 0 1 0 0 1

1 3 1 3 3 3 4 13.00 0 1 0 1 1

1 4 1 4 3 1 2 4.00 0 1 0 0 0

1 4 1 4 3 2 3 10.00 0 1 1 0 0

1 4 1 4 3 3 4 13.50 0 1 1 0 1

1 5 1 5 3 1 2 1.50 0 1 0 0 0

1 5 1 5 3 2 3 8.00 0 1 0 1 0

1 5 1 5 3 3 4 14.00 0 1 1 1 0

2 1 2 1 3 1 2 8.00 0 0 1 0 0

2 1 2 1 3 2 3 11.50 0 0 1 0 1

2 1 2 1 3 3 4 18.00 0 0 1 1 1

2 3 2 3 3 1 1 2.00 0 0 0 0 0

2 3 2 3 3 2 2 5.50 0 0 0 0 1

2 3 2 3 3 3 3 12.00 0 0 0 1 1

2 4 2 4 3 1 1 3.00 0 0 0 0 0

2 4 2 4 3 2 2 9.00 0 0 1 0 0

2 4 2 4 3 3 3 12.50 0 0 1 0 1

2 5 2 5 3 1 1 0.50 0 0 0 0 0

2 5 2 5 3 2 2 7.00 0 0 0 1 0

2 5 2 5 3 3 3 13.00 0 0 1 1 0

3 1 3 1 1 1 1 6.00 0 0 0 0 0

3 2 3 2 2 1 1 0.50 0 0 0 0 0

3 2 3 2 2 2 2 7.00 1 0 0 0 0

3 4 3 4 3 1 2 3.50 0 1 0 0 0

3 4 3 4 3 2 1 7.00 0 0 0 0 0

3 4 3 4 3 3 3 10.00 1 1 0 0 0

3 5 3 5 5 1 2 1.00 0 1 0 0 0

3 5 3 5 5 2 3 7.50 1 1 0 0 0

3 5 3 5 5 3 3 7.50 0 1 0 1 0

3 5 3 5 5 4 2 11.00 0 0 0 1 0

3 5 3 5 5 5 4 14.00 1 1 0 1 0

4 1 4 1 1 1 3 15.00 0 0 1 0 1

4 2 4 2 2 1 3 9.50 0 0 1 0 1

4 2 4 2 2 2 4 16.00 1 0 1 0 1

4 3 4 3 1 1 2 9.00 0 0 0 0 1

4 5 4 5 1 1 1 4.00 0 0 0 0 0

5 1 5 1 1 1 2 11.00 0 0 1 0 0

5 2 5 2 2 1 2 5.50 0 0 1 0 0

5 2 5 2 2 2 3 12.00 1 0 1 0 0

5 3 5 3 1 1 1 5.00 0 0 0 0 0

5 4 5 4 3 1 3 8.50 0 1 1 0 0

5 4 5 4 3 2 2 12.00 0 0 1 0 0

5 4 5 4 3 3 4 15.00 1 1 1 0 0
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Contrary to the other options, if opt = 6, the command needs to
know an upper limit for the number of paths connecting any pair of
nodes. This maximal number of paths can be specified with the max
parameter, default is max = 100. If for any pair of nodes, the command
finds more than this number of paths, it exits with an error message.
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7.2.4.2 All Shortest Paths

The section describes the gsp command that finds, for each pair of nodes
in a graph, a shortest path. The graph can be directed or undirected,
valued or unvalued. If the graph is unvalued, all edge values are assumed
to be 1. The algorithm is adapted from Pape [1980]. The syntax of the
command is shown in the following box.

gsp (

opt=..., option, def. 1
1 = only reachable nodes
2 = square matrix with leading columns
3 = square matrix without leading columns

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

fmt=..., print format for values, def. 10.4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. In order to illustrate the options we use the example
data from Section 7.2.4.1.

1. If opt=1 (default), the output file will contain one record for each node
of the graph. The first two columns show, respectively, the internal and
external node numbers. Then follows, for each node that can be reached
from the current node, its external node number and its shortest distance
from the current node. Box 1 provides an illustration.

2. If opt=2, the output file will contain an (n, n) square matrix with
entries showing the shortest distances between each pair of nodes. n is
the number of nodes in the graph. In addition, two leading columns show
the internal and external node numbers corresponding to each row of the
matrix.

3. The third option is identical to opt=2 except that the leading two
columns are not written to the output file. This allows to read the output
file directly into a square distance matrix.
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Box 1 Output file from gsp command, option 1

i N(i) reachable nodes and shortest distances

------------------------------------------------------

1 1 2 1.0 3 3.0 4 4.0 5 1.5

2 2 1 8.0 3 2.0 4 3.0 5 0.5

3 3 1 6.0 2 0.5 4 3.5 5 1.0

4 4 1 15.0 2 9.5 3 9.0 5 4.0

5 5 1 11.0 2 5.5 3 5.0 4 8.5

Box 2 Output file from gsp command, option 2

i N(i) distance matrix

---------------------------------

1 1 0.0 1.0 3.0 4.0 1.5

2 2 8.0 0.0 2.0 3.0 0.5

3 3 6.0 0.5 0.0 3.5 1.0

4 4 15.0 9.5 9.0 0.0 4.0

5 5 11.0 5.5 5.0 8.5 0.0
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7.2.4.3 Transitive Closure

To investigate connections in undirected or directed graphs, a useful
concept is the transitive closure. Let G = (N , E) denote a (directed)
graph. Assume first that the graph is unvalued. The transitive closure of
G is then the graph G′ = (N , E ′) with adjacency matrix A′ = (a′ij) such
that a′ij = 1 if G contains a (directed) path from i to j. If, on the other
hand, the graph is valued, a′ij is defined as the value of the shortest path
from i to j.

To find the transitive closure of an unvalued graph, one can use the
commands gcon and/or gscon described, respectively, in sections 7.2.3.1

and 7.2.3.2; and if the graph is valued one can use the gsp command
described in Section 7.2.4.2. All these commands are quite efficient if the
graph is sparse. If, however, the graph is dense, it might be more efficient
to use an algorithm that directly manipulates the adjacency matrix. An
appropriate algorithm for unvalued graphs was invented by Warshall
[1962]. The gtcl command uses a version of this algorithm discussed by
Sedgewick [1990, p. 475]. If the graph is valued, the gtcl command uses
a version of Warshall’s algorithm known as Floyd’s algorithm (see, e.g.,
the discussion in Turau [1996]).

The syntax of the gtcl command is shown in the following box. As
just indicated, the command can be used with all graph types supported
by the gdd command.

gtcl (

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. By default, the command uses the first graph (gn=1)
in the currently defined multigraph. The output file contains the adja-
cency matrix A′ plus two leading columns containing, respectively, the
internal and external node numbers. The print format for these addi-
tional columns can be specified with the nfmt parameter. Note that the
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Box 1 Output files created by gtcl command

undirected, unvalued undirected, valued

-------------------- --------------------------------

1 1 0 1 1 1 1 1 1 0.0 1.0 1.5 4.0 1.5

2 2 1 0 1 1 1 2 2 1.0 0.0 0.5 3.0 0.5

3 3 1 1 0 1 1 3 3 1.5 0.5 0.0 3.5 1.0

4 4 1 1 1 0 1 4 4 4.0 3.0 3.5 0.0 3.5

5 5 1 1 1 1 0 5 5 1.5 0.5 1.0 3.5 0.0

directed, unvalued directed, valued

-------------------- --------------------------------

1 1 0 1 1 1 1 1 1 0.0 1.0 3.0 4.0 1.5

2 2 1 0 1 1 1 2 2 8.0 0.0 2.0 3.0 0.5

3 3 1 1 0 1 1 3 3 6.0 0.5 0.0 3.5 1.0

4 4 1 1 1 0 1 4 4 15.0 9.5 9.0 0.0 4.0

5 5 1 1 1 1 0 5 5 11.0 5.5 5.0 8.5 0.0

command requires storage for n2 bytes (if unvalued) or single precision
floating point number (if valued); n being the number of nodes in the
graph. Note also that the algorithm sets a′ii = 1 if node i has a loop,
otherwise a′ii = 0.

Example 1 To illustrate the gtcl command we use the example data
from Section 7.2.4.1. The command file is gd16.cf. The gtcl command
is used with opt=2. Box 1 shows output files for four different graph
types.
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7.2.5 Spanning Trees

Given an undirected and connected graph G = (N , E), a spanning tree
for G is a graph G′ = (N , E ′) having the same node set, N , but only a
subset of the edges, E ′ ⊂ E , such that G′ is a tree. In general, a graph can
have several (in fact, a verly large number of different) spanning trees.
If the graph is not connected one can calculate a separate spanning tree
for each of its connected components and the result set of spanning trees
is then called a forest . If the graph is valued one can calculate so-called
minimal , or maximal , spanning trees, meaning spanning trees where the
sum of edge values is minimal, or maximal.

This section describes commands that can be used to find spanning
trees and, in particular, minimum or maximum spanning trees for undi-
rected graphs.

7.2.5.1 Depth-first Spanning Trees describes the gst command that
finds a depth-first spanning tree.

7.2.5.2 Minimum Spanning Trees describes the gmst command that
finds a minimum, or maximum, spanning tree.

7.2.5.3 Enumeration of Spanning Trees describes the gnst command
that enumerates the spanning trees of a graph.
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7.2.5.1 Depth-first Spanning Trees

Given an undirected graph, the gst command calculates a spanning tree
for each connected component of the graph. The algorithm is based on
depth-first search. The syntax is shown in the following box.

gst (

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected graph. The output file has four columns. The first column
contains an index number for the tree. The other three columns show
the edges of the tree (node numbers and edge values).

Example 1 To illustrate we use the graph shown in Figure 1. The data
file gd7.dat (Box 1) is used to define an undirected graph. The command
file is gd24.cf. Box 2 shows the output file from the gst command.
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Box 1 Data file gd7.dat

I J V

----------

1 2 1

2 4 2

4 5 3

5 3 4

3 4 5

1 3 6

2 3 7

6 8 8

6 7 9

8 7 10

1 2

3

4
56

7
8

9
101

2

3

4

5

6

7

8

Figure 1 Graph (plotted with gd23.cf) of the
data shown in Box 1.

Box 2 Output file from gst command

T N(i) N(j) value

------------------------

1 1 2 1.0000

1 2 3 7.0000

1 3 4 5.0000

1 4 5 3.0000

2 6 7 9.0000

2 7 8 10.0000
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7.2.5.2 Minimum Spanning Trees

Given an undirected valued graph, the gmst command calculates a mini-
mum, or maximum, spanning tree for each of its connected components.
The syntax is shown in the following box.

gmst (

alg=..., algorithm, def. 1
1 = Kruskal
2 = Prim

max=..., 1 if maximum spanning tree, def. 0
gn=..., graph number, def. 1
sort, sort wrt node numbers
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected and valued graph. By default, the command uses the first
graph number and calculates a minimum spanning tree. The max=1 pa-
rameter can be used to request a maximum spanning tree.

Two algorithms are available. If alg=1 (default), the command uses
Kruskal’s algorithm, if alg=2 the command uses Prim’s algorithm. Both
algorithms are described in most books on graph algorithms, see, e.g.,
Gibbons [1985, ch. 2], Sedgewick [1990, ch. 31], Neumann and Morlock
[1993, pp. 199–201]. In general, Kruskal’s algorithm is more efficient if
the graph is sparse. Both algorithms are applied separately for each
component of the graph. Loops (elements in the main diagonal of the
adjacency matrix) are not used. Isolated nodes are treated as separate
components.

The output file has four columns. The first column contains an index
number for the tree. The other three columns show the edges of the
tree (node numbers and edge values). By default, when using Kruskal’s
method, the records are sorted according to edge values, and may have
any order when using Prim’s method. As an option one can use the sort
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Box 1 Output file from gmst command

T N(i) N(j) value

------------------------

1 1 2 1.0000

1 2 4 2.0000

1 4 5 3.0000

1 3 5 4.0000

2 6 8 8.0000

2 6 7 9.0000

parameter to request sorting with respect to node numbers.

Example 1 To illustrate we use the graph shown in Figure 7.2.5.1-1.
The data file gd7.dat is used to define an undirected and valued graph.
The command file is gd25.cf. Box 1 shows the output file from the gmst
command.
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7.2.5.3 Enumeration of Spanning Trees

Given an undirected graph, the gnst enumerates all of its spanning trees.
The algorithm is adapted from McIlroy [1969] and is applied separately
to each connected component of the graph. The syntax of the command
is shown in the following box.

gnst (

opt=..., output option, def. 1
1 = one record for each tree
2 = edge list

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected graph. By default, the command uses the first graph num-
ber. To illustrate the output options, we use the graph shown in 1. The
corresponding data file is gd10.dat, the command file for the example
is gd32.cf.

1. If opt=1 (default), the output file contains one record for each tree.
The first column numbers the connected components of the graph, the
second column numbers the trees. Then follow n columns, n being the
number of nodes in the graph. Assume that these columns are labeled
by j = 1, . . . , n and let nj denote the value of column j (in the current
record). If then nj > 0, this indicates that the current tree contains an
edge from node j to node nj . This option is illustrated in the left part
of Box 1.

2. If opt=2, the output file is organized as an edge list, again separately
for each connected component of the graph. Like option 1, the first two
columns number, respectively, the components and the trees. Then follow
four additional columns. The third column shows the number of edges
in the tree, the fourth column provides a counter. Finally, the last two
columns describe the edge by its starting and ending nodes. This option
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1 2

3 4

Figure 1 Undirected graph used for examples (gd31.cf).

Box 1 Output files from gnst command

Option 1 Option 2

NC NT N1 N2 N3 N4 NC NT edge

--------------------------- ---------------------------

1 1 0 1 1 1 1 1 3 1 2 1

1 2 0 1 1 3 1 1 3 2 3 1

1 3 0 1 2 1 1 1 3 3 4 1

1 4 0 1 2 3 1 2 3 1 2 1

1 5 0 1 4 1 1 2 3 2 3 1

1 6 0 3 1 1 1 2 3 3 4 3

1 7 0 3 1 3 1 3 3 1 2 1

1 8 0 3 4 1 1 3 3 2 3 2

1 3 3 3 4 1

1 4 3 1 2 1

1 4 3 2 3 2

1 4 3 3 4 3

1 5 3 1 2 1

1 5 3 2 3 4

1 5 3 3 4 1

1 6 3 1 2 3

1 6 3 2 3 1

1 6 3 3 4 1

1 7 3 1 2 3

1 7 3 2 3 1

1 7 3 3 4 3

1 8 3 1 2 3

1 8 3 2 3 4

1 8 3 3 4 1

is illustrated in the right part of Box 1.
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7.2.6 Cycles

This sections describes commands that can be used to find cycles in
undirected and directed graphs.

7.2.6.1 Fundamental Set of Cycles describes the gcyc command that
finds a fundamental set of cycles for an undirected graph and,
optionally, all of its cycles.

7.2.6.2 Enumeration of Cycles describes the gdcyc command that can
be used to find all cycles in a directed graph.
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7.2.6.1 Fundamental Set of Cycles

Given an undirected graph, the gcyc command can be used to calculate
a fundamental set of cycles and, optionally, all cycles. For a discussion
of this notion see, e.g., Gibbons [1985, pp. 54–57]. The algorithm to cal-
culate a fundamental set of cycles is adapted from Paton [1969]. The
algorithm to find all cycles, given a fundamental set of cycles, is adapted
from Gibbs [1969]. The syntax of the gcyc command is shown in the
following box.

gcyc (

opt=..., option, def. 1
1 = fundamental cycles, node list
2 = fundamental cycles, edge list
3 = all cycles, version 1
4 = all cycles, version 2

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected graph. The data written to the output file depends on the
opt parameter and will be explained in the example below.

Example 1 To illustrate the gcyc command we use the graph shown
in Figure 1. (The same example was used by Gibbs [1969] and Paton
[1969].) The corresponding data file is gd9.dat, the command file for
the examples is gd30.cf.

1. If opt=1 (default), the command only calculates a fundamental set of
cycles. This is done separately for each of the graph’s connected compo-
nents. Box 1 illustrates the contents of the output file. The first column
numbers the components of the graph (in this example, there is only
one component). The second column numbers the fundamental cycles,
separately for each component. In our example, we find 6 fundamental
cycles. The remaining columns describe the corresponding cycle by a list
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Figure 1 Undirected graph used for examples (gd29.cf).

of node numbers. For instance, the first cycle contains the nodes 6, 1,
and 3.

2. If opt=2, the command again only calculates a fundamental set of
cycles but the information is given in a somewhat different format in the
output file. This is illustrated in Box 2. Separately for each component
of the graph, numbered in the first column, there is one record for each
edge in the graph. The edges are numbered in the second column and
described, by their starting and ending node, in the third and fourth
column. Finally follow m columns, m being the number of fundamental
cycles. In each of these columns, a 1 indicates that the corresponding
edge is part of the cycle.

3. If opt=3, the command calculates all cycles of the graph, based on
a previously found fundamental set of cycles. Output from this option
is illustrated in Box 3. The first column indicates the connected compo-
nents of the graph. Then, separately for each component, there is one
record for each edge in the graph, numbered in the second column and
described by starting and ending nodes in the third and fourth columns.
Then follow m columns, m being the number of cycles in the graph. In
our example, we find 38 cycles. Each cycle is described by indicators that
indicate which of the edges belong to the cycle.

4. Like option 3, if opt=4 the command calculates all cycles of the graph
but provides the information in a somewhat different format. This is
illustrated in Box 4. The output file is in two parts. The first part equals
the first four columns as described for option 3. Then follows one record
for each cycle of the graph that indicates which edges belong to the cycle.
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Box 1 Output file from gcyc command, option 1

NC idx node numbers

----------------------------

1 1 6 1 3

1 2 5 6 1 2

1 3 5 6 4

1 4 4 6 1 2

1 5 4 6 1 3

1 6 3 1 2

Box 2 Output file from gcyc command, option 2

NC idx edge indicators

-----------------------------

1 1 1 2 0 1 0 1 0 1

1 2 1 3 1 0 0 0 1 1

1 3 1 6 1 1 0 1 1 0

1 4 2 3 0 0 0 0 0 1

1 5 2 4 0 0 0 1 0 0

1 6 2 5 0 1 0 0 0 0

1 7 3 4 0 0 0 0 1 0

1 8 3 6 1 0 0 0 0 0

1 9 4 5 0 0 1 0 0 0

1 10 4 6 0 0 1 1 1 0

1 11 5 6 0 1 1 0 0 0

Box 3 Part of output file from gcyc command, option 3

NC idx edge 1 indicators describing cycles 38

-----------------------------------------------------------------

1 1 1 2 0 1 1 1 1 0 1 0 1 0 ... 0 0 0 0 0 0 0 0 1 0 1 1

1 2 1 3 1 1 0 1 0 0 1 0 1 0 ... 0 1 0 0 1 1 0 0 0 0 0 1

1 3 1 6 1 0 1 0 1 0 0 0 0 0 ... 0 1 0 0 1 1 0 0 1 0 1 0

1 4 2 3 0 0 0 0 0 0 0 0 0 0 ... 1 1 1 1 1 1 1 1 1 1 1 1

1 5 2 4 0 0 0 0 0 0 1 1 1 1 ... 0 0 1 1 1 1 0 0 0 1 0 0

1 6 2 5 0 1 1 1 1 0 0 1 0 1 ... 1 1 0 0 0 0 1 1 0 0 0 0

1 7 3 4 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 1 1 1 1 1 0

1 8 3 6 1 1 0 1 0 0 1 0 1 0 ... 1 0 1 1 0 0 0 0 0 0 0 0

1 9 4 5 0 0 0 1 1 1 0 0 1 1 ... 1 1 0 1 1 0 0 1 1 0 0 0

1 10 4 6 0 0 0 1 1 1 1 1 0 0 ... 1 1 1 0 0 1 1 0 0 0 1 0

1 11 5 6 0 1 1 0 0 1 0 1 1 0 ... 0 0 0 1 1 0 1 0 1 0 0 0
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Box 4 Output file from gcyc command, option 4

NC idx edge

-----------------

1 1 1 2

1 2 1 3

1 3 1 6

1 4 2 3

1 5 2 4

1 6 2 5

1 7 3 4

1 8 3 6

1 9 4 5

1 10 4 6

1 11 5 6

1 1 0 1 1 0 0 0 0 1 0 0 0

1 2 1 1 0 0 0 1 0 1 0 0 1

1 3 1 0 1 0 0 1 0 0 0 0 1

1 4 1 1 0 0 0 1 0 1 1 1 0

1 5 1 0 1 0 0 1 0 0 1 1 0

1 6 0 0 0 0 0 0 0 0 1 1 1

1 7 1 1 0 0 1 0 0 1 0 1 0

1 8 0 0 0 0 1 1 0 0 0 1 1

1 9 1 1 0 0 1 0 0 1 1 0 1

1 10 0 0 0 0 1 1 0 0 1 0 0

1 11 1 0 1 0 1 0 0 0 1 0 1

1 12 1 0 1 0 1 0 0 0 0 1 0

1 13 0 0 0 0 0 0 1 1 0 1 0

1 14 1 1 0 0 0 1 1 0 0 1 1

1 15 0 0 0 0 0 0 1 1 1 0 1

1 16 1 0 1 0 0 1 1 1 1 0 0

1 17 1 1 0 0 0 1 1 0 1 0 0

1 18 0 1 1 0 0 0 1 0 1 0 1

1 19 1 0 1 0 1 0 1 1 0 0 0

1 20 0 0 0 0 1 1 1 1 0 0 1

1 21 0 1 1 0 1 1 1 0 0 0 1

1 22 1 1 0 0 1 0 1 0 0 0 0

1 23 0 1 1 0 0 0 1 0 0 1 0

1 24 1 0 1 1 0 0 0 1 0 0 0

1 25 0 0 0 1 0 1 0 1 0 0 1

1 26 0 1 1 1 0 1 0 0 0 0 1

1 27 0 0 0 1 0 1 0 1 1 1 0

1 28 0 1 1 1 0 1 0 0 1 1 0

1 29 0 0 0 1 1 0 0 1 0 1 0

1 30 0 0 0 1 1 0 0 1 1 0 1

1 31 0 1 1 1 1 0 0 0 1 0 1

1 32 0 1 1 1 1 0 0 0 0 1 0

1 33 0 0 0 1 0 1 1 0 0 1 1

1 34 0 0 0 1 0 1 1 0 1 0 0

1 35 1 0 1 1 0 0 1 0 1 0 1

1 36 0 0 0 1 1 0 1 0 0 0 0

1 37 1 0 1 1 0 0 1 0 0 1 0

1 38 1 1 0 1 0 0 0 0 0 0 0
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7.2.6.2 Enumeration of Cycles

The notion of a fundamental set of cycles makes sense only for undi-
rected graphs. An efficient algorithm to find all cycles in directed graphs
was developed by Tiernan [1970]. The gdcyc command is based on this
algorithm. It requires a directed graph defined with option 1 (edge list)
of the gdd command. The syntax is shown in the following box.

gdcyc (

opt=..., output option, def. 1
1 = one record for each cycle
2 = one record for each node

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. In order to illustrate the two output options we use the
graph from Section 7.2.4.1. The command file is gd33.cf. The output
from option 1 is shown in the left part of Box 1. There is one record for
each cycle, numbered in the first column of the output file. Each cycle
is described by a sequence of node numbers. The length of the cycle is
shown in the second column. Then follow the node numbers contained
in the cycle. The output from option 2 is illustrated in the right part of
Box 1.
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Box 1 Output files from gdcyc command

Option 1 Option 2

C N node numbers C N node

-------------------------------- --------------

1 3 1 2 3 1 3 1

2 5 1 2 4 5 3 1 3 2

3 4 1 2 5 3 1 3 3

4 2 2 3 2 5 1

5 4 2 4 5 3 2 5 2

6 3 2 5 3 2 5 4

7 3 3 4 5 2 5 5

2 5 3

3 4 1

3 4 2

3 4 5

3 4 3

4 2 2

4 2 3

5 4 2

5 4 4

5 4 5

5 4 3

6 3 2

6 3 5

6 3 3

7 3 3

7 3 4

7 3 5
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7.2.7 Eigenvalues and Eigenvectors

The gev command can be used to calculated a selected number of eigen-
values and eigenvectors of the adjacency matrix of an undirected graph.
The algorithm is adapted from Nikolai [1979] and, since storage of the
complete adjacency matrix is not required, can be used efficiently with
large sparse graphs defined with gdd option 1. The syntax of the com-
mand is shown in the following box.

gev (

n=..., number of eigenvalues/vectors, def. 1
eps=..., required accuracy, def. 1.e-6
mxit=..., max number of iterations, def. 30
gn=..., graph number, def. 1
fmt=..., print format, def. 10.4
prot=..., protocol file

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify
an undirected graph. The n parameter specifies how many eigenval-
ues/vectors will be calculated. The command tries to find those eigenval-
ues (and corresponding eigenvectors) whose absolute value is largest. The
maximal number of eigenvalues/vectors that can be requested is N − 1,
where N is the number of nodes in the graph. The calculated eigenval-
ues are shown in the standard output, the corresponding eigenvectors
are written into the output file.

1. Note that the command might fail to find the required number of
eigenvalues/vectors. This can happen, in particular, if the eigenvalues
are not well separated. As a remedy, one can then try to request a
calculation of more eigenvalues than are actually required.

2. To achieve the required accuracy it may be necessary to allow for a
larger number of iterations. The standard output reports how many
iterations have been performed. If this number equals the maximal
number of iterations specified with the mxit parameter, one should
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specify a higher value.

3. There is no direct relationship between the accuracy specified with
the eps parameter and the number of correct digits in the calculated
eigenvalues/vectors. Information about the actually achieved accu-
racy can be found in a protocol file that can be requested with the
prot parameter. For each eigenvalue λ, and corresponding eigenvec-
tor x, the protocol file shows the value of

max
j
{ | (Ax)j − λxj | }

The TDA example archive contains a command file, gd28.cf, that illus-
trates how to use the gev command and compares its result with that
of the mevs matrix command.
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7.2.8 Flows

This section describes commands that can be used to analyze flows in
directed graphs and, in particular, to find maximal flows.

7.2.8.1 Maximal Flows describes the gflow command that finds max-
imal flows in directed graphs.
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7.2.8.1 Maximal Flows

Given a directed graph, the gflow command finds a maximal flow for
each pair of nodes that is connected by at least one directed path. If
the graph is unvalued, it is assumed that all edges have value 1. The
gflow command uses an algorithm first developed by Edmonds and Karp
[1972]; the implementation is based on its discussion in Turau [1996,
pp. 171–179]. The syntax of the gflow command is shown in the following
box.

gflow (

opt=..., output option, def. 1
1 = one record per flow
2 = square flow matrix

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for flow values, def. 10.4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify a
directed graph that must be defined with option 1 of the gdd command,
i.e. as an edge list.

Example 1 To illustrate the output options we use the graph shown
in Figure 1. (The example is taken from Turau [1996, p. 164].) The cor-
responding data file is gd11.dat, the command file for the examples is
gd35.cf.

1. If opt=1 (default), the output file contains one record for each pair of
nodes that is connected by at least one directed path. The first column
counts the records. Then follow four columns containing, respectively, the
internal and external node numbers of the source and the sink. The final
column shows the value of the maximal flow. This option is illustrated
in Box 1.

2. If opt=2, the output file contains an (n, n) square matrix, n being
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Figure 1 Directed graph used for examples (gd34.cf).

the number of nodes in the graph, plus two leading columns containing,
respectively, the internal and external node numbers. The (i, j) entry of
the matrix contains the value of a maximal flow from node i to node j,
or -1 if there is no directed path from i to j. This option is illustrated in
Box 2.
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Box 1 Output file from gflow command, option 1

Idx i j N(i) N(j) flow

-----------------------------

1 1 2 1 2 30

2 1 3 1 3 27

3 1 4 1 4 17

4 1 5 1 5 17

5 1 6 1 6 30

6 1 7 1 7 30

7 2 3 2 3 27

8 2 4 2 4 17

9 2 5 2 5 17

10 2 6 2 6 37

11 2 7 2 7 47

12 3 7 3 7 22

13 4 3 4 3 50

14 4 5 4 5 54

15 4 7 4 7 22

16 5 3 5 3 50

17 5 7 5 7 22

18 6 3 6 3 17

19 6 4 6 4 17

20 6 5 6 5 17

21 6 7 6 7 49

22 8 1 8 1 40

23 8 2 8 2 30

24 8 3 8 3 47

25 8 4 8 4 37

26 8 5 8 5 37

27 8 6 8 6 30

28 8 7 8 7 50

Box 2 Output file from gflow command, option 2

i N(i)

-----------------------------------------------

1 1 0 30 27 17 17 30 30 -1

2 2 -1 0 27 17 17 37 47 -1

3 3 -1 -1 0 -1 -1 -1 22 -1

4 4 -1 -1 50 0 54 -1 22 -1

5 5 -1 -1 50 -1 0 -1 22 -1

6 6 -1 -1 17 17 17 0 49 -1

7 7 -1 -1 -1 -1 -1 -1 0 -1

8 8 40 30 47 37 37 30 50 0
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7.2.9 Subgroups

This section describes commands that find specific kinds of subgroups
of the nodes of a graph.

7.2.9.1 Cliques describes a command that finds the cliques (maximal
complete subgraphs) of a graph.

7.2.9.2 Compact Sets describes a command that finds the compact
sets of a graph.

7.2.9.3 Independent Sets describes a command that tries to find max-
imal independent sets of a graph.
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7.2.9.1 Cliques

Given an undirected graph, one can consider its maximally connected
subgraphs, also called cliques. To find the cliques in a graph, one can
use the gcliq command with syntax shown in the following box.

gcliq (

alg=..., algorithm, def. 1
1 = Bron-Kerbosch
2 = Harary-Ross

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
min=..., minimum size of cliques, def. 3
sort, sort node numbers

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify
an undirected graph. There are two algorithms. If alg=1 (default), the
command uses an algorithm developed by Bron and Kerbosch [1973]. If
alg=2 the command uses an algorithm proposed by Harary and Ross
[1957]. The algorithms are applied separately to each connected compo-
nent of the graph.

The output file will contain one record for each clique found in the
graph. The first column counts the connected components, the second
column counts the cliques that are found in the component. The third
column shows the number of nodes in the clique, finally follows the list of
external node numbers of the nodes contained in the clique. As an option
one can use the sort parameter to request that these node numbers are
written in ascending order. As a further option, one can use the min
parameter to specify a minimum size of the cliques to be written into
the output file. The minimum size must not be smaller than 2 if using
algorithm 1, and not smaller than 3 if using algorithm 2.

Example 1 To illustrate the gcliq command we use the graph shown
in Figure 1. The corresponding data file is gd16.dat, the command file
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Figure 1 Undirected graph for examples (gd43.cf).

for the examples is gd42.cf. The upper part of Box 1 shows the output
file if alg=1, the lower part shows the output file if alg=2. The columns
show, respectively: the component number (C), the number of the clique
(NC), the number of nodes in the clique (N), and finally the external
node numbers of the nodes contained in the clique. Notice that there
is a bug in our implementation of the Harary-Ross algorithm: it is not
always able to detect that a clique is actually part of a larger clique and
should not be written, therefore, into the output file. We allow for this
bug in order to save internal memory and overhead.
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Box 1 Output files from gcliq command

Algorithm 1

C NC N list of node numbers

------------------------------------

1 1 4 3 2 1 4

1 2 3 3 2 5

1 3 3 3 6 4

1 4 3 3 6 5

Algorithm 2

C NC N list of node numbers

------------------------------------

1 1 4 1 2 3 4

1 2 3 4 2 3

1 3 3 3 2 5

1 4 3 4 3 6

1 5 3 3 5 6
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7.2.9.2 Compact Sets

Let G = (N , E , v) denote an undirected valued graph with n nodes. A
subset C ⊂ N is called a compact set if

1 < |C | < n, and
max{ v(i, j) | i, j ∈ C } < min{ v(i, j) | i ∈ C, j ∈ N − C }

A graph can have none, one, or more than one compact set, the maximum
is n−2. If there are two or more compact sets, they are disjoint or nested.

To find the compact sets of an undirected valued graph we use an
algorithm developed by Liang [1993]. The command is gcset with syntax
shown in the following box.

gcset (

opt=..., output option, def. 1
1 = one record for each compact set
2 = one record for each node

alg=..., MST algorithm, def. 1
1 = Kruskal
2 = Prim

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for flow values, def. 10.4
df=..., print pseudo image graph

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected valued graph. Since the algorithm is based on first creating
a minimum spanning tree of the graph, one can use the alg parame-
ter to select Kruskal’s or Prim’s algorithm, see Section 7.2.5.2. Notice
that the algorithm is applied to each connected component of the graph
separately.

Example 1 To illustrate the gcset command we use the graph shown
in Figure 1. (The example is taken from Liang [1993].) The corresponding
data file is gd13.dat, the command file for the examples is gd39.cf.
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Figure 1 Undirected valued graph for examples (gd38.cf).

The upper part of Box 1 shows the output file if opt=1 (default). The
first column numbers the connected components of the graph. In our
example, there is only a single component. The second column counts
the compact sets found in the component. In this example, we find
three compact sets, {1, 3}, {4, 6}, and {1, 2, 3, 5}. The third column of
the output file shows their size, followed by their diameter, defined by
max{ v(i, j) | i, j ∈ C }, and the minimal distance, min{ v(i, j) | i ∈ C, j ∈
N −C }. The same information is given if opt=2 but the output file will
then contain one record for each node. Finally, if the df parameter is
used, the command creates an additional output file as shown in the
lower part of Box 1. Its contents correspond to an edge list for a reduced
graph whose nodes are the compact sets, or single nodes, of the original
graph. The columns labeled i and j show the internal node numbers, the
columns labeled N(i) and N(j) show the corresponding external node
numbers, respectively. If one of the nodes is a compact set, indicated by
its size in column 5 or column 6, the set is represented by its lowest node
number. Finally, the last column contains the minimal distance between
the nodes in the reduced graph.
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Box 1 Output files from gcset command

Option 1

C NC S diameter distance nodes

-------------------------------------------------------

1 1 2 1.0000 3.0000 1 3

1 2 2 2.0000 8.0000 4 6

1 3 4 7.0000 8.0000 1 2 3 5

Option 2

1 1 2 1.0000 3.0000 1

1 1 2 1.0000 3.0000 3

1 2 2 2.0000 8.0000 4

1 2 2 2.0000 8.0000 6

1 3 4 7.0000 8.0000 1

1 3 4 7.0000 8.0000 2

1 3 4 7.0000 8.0000 3

1 3 4 7.0000 8.0000 5

Output from df parameter

i j N(i) N(j) S1 S2 distance

---------------------------------------

1 4 1 4 4 2 8.0000
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7.2.9.3 Independent Sets

Let G = (N , E) denote an undirected graph. A subset U ⊂ N is called
an independent set if for all i, j ∈ U there isn’t an edge (i, j) in E . U is
called maximal if when adding a node, U is no longer an independent set.
An independent set that has maximal cardinality is called a maximum
independent set .

In order to find a maximum independent set one would need an enu-
merative procedure, or some variant, and this will only be feasible for
very small graphs. We therefore use an algorithm developed by Feo, Re-
sende and Smith [1994] that is based on a randomized search procedure.
The command is giset with syntax shown in the following box.

giset (

mxit=..., max number of iterations, def. 100
idf=..., values for α and β, def. 0.1,0.1
seed=..., seed of random number generator,

def. 270001
min=..., minimal size of independent set
gn=..., graph number, def. 1
cg=..., 1 to use complementary graph, def. 0
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected graph. By default, the algorithm tries to find a maximum in-
dependent set and uses the maximum number of iterations specified with
the mxit parameter. The best independent set found in these iterations
is finally reported and written into the output file. If the min parameter
is used to specify a required minimum size for the independent set, it-
erations are stopped as soon as an independent set having the required
size is found. If silent = -1, the command reports about its iterations
on the standard error output.

For its randomized search procedure, the algorithm uses a random
number generator proposed by Schrage [1979]. One possibility to control
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Figure 1 Undirected graph used for examples (gd36.cf).

the algorithm is to select different seeds with the seed parameter (must
be a positive integer). Further control is possible with the parameter
idf = α, β where 0 < α, β ≤ 1. For a full description of these (and
some additional) parameters, see Feo et al. [1994]. (Since our implemen-
tation of the algorithm is preliminary, we haven’t made available all of
its parameters in the giset command.)

A further option is provided by the cg parameter. By default, the
giset command searches for a maximum independent set in the graph
defined by the current gdd data structure. The cg=1 parameter can be
used to request that the search is done in the complementary graph,
meaning a graph Gc = (N , Ec) where Ec is the complement of E . A
maximum independent set in this complementary graph will then provide
a maximal clique (maximal complete subgraph) of the original graph.

The resulting output file contains one record for each node being
a member of the independent set. There are three columns. Column 1
counts the records, columns 2 and 3 contain, respectively, the internal
and external node numbers.

Example 1 To illustrate the giset command we use the graph shown
in Figure 1. The corresponding data file is gd12.dat, the command file
for the examples is gd37.cf. With default parameters the giset com-
mand finds the independent set {3, 6}. Using the cg=1 parameter to
search for a maximum independent set in the complementary graph, we
find {2, 3, 4, 5} corresponding to the largest clique in the original graph.
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7.3 Combinatorial Optimization

This section describes a variety of commands which, more or less, refer
to problems of combinatorial optimization. Subsections are as follows.

7.3.1 Assignment Problems describes commands for simple and quad-
ratic assignment problems.
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7.3.1 Assignment Problems

This section describes commands for solving simple and quadratic as-
signment problems. Subsections are as follows.

7.3.1.1 Column Permutations describes a command that finds opti-
mal permutations of matrix columns.

7.3.1.2 Quadratic Assignment describes a command that finds solu-
tions of the quadratic assignment problems.
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7.3.1.1 Column Permutations

Given an (n, n) matrix D = (dij), a simple assignment problem consists
in finding a permutation of column indices, say π, such that

n∑
i=1

di,π(i) −→ min

To solve this problem, we use an algorithm developed by Carpaneto and
Toth [1980]. The command is gap with syntax shown in the following
box.

gap (

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
df=..., write permuted matrix

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The command requires as input a graph defined with
the gdd command. It is expected that edge values are integral. In any
case, edge values will be casted into integer values without warning. By
default, the command only writes the optimal permutation vector into
its standard output file. As an option, one can use the df parameter to
request an output file containing the permuted matrix.

Example 1 To illustrate the gap command we use the data shown in
Box 1. The data file is co1.dat, the command file for the example is
co1.cf. Output files are shown in Box 2.
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Box 1 Example data file co1.dat

60 0 0 76 0 0

0 40 18 0 60 24

60 16 2 4 0 40

0 27 18 3 55 75

0 40 62 16 11 53

28 4 10 84 0 16

Box 2 Output files from gap command

standard output file

i p(i)

-------

1 6

2 4

3 3

4 1

5 5

6 2

second output file (permuted matrix)

---------------------------

0 76 0 60 0 0

24 0 18 0 60 40

40 4 2 60 0 16

75 3 18 0 55 27

53 16 62 0 11 40

16 84 10 28 0 4
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7.3.1.2 Quadratic Assignment

Given two integer-valued and symmetric (n, n) matrices, D = (dij) and
F = (fij), the quadratic assignment problem consists in finding a per-
mutation, say π, such that

n∑
i=1

n∑
j=1

dijfπ(i),π(j) −→ min

Finding exact solutions is only possible for small matrix dimensions. To
solve the problem for large matrices, we use an algorithm developed by
Resende, Pardalos, and Li [1996]. The algorithm uses a greedy, random-
ized, adaptive search procedure (GRASP) in order to find an approxima-
tive solution.

The command is gqap with syntax shown in the following box. All
parameters except for an output file to be specified on the right-hand
side are optional.

gqap (

alg=..., algorithm, def. 1
1 = approximative solution

mxit=..., max number of iterations, def. 100
seed=..., seed of random number generator,

def. 270001
idf=..., specification of α and β, def. idf=0.25,0.5
gn=..., graph number for D and F
df=..., write permuted matrix
nfmt=..., integer print format, def. 4

) = fname;

The command expects two integer-valued graphs whose graph numbers
must be specified with the gn parameter. By default, the command uses
the first two graphs of the current multigraph. The algorithm always
performs the maximum number of iterations specified with the mxit
parameter. Further control is possible with the seed parameter that
specifies a seed for the random number generator (Schrage [1979]), and

d07030102.tex January 18, 1999



7.3.1.2 quadratic assignment 2

Box 1 Example data file co2.dat

F D

------

1 5

7 3

2 1

Box 2 Output files from gqap command

standard output file

i p(i)

-------

1 2

2 1

3 3

second output file (permuted multigraph)

i j N(i) N(j) F D

---------------------------

1 1 1 1 0 0

1 2 1 2 1 5

1 3 1 3 2 3

2 1 2 1 1 5

2 2 2 2 0 0

2 3 2 3 7 1

3 1 3 1 2 3

3 2 3 2 7 1

3 3 3 3 0 0

with the idf parameter that can be used to specify values for α and β
(0 < α, β ≤ 1) for the GRASP procedure.

Example 1 To illustrate the gqap command we use the data shown in
Box 1. The data file is co2.dat and contains the lower triangles of the
F and D matrices, respectively. (The multigraph is defined with option
3 of the gdd command.) The command file for the example is co2.cf.
Output files are shown in Box 2. The best cost value found is 36.
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7.4 Representation of Proximities

This part of the manual deals with methods for the representation of
proximities between a set of objects. We shall use the following termi-
nology and notation. Ω = {ω1, . . . , ωN} is a set of N objects. A proximity
index d is a mapping of Ω×Ω into the set of nonnegative real numbers.

1. The proximity index d is called a pseudo-distance, if it is symmet-
ric, that is, d(ωi, ωj) = d(ωj , ωi) for all ωi, ωj ∈ Ω.

2. A pseudo-distance d is called a dissimilarity , if d(ωi, ωj) = 0 im-
plies ωi = ωj .

3. A dissimilarity index d is called a distance, if we have in addition
the triangle inequality, that is, d(ωi, ωk) ≤ d(ωi, ωj) + d(ωj , ωk),
for all

Ω is called a metric space if d is a distance, it is sometimes called a
premetric space if d is a pseudo-distance or dissimilarity.

There is obviously a close connection between the notion of proxim-
ities and the concept of an undirected valued graph, say G = (N , E , v).
We can assume that each node of the graph represents one of the objects
and v(i, j) provides the proximity between objects i and j. Consequently,
we will assume that our input data are given by a relational data struc-
ture that defines a valued graph. Most procedures also assume that the
graph is undirected corresponding to a symmetric proximity matrix and
that edge values can be interpreted as providing (at least) a pseudo-
distance. We do not require that the graph is complete. Following our
general conventions about relational data, only non-negative edge values
define valid edges.

As a useful side effect of the assumption that proximities are given by
a valued graph, we get a clear distinction between two essentially differ-
ent questions: (1) How to define proximities for a set of objects, and (2)
how to represent the proximities. All procedures discussed in this section
of the manual assume that the first question has been settled in some
way and focus solely on the second question. There remains, of course, a
somewhat obscure borderline to procedures commonly discussed under
the heading of “cluster analysis”. However, we shall not try to find a
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clear distinction between “representation” and “clustering”. Some stan-
dard clustering procedures will be discussed in a separate section of the
manual. Subsections in this part are as follows.

7.4.2 Spectrum-based Projections deals with projection methods that
use the eigenvalues and eigenvectors of a proximity matrix.

7.4.4 Comparing Configurations deals with the question how to com-
pare representations of a proximity matrix.

7.4.5 Tree Representations describes approaches that use trees to
represent a proximity matrix.
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7.4.2 Spectrum-based Projections

This section deals with projection methods for proximity matrices based
on their eigenvalues and eigenvectors. The subsections are as follows.

7.4.2.1 Direct Projection of Proximities

7.4.2.2 Spectrum-based Configurations
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7.4.2.1 Direct Projection of Proximities

We assume as given an (n, n) proximity matrix, D = (dij), such that dij

can be interpreted as a dissimilarity index for objects i and j. We can
then view the ith row of D as a representation of the location of object
i with respect to all other objects. On the other hand, we can also think
of the rows of D as points in an n-dimensional space. This view leads
to the question whether it may make sense to construct a projection of
D onto a lower dimensional space, most often a plane, that can provide
some information about the structure of D.

This section describes one possibility to construct such a projection,
directly based on D. We shall therefore assume that D is complete, mean-
ing there is a valid dissimilarity index dij ≥ 0, for all pairs of objects, i
and J . Or otherwise, that missing values can sensibly be substituted by
a zero proximity. Since we are finally interested in a graphical display,
we restrict the discussion to projections onto a plane.

We begin with a short reminder of the notion of projection, for a
detailed discussion see, e.g., Anton and Rorres [1991, Sec. 5.3]. In doing
this we refer to n-dimensional Euclidean space, Rn. If u is any vector in
Rn, it is written as a column vector u = (u1, . . . , un)′, with u1, . . . , un

the standard coordinates of u, that is, its coordinates with respect to
the standard basis of Rn that is given by the column vectors in the
identity matrix In. Of course, instead of the standard basis, In, one
can represent the vectors in Rn by any other basis, that is, a set of n
independent vectors. It is particularly convenient to use an orthonormal
basis, that is, a set of n vectors which are mutually orthogonal and have
unit length. It follows that the columns of an (n, n) matrix V form an
orthonormal basis for Rn if V is an orthogonal matrix, that is

V ′V = V V ′ = In

If we have such an orthonormal basis, say V , we can represent any vector
u in Rn with respect to this (new) basis by w = V ′u. The vector w rep-
resents the coordinates of u with respect to V . The standard coordinates
of u are then given by u = V w.

Now, let W be a two-dimensional subspace of Rn, and let a basis
for this plane be given by two linear independent vectors w1 and w2.
This implies that any vector (point) in W can be written as a linear
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combination of w1 and w2. We can then use the following theorem of
linear algebra (see, e.g., Anton and Rorres [1991, p. 239]):

If u is any vector in Rn, then:

1. u can be expressed in exactly one way as u = a + b, where a and b
are also vectors in Rn and have the following properties:

a is contained in W , that is, a can be written as a = a1w
1 +a2w

2;1

and b is orthogonal to W , that is, b is orthogonal to all vectors in
W .2 It follows that u′u = a′a + b′b.

The vector a is called the orthogonal projection of u on W ; and b
is called the component of u orthogonal to W .

2. If {w1, w2} is an orthonormal basis for W , then the coordinates of
a with respect to this basis are given by

a = (u′w1)w1 + (u′w2)w2 (1)

This result can be used to find a projection of the rows of the proximity
matrix D onto a plane which is, in a sense, optimal, meaning that the
projections onto the plane have a maximal length and the components
that are orthogonal to the plane have minimal length. The calculation
begins with a singular value decomposition of D. We then have

D = UΛV ′

with orthogonal (n, n) matrices U and V , and a diagonal (n, n) matrix
Λ containing the singular values, λ1, . . . , λn. Since V is orthogonal, it
immediately provides an orthonormal basis for Rm, m being the rank of
V and equals the rank of D.3 Defining then

H = DV = UΛ

we see that the rows of H contain the coordinates of the rows of D with
respect to the orthonormal basis V .

1Note that a1 and a2 are scalars, the coordinates of a with respect to the basis
{w1, w2} of W ; w1 and w2 are, of course, vectors.
2In particular, b is orthogonal to w1 (b′w1 = 0) and to w2 (b′w2 = 0); it then
immediately follows that b is orthogonal to all vectors in W .
3Of course, rank(D) ≤ n− 1. However, since we are finally only interested in projec-
tions onto a plane, it suffices to assume that m, the rank of D, is at least 2.
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Now, take any two columns of V , say vr and vs, to define a two-
dimensional subspace, i.e. a plane for the projection, and let di be the
ith row of D (written as a column vector). By the theorem given above,
di can be expressed as di = pi + qi with pi the orthogonal projection
of di onto the plane spanned by vr and vs, and qi the component of di

that is orthogonal to this plane. We want to maximize the length of the
projections, pi, for all rows of D, that is

Σi ‖ pi ‖2 = Σip
′
ipi → max

As seen by (1), the coordinates of pi with respect to V are given by
the rows of Dvr (first coordinate) and Dvs (second coordinate).4 Con-
sequently,

Σip
′
ipi = v′rD

′Dvr + v′sD
′Dvs

= λru
′
rurλr + λsu

′
susλs

= λ2
r + λ2

s

since ur and us are columns of the orthogonal matrix U (U ′U = In).
The result is that, to find an optimal plane to project the rows of D,
one should use the columns of V , say vr and vs, which correspond to
the two largest singular values of D. So the coordinates to be used for a
two-dimensional display of the structure of D should be Dvr and Dvs.
Of course, the quality of the projection depends on the spectrum of D.
Some indication is given by the relative size of the singular values which
can be summarized by the following indicator:√

(λ2
r + λ2

s) / Σt,lλ2
t,l (2)

The nominator equals the total length of the projected rows of A, and
the denominator equals their total length before projection.

4Explicitly written, pi = (d′ivr, d′ivs)′.
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7.4.2.2 Spectrum-based Configurations

We assume as given a complete (n, n) proximity matrix, D = (dij), such
that dij can be interpreted as a dissimilarity index for objects i and j.
Instead of directly projecting D onto a plane, as was discussed in Section
7.4.2.1, one can look for a configuration of n points in a metric space
such that their metric distances in some sense optimally approximate the
given proximities. There are different approaches to this problem. Here
we discuss what is sometimes called classical metric scaling (Torgerson
[1965]). Starting point is the definition of an (n, n) matrix A = (aij) by

aij = −1
2
(d2

ij − d2
i. − d2

.j + d2
..) (3)

where

d2
i. =

n∑
j=1

d2
ij/n , d2

.j =
n∑

i=1

d2
ij/n , d2

.. =
n∑

i=1

n∑
j=1

d2
ij/n2

Since D is symmetric, also A is symmetric; and all row and column sums
of A are zero, implying that rank(A) ≤ n − 1. The proximities dij can
be recovered by using the formula

d2
ij = aii − aij − aji + ajj (4)

Now, using this matrix A, one can formulate the following theorem: If,
and only if, A is positive semi-definite, there is a dimensionality m and a
set of n vectors x1, . . . , xn ∈ Rm so that the Euclidean distances d(xi, xj)
equal the proximities dij that have been used to define A. For a proof
see, e.g., Falk et al. [1995, p. 269]).

Let us then assume that A is positive semi-definite, with rank(A) =
m < n. (What to do if A is not positive semi-definite will be discussed
below.) Since A is also symmetric, it has exactly m positive real eigen-
values, and the remaining n −m eigenvalues are zero.1 We can assume

1Properties of symmetric matrices are discussed in most linear algebra texts; see, e.g.,
Anton and Rorres [1991]. Here are some of the basic facts. Let A be a symmetric (n, n)
matrix. Then: (1) All eigenvalues of A are real, and the rank of A equals the number
of non-zero eigenvalues. (2) The system of eigenvectors of A, say R, can be chosen to
be orthogonal, that is, R′R = RR′ = I. (3) A is orthogonally diagonalizable, that is,
A = RΛR′, with Λ the diagonal matrix of eigenvalues of A. (4) A is positive definite
[semi-definite] if, and only if, λ > 0 [λ ≥ 0] for all eigenvalues of A.
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that these eigenvalues are in descending order: λ1 ≥ · · · ≥ λn. Let
Λ = diag{λ1, . . . , λn} denote the diagonal matrix containing the eigen-
values, and let R denote the (n, n) matrix of the corresponding (column)
eigenvectors. We then have

AR = RΛ

Furthermore, since A is symmetric and positive semi-definite, the eigen-
vectors can be normalized in such a way that R becomes an orthogonal
matrix, that is, RR′ = I. It follows that A can be expressed as

A = RΛR′ = ZZ ′ with Z = RΛ1/2

Finally, since there are only m positive eigenvalues and λm+1, . . . , λn =
0, it suffices to define an (n, m) matrix X by using only the first m
columns of Z, and we have A = XX ′. This matrix X, a set of n row
vectors in Rm, provides the solution for the classical metric scaling prob-
lem. As is easily verified by using (4), one finds for the squared Euclidean
distances of the points in X the equality

d2(xi, xj) = (xi − xj)′(xi − xj)
= x′ixi − x′jxi − x′ixi + x′jxj

= aii − aij − aji + ajj = d2
ij

To summarize this result: If the matrix A, based on the given proximity
matrix D = (dij), is positive semi-definite with rank(A) = m, we can find
n points in Rm so that their Euclidean distances equal the dissimilarities
pij .

If A is not positive semi-definite. In general, beginning with an ar-
bitrary proximity (dissimilarity) matrix D = (dij), there is no guarantee
that the corresponding matrix A is positive semi-definite. The method,
discussed above, to find a solution for the classical metric scaling problem
is then not applicable. One can try, however, to find an approximative
solution. Two approaches have been discussed in the literature.

First, one can nevertheless apply the method described above.2 As-
suming that D is symmetric, all eigenvalues will be real, but not neces-
sarily non-negative. Then, in constructing the configuration X, one can
simply use only eigenvectors corresponding to positive eigenvalues. If the

2See, for instance, Everitt and Dunn [1991, p. 72].
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spectrum of A is dominated by positive eigenvalues, X will provide an
approximative solution.

Second, one can try to find a proximity matrix D̃ that comes close to
the original matrix D in such a way, that Ã (constructed by definition (3)
applied to D̃) is positive semi-definite. The method to solve the classical
scaling problem can then be applied to D̃ instead of D.

In describing this approach, we follow Falk et al. [1995, p. 272]. We
assume that A, based on D, is not positive semi-definite. If A’s eigen-
values are in descending order, this implies that λn < 0. We can then
define a matrix Dα = (dα,ij) by

dα,ij = dij + α (1− δij)

where α ≥ 0 is a real number and δij denotes the Kronecker delta.3 We
want to find an α so that Aα, based on Dα, is positive semi-definite. As
shown by Falk et al. [1995, p. 272], this can be achieved with the help of
a matrix

B = −1
2

EDE with E =
(

δij −
1
n

)
Let µn denote the smallest eigenvalue of B. Then Aα is positive semi-
definite for all

α ≥
√

4µ2
n − 2λn − 2µn

We get the smallest α by using the right-hand side of this inequality.
One should note, however, that this is not necessarily the smallest α
that makes Aα positive semi-definite.

Normalizing configurations. Euclidean distances of the points in a
configuration X are invariant with respect to translations and orthogonal
rotations. Let X be an (n, m) matrix. We can then add an arbitrary m-
vector, say a, to each of its rows, so that

d(xi + a, xj + a) = d(xi, xj)

where d(., .) is used to denote Euclidean distances. Also, if V is an (m,m)
orthogonal matrix (V V ′ = V ′V = I), then

d(V xi, V xj) = d(xi, xj)

3δij = 1 if i = j and zero otherwise.
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Therefore, since classical metric scaling is based on Euclidean distances,
any orthogonal rotation of the resulting configuration provides a solu-
tion. This allows to apply Procrustes rotation to compare different con-
figurations, see Section 7.4.4.1. On the other hand, there is no natural
way to select one specific orthogonal rotation. It makes sense, however,
to normalize the resulting configuration in such a way that its centroid,
defined as

x̄ =
( 1

n
Σixi1, . . . ,

1
n

Σixim

)′
becomes zero.

Approximative Solutions. If A, based on a given proximity matrix
D, is positive semi-definite, one can find a configuration X in such a way
that the Euclidean distances between its row vectors exactly reproduce
the given dissimilarities dij . This requires the rows of X to be in Rm,
with m = rank(A). Of course, to get an approximative solution, one
can use less than m, say q, dimensions, corresponding to the q largest
eigenvalues of A. The question then is how to measure the quality of the
approximation.

An often used measure is based on the relative size of the eigenvalues,
see, e.g., Everitt and Dunn [1995, p. 72]. Assuming the eigenvalues are
in descending order, the definition is

Mq =
q∑

k=1

λk

/ m∑
k=1

λk

With a small modification, this measure can also be applied if A is not
positive semi-definite. The definition then becomes

M ′
q =

q∑
k=1

λk

/ n∑
k=1

|λk|

Of course, these measures only provide some mean value for the quality
of approximation. An alternative criterion can be defined as in general
metric scaling. The objective function would then be

T (X) =

(∑
j<i (d(xi, xj)− pij)2∑

j<i d(xi, xj)2

)1/2
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Note, however, that using less than m coordinates (m = number of posi-
tive eigenvalues of A) does not necessarily minimize T (X). In most cases,
direct minimization of T (X) will result in slightly better approximations.

We finally mention that one can look at the problem in a somewhat
different way. An accurate solution would be provided by an (n, m) con-
figuration X with m = rank(A). For a two-dimensional plot, one would
only use the first two dimensions, say X̃, corresponding to the two largest
eigenvalues of A. Each row of X, say xi ∈ Rm, is then projected onto
the corresponding row of X̃, that is x̃i ∈ R2. We can then compare the
length of xi with the length of x̃i. The indices

mi = ‖ x̃i ‖ / ‖ xi ‖

provide a measure for the quality of projecting xi.
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7.4.4 Comparing Configurations

This section is intended to discuss methods for comparing configurations.
Subsections are as follows.

7.4.4.1 Procrustes Rotation describes a command for Procrustes ro-
tation of configurations.
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7.4.4.1 Procrustes Rotation

Assume two (n, m) matrices, X and Y . Procrustes rotation (for an in-
troduction see, e.g., Mardia et al. [1979, pp. 416–419]) tries to find a
transformation of Y ,

Ỹ = αY R + B (5)

in such a way that Ỹ approximates X in a best possible way. Allowed
transformations are multiplication with a scalar α, rotation with an
(m,m) rotation matrix R, and translation with an (n, m) translation
matrix B having identical rows, say b (called a translation vector). In
order to measure the approximation one most often uses a least-squares
criterion, meaning that one tries to minimize

‖ X − Ỹ ‖F =

(
n∑

i=1

‖ xi − ỹi ‖2
)1/2

(6)

subject to the possible transformations defined in (5). Here xi and ỹi

denote the rows of X and Ỹ , respectively. Assuming a Euclidean norm
on the right-hand side, the matrix norm on the left-hand side is called
Frobenius norm, then

‖ X − Ỹ ‖F =

 n∑
i=1

m∑
j=1

(xij − ỹij)2

1/2

It can be shown (for a proof, see Mardia et al. [1979, pp. 416–418]), that
minimizing (6) subject to all possible transformations (5) can be achieved
with the help of a singular value decomposition of Z = Y ′X. Let Z =
UΛV ′ be a singular value decomposition of Z, providing two orthogonal
(m,m) matrices U and V , and the diagonal matrix Λ containing the
singular values of Z. The optimal transformation minimizing (6) is then
given by

R̂ = UV ′ , b̂ = x̄− ȳR̂ , α̂ =
trace (Λ)

trace (Y Y ′)
(7)
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Here x̄ and ȳ denote row vectors of length m containing the mean values
of the columns of X and Y , respectively.

Procrustes rotation in TDA is implemented as a matrix command, mproc.
The syntax is

mproc(X,Y,Y1);

where X, Y and Y 1 are matrix names. X and Y must refer to already de-
fined (n, m) matrices and must have identical dimensions. The command
returns the optimally transformed (n, m) matrix Ỹ in Y1. If silent=-1,
the scaling factor α, the translation vector b, and the rotation matrix R
will be written into the standard output.
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7.4.5 Tree Representations

This section considers some possibilities to use trees for a representation
of proximities between a set of objects. Our basic reference is Barthélemy
and Guénoche [1991], for an introduction see also Corter [1996]. For
our terminology regarding trees see Section 3.6.6. Here we add some
additional terminology and notation.

Tree Distances. In order to give a clear meaning to the problem of
representing a proximity matrix by a tree, one needs the concept of tree
distance. Let Tv = (N ,L, v) denote a valued tree with N = {1, . . . , N}
the set of its nodes, L the set of edges, and v(l) providing nonnegative
values for the edges l ∈ L. By definition, there is a unique path con-
necting each pair of nodes i, j ∈ N . We can then define the length of a
path as the sum of the values of the edges in the path, and arrive at the
following definition of a proximity index for the objects in N :

dv(i, j) = length of the path connecting i and j

Adding the convention that dv(i, i) = 0, this index is a distance as defined
in Section 7.4 and will be called a tree distance (based on the tree Tv);
(N , dv) will be called the metric space induced by the tree Tv.

Using this notion of tree distance, a preliminary definition of the
tree representation problem can be given as follows: Given a proximity
matrix D = (d(ωi, ωj)) for a set of objects, Ω = {ω1, . . . , ωN}, find a
valued tree such that its tree distance, dv(i, j), in some optimal sense
approximates d(ωi, ωj). As a commonly used measure for evaluating the
approximation, we consider the least squares criterion∑

ωi,ωj∈Ω

(d(ωi, ωj)− dv(i, j))2

This definition of the tree representation problem is, however, not very
general. In fact, we have implicitly assumed a trivial mapping of the
objects in Ω to the node set N and, for many applications, this is too
restrictive. A more general formulation can be achieved with the con-
cept of evolutionary trees (called ‘X-trees’ by Barthélemy and Guénoche
[1991]).
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Evolutionary Trees. In introducing this concept we follow Barthélemy
and Guénoche [1991]. An evolutionary tree (wrt Ω) is defined as T =
(N ,L, g) such that:

1. (N ,L) is a tree,

2. g is a mapping from Ω into N ,

3. all nodes in N − g(Ω) have degree ≥ 3.

The mapping g is sometimes called the labeling of the evolutionary tree;
the nodes in g(Ω) are then called real nodes and the nodes in N − g(Ω)
are called latent nodes. In addition we use the following terminology.

1. An evolutionary tree is called free if its labeled nodes, g(Ω) are
identical with its leaves, that is, nodes having degree 1.

2. An evolutionary tree is called constrained if it does not contain any
latent nodes, i.e. g(Ω) = N .

3. An evolutionary tree is called separated if the mapping g is injec-
tive, that is, g(ωi) 6= g(ωj) if ωi 6= ωj .

Like any other tree, an evolutionary tree can be valued by adding a
mapping v from the set of its edges, L, into the nonnegative real numbers;
we will then use the notation T = (N ,L, g, v). Furthermore, one can
consider rooted evolutionary trees where one of its nodes is selected as a
root for the tree.

It is now easily seen that the concept of evolutionary tree provides an
essentially more general approach to the tree representation problem. A
simple approach only considers constrained evolutionary trees by identi-
fying the objects in Ω with the nodes of the tree. In contrast, a general
evolutionary tree may contain any number of latent nodes in order to
reach a better representation of the proximities given for Ω.

A more general formulation of the tree representation problem, based
on the concept of evolutionary trees, can now be given as follows: Given
a proximity matrix D = (d(ωi, ωj)) for a set of objects Ω, find a valued
evolutionary tree (wrt Ω) such that its tree distance dv(i, j) provides a
good approximation for d(ωi, ωj). As before, we take the least squares
criterion as our standard measure to evaluate the approximation.

There is obviously a broad range of possibilities for fitting evolution-
ary trees to a given proximity matrix. The current discussion mainly
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focuses on three different kinds of tree distances: centroid, ultrametric,
and general additive distances.

Hierarchical Trees. Any rooted tree can be viewed as representing a
hierarchy where the place of each node in the hierarchy is defined by the
path connecting the node with the root. Using the concept of evolution-
ary trees, a hierarchical evolutionary tree (wrt Ω) can be defined as a
rooted evolutionary tree which is both free and separated. The objects
in Ω are then mapped onto the leaves of the tree, and the latent roots
provide the hierarchy. While in general the definition of an evolutionary
tree requires that all latent roots have degree ≥ 3, we make an excep-
tion for the root of a hierarchical evolutionary tree; the root may have
a degree ≥ 2.3

A hierarchical evolutionary tree can be viewed as a hierarchical clus-
tering scheme (Johnson [1967]) for the set of objects, Ω. To provide a
formal definition, let C denote a set of subsets of Ω. C is then called a
hierarchical clustering scheme (HCS) if

1. Ω ∈ C, ∅ /∈ C

2. for all ω ∈ Ω: {ω} ∈ C

3. for all C,C ′ ∈ C: C ∩ C ′ ∈ {C,C ′, ∅}.

Defined this way, C provides a hierarchical clustering of the objects in
Ω. At the lowest level, each ωi constitutes a separate class; the objects
are then successively merged into new classes until there is finally only
a single class, Ω.

A hierarchical clustering scheme is isomorphic to a hierarchical evo-
lutionary tree (wrt Ω). To see this more clearly, remember the definition
of a partial order relation given for general trees in Section 3.6.6. To
repeat the definition in the present context, we say that i � j, for two
nodes i, j ∈ N , if j lies on the path connecting i with the root of the
tree. This in turn leads to the definition of classes associated with the
nodes of a hierarchical evolutionary tree as follows:

C(i) = {ω ∈ Ω | g(ω) ≤ i} for i ∈ N

The set of classes C(i) then constitutes a hierarchical clustering scheme.

3See Barthélemy and Guénoche [1991, p. 22].
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7.4.5.1 Hierarchical Trees

To get a better understanding of a hierarchical clustering scheme (HCS),
some additional concepts are helpful. As a first step, we note that a
HCS can be represented as a rooted tree where the leaves of the tree are
identified with the single-object clusters {ω1}, . . . , {ωn}, and the root is
identified with the single cluster Ω. All other classes of the HCS corre-
spond to internal nodes of the tree. The tree is binary, that is, except
for the leaves, all internal nodes of the tree have degree 3, and the root
has degree 2.

To see more precisely that a HCS is isomorphic to a rooted tree, let
T = (N ,L, r) denote a tree with node set N , edge set L, and r the
root. We assume that the tree has n leaves representing the objects in
Ω. There is then a mapping

g : Ω −→ N

such that for each ω ∈ Ω, g(ω) is a leave of the tree T .
One can then define a partial order relation as follows: We say that

i ≤ j, for two nodes i, j ∈ N , if j lies on the path connecting i with the
root of the tree. This in turn leads to the definition of classes associated
with the nodes of a rooted tree as follows:

C(i) = {ω ∈ Ω | g(ω) ≤ i} for i ∈ N

The set of classes C(i) then constitutes a HCS for the objects in Ω.
To provide additional information about an HCS, we can view the

HCS as a sequence of partitions Pr (r = 0, 1, . . . , n − 1). We can then
associate with each partition a numerical level providing information
about how the partition was created. To define these levels, say L(Pr),
we use the dissimilarity measure ρ introduced in the previous section.
For the initial partition we set L(P0) = 0. Then, for r > 0, we define

L(Pr) = min{ρ(C,C ′) | C,C ′ ∈ Pr−1}

Having these numerical levels for the partitions, we can immediately also
define a level function for the classes C ∈ C by

σ(C) = min{L(Pr) | C ∈ Pr}
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Whether we will find a monotonic sequence, L(P0) < L(P1) < · · · <
L(Pn−1) will, in general, depend on the algorithm used to create the HCS.
For instance, while the single-link method always generates monotonic
sequences of levels, the centroid methods can lead to non-monotonic
sequences.1

If we find a monotonic sequence of levels, L(Pr), then also the associ-
ated level function σ for the classes C ∈ C is monotonic in the following
sense:

σ(C) < σ(C ′) if C ⊂ C ′ and C 6= C ′ (8)

We can then represent the HCS by a dendrogram. This is a special type
of a tree representation for C, where the nodes representing the classes
C ∈ C are plotted according to σ(C), that is, according to their distance
from the initial partition.

Following Barthélemy and Guénoche (1991, p. 93), we will call an
HCS an indexed hierarchy if its associated level function is monotonic.
There is obviously a close connection with the concept of a dendrogram:
an HCS can be represented by a dendrogram if, and only if it can be
viewed as an indexed hierarchy.

A further step in investigating the concept of HCS begins with the
question how the dissimilarity matrix D is represented by a HCS. In most
cases, the HCS provides only a more or less crude ”‘approximation”’.
What is meant by ”‘approximation”’ will be defined below. But we can
already note that using a binary tree to represent the dissimilarity matrix
for a set of n objects provides only limited degrees of freedom. The
number of nodes is 2n− 1, and the number of edges is 2n− 2. While the
dissimilarity matrix D can contain up to n(n− 1)/2 different entries, we
can represent only 2n− 2 of these values.

Additional insights are possible if we construct a valued tree for rep-
resenting the HCS C, say T = (N ,L, v, r) where v(l) provides the values
for l ∈ L. Each node of the tree represents a class C ∈ C; the leaves
represent the single-object classes, and the root represents Ω. We can
then use the level function σ(C) to find the value function v(l). This is
possible if, and only if the level function is monotonic as defined in (8).
Let l ∈ L be any edge of the tree. It connects two nodes of the tree, say
i, j ∈ N , representing the classes Ci and Cj of the HCS. We can assume
that j lies on a path from i to the root of the tree and, consequently,

1See the examples given by Jain and Dubes 1988, p. 84.
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Ci ⊂ Cj and Ci 6= Cj . We can then define

v(l) = σ(Cj)− σ(Ci) (9)

The monotonicity condition defined in (8) will guarantee that the edge
values are positive; and so we arrive at a valued tree that can graphically
represented by a dendrogram.

Now remember the concept of tree distance defined in Section ??.
The tree distance δ(i, j) between every two nodes i, j ∈ N is simply the
length of the unique path connecting i and j in the tree T and constitutes
a metric distance measure. This tree distance immediately also provides
a distance function for Ω by simply restricting δ on the set of leaves
representing Ω, or in terms of the mapping g:

δc(ωi, ωj) = δc(g(ωi), g(ωj))

So we arrive at another distance measure for the object set Ω, called the
cophenetic distance measure on Ω, associated with a HCS. Accordingly,
Dc = (δc(ωi, ωj)) is called the cophenetic matrix associated with a HCS.

This definition of cophenetic distance implies the monotonicity con-
dition (8). A slightly more general definition refers directly to the levels
L(Pr).2 The definition then becomes

δc(ωi, ωj) = min{L(Pr) | ωi, ωj ∈ C and C ∈ Pr}

Note, however, that in order to represent a cophenetic dissimilarity by a
valued tree, the monotonicity condition (8) is crucial.

If we assume this monotonicity, cophenetic dissimilarities become ul-
trametric distances. In general, a distance or dissimilarity d defined on
an object set Ω is called ultrametric if the ultrametric inequality holds,
that is

d(ωi, ωj) ≤ max {d(ωi, ωk)d(ωj , ωk)} for all ωi, ωj , ωk ∈ Ω

This ultrametric inequality implies the standard triangle inequality and,
consequently, an ultrametric dissimilarity index is also a metric distance.
Furthermore, since an ultrametric distance for n objects can be com-
pletely represented by a valued binary tree with 2n−2 edges, the distance
matrix has at most 2n− 2 distinct values.

For a proof that a cophenetic distance δc is ultrametric if, and only if
the level function of the HCS is monotonic, we refer to Barthélemy and

2See Jain and Dubes 1988, pp. 66–67.
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Guénoche (1991, pp. 91–95). They begin with a definition of spherical
tree distances. Let δ denote the tree distance constituted by the valued
rooted tree T with root r. δ is called a spherical tree distance if δ(i, r) =
δ(j, r) for all leaves i and J of the tree. The meaning is simply that all
leaves have the same distance to the root of the tree. It can be proved,
then, that a tree distance δ is spherical if, and only if the induced distance
for the leaves of the tree is ultrametric.

Now, assuming the monotonicity condition (8), the tree distance δ
defined by (9) is cleary spherical since all paths from the leaves to the root
of the tree have the same length. Using the just mentioned result from
Barthélemy and Guénoche, it follows that the corresponding cophenetic
distance is ultrametric.

On the other hand, assume that we have a representation of the
hierarchical clustering scheme C by a valued tree which induces an ul-
trametric distance, say δc, for the object set Ω. We can then construct
an indexed hierarchy. by adding a function σ to C.

Let C be any class in C represented by a corresponding node k of the
tree. If k is a leave of the tree, we simply set σ(C) = 0. If k is not a leave
of the tree, we proceed as follows. We select two leaves of the tree, say
i and j such that C is the smallest class containing both ωi and ωj . We
then have

δ(i, r) = δ(i, k) + δ(k, r)
δ(j, r) = δ(j, k) + δ(k, r)

Now, by using the just mentioned result about the equivalence of spher-
ical and ultrametric distances, since δc is ultrametric, the corresponding
tree distance δ is spherical. It follows by definition that δ(i, r) = δ(j, r)
and consequently δ(i, k) = δ(j, k). So we define σ(C) = δ(i, k). Since this
definition is independent of which leaves have been selected, it provides
an indexed hierarchy.

So we finally arrive at four equivalent concepts that can be used to
characterize an HCS with a monotonic level function:

1. The concept of an indexed hierarchy, Cσ, providing a level function
σ for the formation of clusters;

2. a dendrogram, providing a graphical display of an indexed hierar-
chy;

3. a spherical tree distance, δ, for the tree representing the HCS;
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4. and a corresponding ultrametric distance, δc, for the object set Ω.
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7.5 Clustering Procedures

This section deals with clustering procedures based on dissimilarity in-
dices for a given set of objects. We do not consider procedures that
implicitly calculate proximity measures from standard (case by variable)
data matrices but require that proximities have been established in a
separate step. All procedures require as input a valued, and most often
also undirected, graph.

7.5.1 Hierarchical Agglomerative Clustering describes hierarchical clus-
tering procedures that follow an agglomerative strategy.

7.5.2 Hierarchical Divisive Clustering describes hierarchical cluster-
ing procedures that follow a divisive strategy.

7.5.3 Non-hierarchical Clustering describes non-hierarchical cluster-
ing procedures.
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7.5.1 Hierarchical Agglomerative Clustering

This section describes procedures for hierarchical agglomerative clus-
tering based on an undirected valued graph where edge values can be
interpreted as dissimilarity indices.

7.5.1.1 SAHN Algorithms describes some standard SAHN algorithm
for hierarchical agglomerative clustering.

7.5.1.2 Nearest-Neighbor Clustering describes two clustering proce-
dures based on some version of a nearest-neighbor principle.
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7.5.1.1 SAHN Algorithms

A hierarchical clustering scheme (HCS) can be viewed as a sequence of
partitions (P0, P1, . . . , Pn−1) of the object set Ω. The initial partition is
P0 = {{ω1}, . . . , {ω}} containing n single-object classes. Then, at each
new level, two classes from the previous partition are merged into a
single class in the current partition. This motivates a general algorithm
for agglomerative hierarchical clustering as follows:

1. Begin with the partition P0 = { {ωi}, . . . , {ωn}} of the object
set Ω.

2. Given a partition Pi = {Ci1, . . . , Cini} containing ni = n − i
classes, find two classes Cij and Cik to be merged into a single
new class.

3. Create a new partition Pi+1 by substituting the classes Cij

and Cik by the single class Cij ∪ Cik.

4. As long as the new partition does not equal {Ω} continue with
step 2.

The question is how to perform the second step. The most popular family
of algorithms is called SAHN (sequential, agglomerative, hierarchical,
non-overlapping) algorithms, see Jain and Dubes [1988, p. 79]. The idea
is to introduce a dissimilarity measure for clusters and then to select
those two clusters for merging that are most similar (least dissimilar)
with respect to this measure.

In formal notation, let P = {C1, . . . , Cm} denote a partition of Ω
and ρ(Cj , Ck) a dissimilarity index for the clusters. We have to find two
clusters Cj′ and Ck′ such that

ρ(Cj′ , Ck′) = min
j,k
{ρ(Cj , Ck)}

All SAHN methods use a recursive definition of ρ beginning with

ρ({ωj}, {ωk}) = d(ωj , ωk)

Then, in each step of the agglomerative procedure, we have ρ for the
current partition which can be used to find two most similar classes for
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merging, say Cj and Ck. It then suffices to define ρ for the new partition
created by merging the two classes, that is, we need a definition for

ρ(Ci, Cj ∪ Ck)

We shortly describe a few different methods, each based on a different
choice of updating ρ. The methods are named according to their descrip-
tion in Jain and Dubes [1988, p. 80]; see also Anderberg [1973, ch. 6],
Späth [1975, pp. 170–172]. In describing these methods, |Cj | is used to
denote the number of objects in cluster Cj .

Single-Link Method.

ρ(Ci, Cj ∪ Ck) = min {ρ(Ci, Cj), ρ(Ci, Ck)}

Complete-Link Method.

ρ(Ci, Cj ∪ Ck) = max {ρ(Ci, Cj), ρ(Ci, Ck)}

Weighted Average Method.

ρ(Ci, Cj ∪ Ck) =
1
2

(ρ(Ci, Cj), ρ(Ci, Ck))

Weighted Centroid Method.

ρ(Ci, Cj ∪ Ck) =
1
2

(ρ(Ci, Cj), ρ(Ci, Ck))− 1
4
ρ(Cj , Ck)

Group Average Method.

ρ(Ci, Cj ∪ Ck) =
|Cj |ρ(Ci, Cj) + |Ck|ρ(Ci, Ck)

|Cj |+ |Ck|

Unweighted Centroid Method.

ρ(Ci, Cj ∪ Ck) =
|Cj |ρ(Ci, Cj) + |Ck|ρ(Ci, Ck)

|Cj |+ |Ck|
− |Cj ||Ck|

(|Cj |+ |Ck|)2
ρ(Cj , Ck)

Ward’s Minimum Variance Method.

ρ(Ci, Cj ∪ Ck) =
(|Ci|+ |Cj |)ρ(Ci, Cj) + (|Ci|+ |Ck|)ρ(Ci, Ck)− |Ci|ρ(Cj , Ck)

|Ci|+ |Cj |+ |Ck|
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Ties in Dissimilarities. In general, the different methods to update
ρ lead to different hierarchical clustering schemes. It is therefore an im-
portant question how to evaluate the different methods for a specific
analytical goal. Some discussion of this question can be found in the
literature.1 An additional problem occurs if the dissimilarity matrix D
for the objects in Ω contains ties. Since we have decided to merge only
two classes in each step of the agglomerative procedure, ties lead to
ambiguities in the sequential ordering of partitions. The only method
which behaves well in a situation with tied dissimilarities is the single-
link method. All other methods can show results that are more or less
influenced by ties, and in so far they depend on the implementation of
the algorithm. Unfortunately, there is no convincing solution for this
problem; see the discussion in Jain and Dubes [1988, p. 76–79].

Goodness-of-Fit. The question remains how to assess the adequacy
of a HCS for a dissimilarity matrix D. The meaning of this question
depends on the purpose of the HCS. If the purpose is to finally arrive
at a certain partition of the object set Ω, it seems impossible to provide
a clear definition of ‘adequacy’. If, on the other hand, the purpose is to
find a simplifying but in some sense adequate representation of D by
using a HCS, it might be possible to define some measure.

Assuming that the purpose is representation, in the context of hi-
erarchical clustering it seems sensible to look for a tree representation.
As shown above, having a HCS with a monotonic level function, it can
be represented by a valued binary tree. This tree provides a cophenetic
matrix Dc = δc(ωi, ωj)) that can be interpreted as a representation of D.
So we can compare D and Dc with respect to goodness-of-fit. A simple
approach could use a least-squares criterion

∆(D,Dc) =
n∑

i=2

i∑
j=1

(d(ωi, ωj)− δc(ωi, ωj))
2

If the purpose is to represent D this measure can be used to compare
different hierarchical clustering schemes. In fact, if D would be ultramet-
ric, it could be perfectly represented by a monotonic (single-link) HCS,
and ∆(D,Dc) would become zero. Of course, this will be almost never
the case in practical applications.

However, the reasoning shows what can be done with hierarchical
clustering if the purpose is representation of a dissimilarity matrix D.

1See Jain and Dubes [1988, ch. 4].
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Box 1 Syntax of hcls command

hcls (

opt=..., option, def. 1
1 = single-link
2 = complete-link
3 = weighted average
4 = weighted centroid
5 = group average
6 = unweighted centroid
7 = Ward’s minimum variance

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4
df=..., output file with dendrogram
pcf=..., plot file for dendrogram

) = fname;

These methods assume ultrametric distances as a model for D and based
on this assumption, they provide an optimal fit. This then leads imme-
diately to the question whether there are more general models and how
they can be fitted.

Implementation. The command for hierarchical clustering with SAHN

algorithms is hcls. The algorithm is adapted from Späth [1975, p. 172]
and supports all seven updating options. It requires a complete dissim-
ilarity matrix without missing values and needs storage for the lower
triangle of this matrix.2

The syntax of the hcls command is shown in Box 1. All parameters
except for the name of an output file on the right-hand side are optional.
This output file will contain information about the hierarchical merging
of objects into clusters. Optionally one can request two more output
files. Using the df parameter will create an output file that shows the
dendrogram as a standard edge list. The pcf parameter creates another
output file that can be used as a TDA command file to create a PostScript
plot of the dendrogram.

In order to illustrate the hcls command we use an example data
file taken from Späth [1975, p. 168]. It consists of the upper triangle

2If n is the number of objects, the required memory is n(n− 1)/2 times 4 bytes (for
single precision floating point numbers).
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Box 2 Data file cl1.dat

8 50 31 12 48 36 2 5 39 10

38 9 33 37 22 6 4 14 32

11 55 1 23 46 41 17 52

44 13 16 19 25 18 42

54 53 30 28 45 7

26 47 40 24 51

29 35 34 49

3 27 15

20 21

43

Box 3 Output file from hcls command

Idx Level CI CJ

------------------------

1 1.0000 3 6

2 2.0000 1 8

3 4.0000 2 9

4 7.0000 5 11

5 8.0000 1 2

6 13.0000 3 4

7 24.0000 3 10

8 33.0000 1 5

9 34.0000 3 7

10 55.0000 1 3

of a (11, 11) dissimilarity matrix and is shown in 2.3 The command file
cl1.cf uses this data set and performs a complete-link hierarchical clus-
tering. The standard output file is shown in Box 3. The first column
numbers the levels. At each level, shown in column 2, the clusters la-
beled CI and CJ are merged into a new one. The corresponding columns
contain representative node numbers and actually consist of all nodes
that have been merged with this representative node number on a lower
level.

How this merging actually proceeds becomes visible when looking at
the dendrogram shown in 1. It has been created with the output from
the pcf option. Finally, Box 4 shows the output file created by the df
parameter. It describes the dendrogram by a standard edge list. Leaves
correspond to the node numbers in the dissimilarity matrix, say 1, . . . , n.
Internal nodes are then added with node numbers n + 1, n + 2, . . .. The

3The name of the data file in the example archive is cl1.dat.
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1
8
2
9
5
11
3
6
4
10
7

Figure 1 Dendrogram created with cl1.cf for a
complete-link clustering of the data in Box 2.

Box 4 Output file from df option of hcls command (cl1.df)

I J value

-----------------

3 12 1.00

6 12 1.00

1 13 2.00

8 13 2.00

2 14 4.00

9 14 4.00

5 15 7.00

11 15 7.00

13 16 6.00

14 16 4.00

4 17 13.00

12 17 12.00

10 18 24.00

17 18 11.00

15 19 26.00

16 19 25.00

7 20 34.00

18 20 10.00

19 21 22.00

20 21 21.00

edge values reflect the distances. Notice that this file can be used as
an input file to define a new gdd data structure. One can use then,
for example, the pltree command (see section 3.6.6) to plot different
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versions of the dendrogram.4

Creating Arbitrary Partitions

The hcls command creates a tree (dendrogram) that, in some sense,
represents a given dissimilarity matrix, it does not automatically create a
partition of the nodes (objects) into clusters. In order to create arbitrary
partitions based on the output from the hcls command, one can use the
hclsp command. The syntax is as follows:

hclsp (

nlev=..., number of levels, def. 0
cn=..., list of node numbers
nfmt=..., integer print format, def. 4

) = output file;

The command requires a graph defined with the gdd command, option
1 (edge list). As an edge list one can use the output file created by the
df option of the hcls command. In any case, the resulting graph must
be a tree with a single root node defined by an outdegree 0. There are
two options that can be used separately or simultaneously:

a) If nlev > 0, the command determines the root node, that is, the
single node with outdegree 0 and reconstructs the tree for nlev
levels, beginning from the root node. The truncated tree is written
to the output file and shows, in addition to the node numbers, the
number of leafs that have a directed path to the node. This option
might be helpful in selecting a suitable set of internal nodes of the
tree to define a partition of the leafs.

b) The second option requires the specification of a sequence of nodes
(external node numbers) with the parameter

cn = n1, n2, . . . ,

The output file will then contain one record for each leaf of the
tree that has a path to one of the nodes n1, n2, . . . Assuming that
node i has a path to node nj , the record will contain two entries:
first the node number nj , followed by the node number i.

4Command file cl1p.cf provides an example.
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Box 5 Command file cl1a.cf

nvar(

dfile = cl1.df,

I = c1,

J = c2,

V = c3,

);

gdd = I,J,V;

hclsp(

nlev=4,

) = cl1a.d;

Content of cl1a.d

(21,11) <- (19,6) <- (15,2) <- (5,1)

<- (11,1)

<- (16,4) <- (13,2)

<- (14,2)

<- (20,5) <- (7,1)

<- (18,4) <- (10,1)

<- (17,3)

Note that it is not required that the nodes n1, n2, . . . define a com-
plete partition of the leafs. However, if a leaf has two or more nodes
from the set n1, n2, . . . as followers, the assignment depends on the
order of the nodes specified with the cn parameter. The algorithm
first finds all children of node n1, then those cildren of node n2

that were not already found as children of n1, etc.

To illustrate the command, we use the output from the previous example.
The command file is shown in Box 5. The nvar command reads the file
cl1.df shown in Box 4, the gdd command creates the graph. By default,
this is a directed graph created from the edge list specified by the three
variables. Then follows the hclsp command with a specification of four
levels. The lower part of the box shows the contents of the output file.
The first number in each bracketed pair is a node number, the second
shows the number of leafs having a path to the node. The output begins
with the root node which is 21 in this example and, of course, all 11 leafs
belong to this node. The next level is then given by nodes 19 and 20,
and so on.

Given this information, one might decide to create two cluster. One
cluster that contains all leafs belonging to node 19, and another one
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Box 6 Command file cl1a.cf

nvar(

dfile = cl1.df,

I = c1,

J = c2,

V = c3,

);

gdd = I,J,V;

hclsp(

cn = 19, 20,

) = cl1a.d1;

Content of cl1a.d1

19 5

19 11

19 1

19 8

19 2

19 9

20 7

20 10

20 4

20 3

20 6

containing the leafs belonging to node 20. This can be achieved by using
the parameter

cn = 19,20,

with the hclsp command. Box 6 shows the modified command file and,
in the lower part of the box, the contents of the output file.
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7.5.1.2 Nearest-Neighbor Clustering

This section describes two clustering procedures based on a notion of
nearest, or mutual, neighborhood. For a discussion see Jain and Dubes
[1988, pp. 128-129]. The command is nncl with syntax shown in the
following box.

nncl (

alg=..., algorithm, def. 1
1 = nearest neighbors
2 = mutual neighborhood

gn=..., graph number, def. 1
sc=..., threshold (alg=1), def. 1
ns=..., size of neighborhood (alg=2), def. 2
nfmt=..., integer print format, def. 4

) = fname;

All parameters, except for the name of an output file on the right-hand
side, are optional. The current relational data structure must specify an
undirected valued graph.

Algorithm 1. In order to describe the algorithm we assume that the
graph has n nodes, i = 1, . . . , n; clusters are denoted by C1, C2, . . . The
algorithm works as follows:

1. Set m = 1, C1 = {1}.

2. For i = 2, . . . , n do the following:

(a) Find a j ∈ C1∪. . .∪Cm such that v(i, j) is minimal; determine
k such that j ∈ Ck.

(b) If v(i, j) ≤ t then Ck ← Ck ∪ {i},
Otherwise m← m + 1, Cm = {i}.

The algorithm depends on a parameter, t, that can be selected with
the sc parameter; by default, t = 1. To illustrate the algorithm we use
the data introduced in Section 7.5.1.1. The command file is cl2.cf; the
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Box 1 Output file from nncl command, algorithm 1

i N(i) CN

--------------

1 1 1

2 2 1

3 3 2

4 4 1

5 5 3

6 6 2

7 7 4

8 8 1

9 9 1

10 10 5

11 11 3

threshold is sc = 10. Box 1 shows the output file. The number of records
equals the number of nodes. The first two columns show, respectively,
the internal and external node numbers; the third column contains the
corresponding cluster number. In this example, with sc = 10, we find 5
clusters.

Algorithm 2. The second algorithm is based on mutual neighborhoods
having a predefined size, say k, selectable with the ns parameter. For each
node i, let nk(i) denote the k nearest neighbors of i. And for each pair
of nodes, i and j, define a mutual neighborhood value m(i, j) as follows:
if j is the pth nearest neighbor of i, and i is the qth nearest neighbor of
j, then m(i, j) = p + q; otherwise m(i, j) =∞. The algorithm proceeds
as follows:

1. For each node i calculate nk(i).

2. For each pair of nodes, i and j, calculate m(i, j).

3. For l = 2, . . . , 2k do the following:

(a) Consider all pairs of nodes where m(i, j) = l, and order these
pairs in ascending order w.r.t. their dissimilarity values v(i, j).

(b) Merge each such pair into a cluster, starting with the pair
having the smallest dissimilarity value.

Using the same example data, and ns = 2, the output file created by
this algorithm is shown in Box 2. The first column numbers the records.
The second column shows the level, l, for merging the nodes. The last
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Box 2 Output file from nncl command, algorithm 2

Idx L i j N(i) N(j)

----------------------------

1 2 1 8 1 8

2 2 3 6 3 6

3 2 5 11 5 11

4 3 2 9 2 9

5 3 8 9 8 9

6 4 3 4 3 4

four columns show, respectively, the internal and external node numbers
of the nodes that have been merged on the current level.
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7.5.2 Hierarchical Divisive Clustering

This section describes procedures for hierarchical divisive clustering based
on an undirected valued graph where edge values can be interpreted as
dissimilarity indices.

7.5.2.1 Maximally Different Cluster Centers describes a simple divi-
sive clustering scheme that sequentially selects maximally dif-
ferent cluster centers.

7.5.2.2 Partition with Minimal Diameter describes a divisive cluster-
ing procedure that sequentially finds clusters with minimal
diameter.
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7.5.2.1 Maximally Different Cluster Centers

This section describes a very simple divisive clustering scheme that se-
quentially selects nodes having a maximal dissimilarity. The algorithm
goes as follows.

1. Begin with a partition P0 = {C1} that consists of a single cluster,
C1, containing all nodes of the graph.

2. Given a partition Pm, consider all clusters Cq ∈ Pm.
If |Cq | > nmin, split Cq into two clusters as follows:

(a) Find two nodes i, j ∈ Cq having a maximal dissimilarity.

(b) Create two sub-classes of Cq as follows:

Cq1 = {k ∈ Cq | v(i, k) ≤ v(j, k)}

Cq2 = {k ∈ Cq | v(i, k) > v(j, k)}

3. If no cluster has been split in the previous step, stop. Otherwise
create a new partition, Pm+1, by substituting all clusters by their
sub-classes and continue with step 2.

This simple clustering procedure is implemented as algorithm 1 in the
hcld command, see Box 1. (The second algorithm will be described in
Section 7.5.2.2.) The minimal cluster size, nmin, can be selected with
the min parameter.

To illustrate the output files, we use the example data introduced in
Section 7.5.1.1. The command file is cl3.cf. The standard output file
is shown in Box 2. Each record describes one cluster. The first column
shows the level. The second column shows the size of the current cluster.
Then follows an enumeration of the nodes that are contained in the
current cluster.

A second output file that can be requested with the df parameter is
shown in Box 3. It contains a graph, given by an edge list, that describes
the hierarchical split procedure. The first two columns show node num-
bers representing the clusters. (Numbers equal those used in the standard
output file.) Then follow the respective cluster sizes. The final column
shows the distance between the clusters, calculated as one half of the
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Box 1 Syntax of hcld command

hcld (

alg=..., algorithm, def. 1
1 = max different cluster centers
2 = partition with minimal diameter

gn=..., graph number, def. 1
min=..., minimal cluster size (for alg=1), def. 2
max=..., maximal number of splits (for alg=2), def. 1
df=..., output file with clustering hierarchy
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

diameters that was used to create the clusters. Since the resulting graph
is a tree, it can easily be plotted with the pltree command. This is
illustrated in Figure 1 that was created with command file cl3p.cf.
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1

23

456 7

89

1011

Figure 1 Tree illustrating the divisive clustering proce-
dure, created with command file cl3p.cf.

Box 2 Standard output file from hcld command, algorithm 1

L N nodes

-------------------------------------------------------------

1 11 1 2 3 4 5 6 7 8 9 10 11

2 5 3 4 6 7 10

3 6 1 2 5 8 9 11

4 2 4 7

5 3 3 6 10

6 4 1 2 8 9

7 2 5 11

8 2 3 6

9 1 10

10 2 1 8

11 2 2 9

Box 3 Second output files from hcld command, algorithm 1

Ci Cj Ni Nj distance

-----------------------------

2 1 5 11 27.5000

3 1 6 11 27.5000

4 2 2 5 17.0000

5 2 3 5 17.0000

6 3 4 6 16.5000

7 3 2 6 16.5000

8 5 2 3 12.0000

9 5 1 3 12.0000

10 6 2 4 4.0000

11 6 2 4 4.0000



7.5.2.1 maximally different cluster centers 4



7.5.2.2 partition with minimal diameter 1

7.5.2.2 Partition with Minimal Diameter

This section describes a divisive clustering algorithm that tries to find
clusters having minimal diameter. The implementation follows the dis-
cussion in Guénoche, Hansen and Jaumard [1991]. In order to describe
the algorithm, let G = (N , E , v) denote an undirected valued graph and
let the diameter of a cluster C ∈ N be defined by

d(C) = max {v(i, j) | i, j ∈ C}

Accordingly, if P = {C1, . . . , Cm} is a partition of N , its diameter will
be defined by

d(P ) = max {d(C) |C ∈ P}

Finally, for some set U , let B(U) denote the set of all partitions of U
into two sub-classes. The algorithm proceeds as follows.

1. m = 1, P1 = {N}.

2. Select Ck ∈ Pm such that d(Ck) = max{d(C) |C ∈ Pm}.

3. Determine a partition {C2m, C2m+1} ∈ B(Ck) such that

d({C2m, C2m+1}) = min {d({Ci, Cj}) | {Ci, Cj} ∈ B(Ck)}

4. Pm+1 ← (Pm ∪ {C2m, C2m+1})− {Ck}

5. m← m + 1; if m < mmax continue with step 2.

A version of this algorithm, originally proposed by Hubert [1973], is
available as algorithm 2 in the hcld command described in Section
7.5.2.1. Our implementation follows the discussion of Hubert’s algorithm
in Guénoche et al. [1991]. The algorithm is based on iteratively calcu-
lating, and then bicoloring, maximum spanning trees. This is done with
Prim’s procedure as described in Section 7.2.5.2. The maximal number
of splits, mmax, can be selected with the max parameter in the hcld
command.

To illustrate the clustering procedure, we use again the example data
introduced in Section 7.5.1.1. The command file is cl4.cf. The standard
output file is shown in Box 1. Each record describes one cluster. The
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1

23

4

5

6 7

89

1011
1213

Figure 1 Tree illustrating the divisive clustering proce-
dure, created with command file cl4p.cf.

Box 1 Standard output file from hcld command, algorithm 2

Ci Cj diameter nodes

----------------------------------------------------

2 1 33.0000 6 1 2 5 8 9 11

3 1 34.0000 5 3 4 6 7 10

4 3 24.0000 3 3 6 10

5 3 16.0000 2 4 7

6 2 8.0000 4 1 2 8 9

7 2 7.0000 2 5 11

8 4 1.0000 2 3 6

9 4 0.0000 1 10

10 5 0.0000 1 4

11 5 0.0000 1 7

12 6 2.0000 2 1 8

13 6 4.0000 2 2 9

first column refers to a newly created cluster, the second column refers
to its parent cluster. Then follow the diameter of the new cluster and an
enumeration of its nodes.

A second output file that can be requested with the df parameter is
shown in Box 2. It contains a graph, given by an edge list, that describes
the hierarchical split procedure. The first two columns show node num-
bers representing the clusters. (Numbers equal those used in the standard
output file.) Then follow the respective cluster sizes and diameters. A
plot of the clustering tree, created with the pltree command (cl4p.cf),
is shown in Figure 1.
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Box 2 Second output files from hcld command, algorithm 2

Ci Cj Ni Nj d(Ci) d(Cj)

---------------------------------------

2 1 6 11 33.0000 55.0000

3 1 5 11 34.0000 55.0000

4 3 3 5 24.0000 34.0000

5 3 2 5 16.0000 34.0000

6 2 4 6 8.0000 33.0000

7 2 2 6 7.0000 33.0000

8 4 2 3 1.0000 24.0000

9 4 1 3 0.0000 24.0000

10 5 1 2 0.0000 16.0000

11 5 1 2 0.0000 16.0000

12 6 2 4 2.0000 8.0000

13 6 2 4 4.0000 8.0000
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7.5.3 Non-Hierarchical Clustering

This section deals with non-hierarchical clustering procedures. Subsec-
tions are as follows.

7.5.3.1 The Bond Energy Approach describes a procedure to re-order
the rows and columns of a dissimilarity matrix such that sim-
ilar nodes are placed in neighboring locations.
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7.5.3.1 The Bond Energy Approach

This section describes a clustering approach proposed by McCormick,
Schweitzer, and White [1972]; for a more recent discussion see Ara-
bie, Hubert, and Schleutermann [1990]. To describe this approach, let
D = (dij) denote a given, not necessarily symmetric, (n, n) proximity
matrix, and let π denote a permutation of {1, . . . , n}. The idea is to find
a permutation of the rows and columns of D such that the following
objective function becomes minimal, or maximal.

BE(π) =
n∑

i=1

n∑
j=1

dπ(i),π(j) (dπ(i),π(j−1) + dπ(i),π(j+1)+

dπ(i−1),π(j) + dπ(i+1),π(j))

with the understanding that dπ(i),π(j) = 0 if one of the indices is unde-
fined. Since the function is separable into one part for rows and another
part for columns, there are three choices. One can optimize only row
permutation, only column permutations, or both row and column per-
mutations. If D is symmetric, it will suffice to consider only row, or
column, permutations.

As has been pointed out by Lenstra [1974], see also Lenstra et al.
[1975], this optimization problem is a special case of the traveling sales-
man problem and exact solutions can only be obtained for very small
number of cases. McCormick et al. [1972] therefore proposed to use some
version of a heuristic greedy algorithm to find approximative solutions.
In terms of column permutations, the algorithm works as follows:

1. Set i← io, C = {i}, n = {1, . . . , n}

2. For each j ∈ N −C, insert column j of D to the right or the left of
the already fixed columns given by C, and calculate the resulting
value of the objective function.

3. Having finished the previous step, add that column to C that gave
the maximal increase, or decrease, of the objective function.

4. Continue with step 2 until the permuted matrix is complete.
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Box 1 Syntax of becl command

becl (

alg=..., algorithm, def. 1
1 = only column permutations
2 = only row permutations
3 = row and column permutations

min=..., 1 if minimization of objective function
cn=..., list of starting nodes, def. 1
gn=..., graph number, def. 1
opt=..., output option, def. 1

1 = permuted node list
2 = edge list
3 = permuted D, lower triangle
4 = permuted D, square matrix
5 = like 4, plus leading node numbers

sc=..., substitute for missing values, def. -1
(only with opt = 3,4,5)

nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

This algorithm is provided by the becl command. The syntax is shown
in Box 1. All parameter, except for the name of an output file on the
right-hand side, are optional.
1. By default, the command only performs column permutations. This

will suffice for a symmetric proximity matrix. Two other choices can
be selected with the alg parameter.

2. By default, the command tries to maximize the objective function.
The min=1 parameter can be used to request a minimization.

3. By default, the algorithm uses the starting node i0 = 1. To check
possible dependencies, one can provide a list of different starting
nodes with the parameter

cn = i1, i2, . . .,

The algorithm is then repeated for each of the specified starting
nodes, and the best result is used for output.

To illustrate the output options, we use the example data shown in Box
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Box 2 Example data (edge list with five nodes)

I J V

-----

3 2 1

4 1 1

4 5 1

5 1 1

Box 3 Output files from becl command

Option 1 (node list)

i p(i) N(i) p(N(i))

------------------------

1 3 1 3

2 2 2 2

3 5 3 5

4 4 4 4

5 1 5 1

Option 2 (edge list)

p(i) p(j) i j N(i) N(j) value

-------------------------------------

1 2 3 2 3 2 1

3 4 5 4 5 4 1

3 5 5 1 5 1 1

4 5 4 1 4 1 1

Option 4 (permuted adjacency matrix)

-----------------

0 1 0 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0

2. It is an edge list for an undirected graph with five nodes. Maximizing
the bond energy criterion with column permutations gives the output
files shown in Box 3.
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7.6 Social Network Analysis

Many of the procedures described in previous sections can also be used
to describe and analyze social networks. This chapter is intended to deal
with some methods specifically designed for social network analysis; for
a general introduction see Wasserman and Faust [1994].

7.6.1 Characterizing Nodes describes procedures that are sometimes
useful to characterize the nodes (individuals) in a social net-
work.

7.6.2 Structural Similarity discusses approaches to the question how
to define, and find, structural similarities in different embed-
dings of nodes in a social network.
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7.6.1 Characterizing Nodes

Given a social network, an elementary task is to characterize its nodes.
While many of the procedures described in earlier chapters can be used
for this task, there remain some specific questions which are difficult to
approach with those general-purpose commands. This section is therefore
intended to describe some more specific commands for the characteriza-
tion of nodes in social networks.

7.6.1.1 Direct and Indirect Control describes commands to investi-
gate how nodes of a directed graph control other nodes.

7.6.1.2 Integrated Ownership describes the gio command that can be
used to investigate “integrated ownership”.

7.6.1.3 Measures of Flow Control describes a command that allows
to investigate how nodes control flows in a directed network.
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7.6.1.1 Direct and Indirect Control

Let G = (N , E) denote a directed valued graph with adjacency matrix
A = (aij). In certain applications we might say that node i directly
controls node j if aij > s where s is some predefined minimum level of
influence. Direct control in this sense is easily found with the procedures
for direct links discussed in Section 7.2.1.

However, we might also be interested in indirect control. To explain
this notion consider the graph in Figure 1 (created with command file
gd12.cf). Assume that s = 49. Node 1 then directly controls only nodes
2 and 3. We might say that this is the first level of control. However,
on a second level, node 1 also controls node 5. In general, for each level
l > 1, if we know the nodes controlled by node 1 for all lower levels, we
can also easily find the nodes controlled on the lth level.

50 10

50
50

30

15
50

20 40 30

22

30

30
20

30

10

409

1 3

2

4 10

7 6

5

811

Figure 1 Illustration of direct and indirect control.

Forward Control

TDA offers a command, called gfcf (forward control flow), that can be
used to find, for any node i, the set of other nodes directly or indirectly
controlled by i. The syntax of the command is shown in Box 1. It requires
a directed valued graph. Also required is an input file, to be specified
with the if parameter, containing a list of node numbers. For each node
i found in that input file, the gfcf command determines the set of nodes
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Box 1 Syntax of gfcf command (forward control flow)

gfcf (

gn=..., graph number, def. 1
if=..., input file containing node numbers (required)
sc=..., minimum level of influence, def. 0.5
opt=..., output option, def. 1

1 = information for all nodes
2 = information only for controlled nodes

nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

directly or indirectly controlled by i.
There are two output options depending on the opt parameter. If opt

= 1, the output file will contain information for all nodes in Ni, that is,
all nodes which are reachable from i by a directed path, independent of
whether a node is controlled by i or not.1 If opt = 2, information will
only be given for nodes controlled by i. The contents of the output file
will be explained in the following example.

Example 1 For illustration we use the graph shown in Figure 1. (The
edge list for this graph is in data file gd3.dat.) Having set up a gdd data
structure, the command for this illustration is

gfcf (sc = 49, if = gd13.if ) = d;

The sc parameter specifies a minimum level of influence, the if param-
eter provides the name of an input file. In this example, the input file,
gd13.if, contains just two node numbers, 1 and 9.2

The result, in this example the output file d, is shown in Box 2.
The first two columns contain, respectively, the internal and external
node numbers given in the input file, that is, the starting nodes for
investigating direct and indirect control. There is one block of records
for each of these node numbers. The last two columns show how many
records are in each block and provide a counter.

The number of records in each block depends on the opt parame-
ter. In our example, we have used the default, opt = 1, and each block

1There must be, however, at least one node controlled by node i in order to get this
information.
2The command file is gd13.cf.
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Box 2 Output from gfcf command

i N(i) N(j) L S M R r

---- ---------------------------------------

1 1 2 1 50.0000 8 8 1

1 1 3 1 50.0000 8 8 2

1 1 4 4 60.0000 8 8 3

1 1 5 2 50.0000 8 8 4

1 1 6 3 60.0000 8 8 5

1 1 7 2 60.0000 8 8 6

1 1 8 3 60.0000 8 8 7

1 1 9 5 50.0000 8 8 8

9 9 1 1 50.0000 8 8 1

9 9 2 2 50.0000 8 8 2

9 9 3 2 50.0000 8 8 3

9 9 4 5 60.0000 8 8 4

9 9 5 3 50.0000 8 8 5

9 9 6 4 60.0000 8 8 6

9 9 7 3 60.0000 8 8 7

9 9 8 4 60.0000 8 8 8

contains a separate record for each node that can be reached from the
starting node. For example, there are 8 nodes that can be reached from
node 1. The fourth column, labeled L, shows whether N(j) is controlled
by N(i) and, given that this is the case, the corresponding level of in-
fluence. (The entry will be -1 if there is no control.) In our example, we
find that node 1 controls nodes 2 and 3 on the first level, nodes 5 and
7 on the second level, nodes 6 and 8 on the third level, node 4 on the
fourth level, and node 9 on the fifth level.

Backward Control

As a complementary question, we might want to know for some specified
node i by which other nodes it is controlled. This question, of course,
makes only sense if i has some positive in-degree, i.e., is not an ultimate
node. Answering this question is somewhat more computationally in-
volved compared with the question for forward control discussed above.
One firstly needs to find all nodes that possibly control some other node.

Another concern is that the question for backward control is not
immediately precise. Do we want to find all nodes that directly or in-
directly control node i? This would then require to record a possibly
very complicated graph that, furthermore, may also contain cycles. We
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Box 3 Syntax of gbcf command (backward control flow)

gbcf (

gn=..., graph number, def. 1
if=..., input file containing node numbers (optional)
sc=..., minimum level of influence, def. 0.5
opt=..., output option, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4
df=..., optional second output file
ns=..., max number of controlled nodes

) = fname;

shall, therefore, deal only with the somewhat simpler question: to find
all nodes that might control node i but are not controlled by some other
node.

The TDA command for this task is gbcf (backward control flow) with
syntax shown in Box 3. The command requires a directed valued graph.
All parameters, except for the name of an output file to be given on the
right-hand side, are optional.

In a first step, the command tries to find all nodes with zero in-
degree that possibly control some other node. This step requires sufficient
memory to keep a list of all these nodes. By default, the maximum
number of these nodes is two times the number of nodes in the graph.
A different maximum number of nodes can be specified with the ns
parameter.

If the df parameter is used to request a second output file, the list
of these nodes is written into that file. To be precise, the file will con-
tain three columns. The first two contain, respectively, the internal and
external node numbers, the third column records how many nodes are
directly or indirectly controlled by that node. Let U denote the set of
these nodes which directly or indirectly control at least one other node.
If this set is empty the command terminates.

In a second step, the command considers, in turn, each input node.
By default, these are all nodes in the graph with positive in-degree.
Optionally, a list of input nodes may be specified with the if parameter.
For each input node, say i, the command determines a set, say N ∗

i ,
consisting of all nodes that have a direct forward link to node i.
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In a third step, the command checks whether some, or all, of the nodes
in N ∗

i are controlled by nodes in U . These nodes are then substituted
by the corresponding nodes in U .

Output is written into the file specified on the right-hand side of the
command. The contents of this file depend on the opt parameter. There
are two options (opt=1, or opt=2) as will be explained in the following
example.

Example 2 If the gbcf command is used with the graph shown in
Figure 1 it will give the message that there are only two nodes with zero
in-degree (nodes 10 and 11) and neither of these nodes controls some
other node. Consequently, the command terminates at the end of the
first step. To provide a somewhat more interesting example we change
the graph by substituting the value of the edge (10, 4) from 15 into 55,
and deleting the edge (9, 1). The new data file is gd3a.dat. We then try
two versions of the command. The first one (command file gd14.cf) is

gbcf (sc = 49, df = df) = da;

that uses the default opt=1 to create the output file da and creates the
additional output file df. A second version (command file gd14a.cf) is

gbcf (sc = 49, opt = 2) = db;

to create another output file, db, based on the second output option. All
output files are shown in Box 4.

1. The output file df shows that the graph contains three nodes with zero
in-degree, node number 1, 10, and 11. Node 1 controls 8 other nodes,
node 10 controls one other node, and node 11 controls no other node.

2. The output file da contains a variable number of records for each node
having a positive in-degree. The first two columns record the internal and
external node number, i and N(i), respectively. The column labeled NA
shows the number of records in the block, identical with the in-degree of
the node. Then follow the node number that is directly linked to node i
and the value of the corresponding edge. For instance, there is one node,
1, directly linked to node 2, with edge value 50; and there are for nodes
linked to node 4 with the corresponding edge values as shown in the file.

Then follows a column labeled NY that provides the number of “ul-
timate” nodes which might control node i. For example, node 4 has
in-degree 4, but is controlled by only two other nodes, namely 1 and 10,
as is recorded in the column labeled N(k). The final column shows the
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Box 4 Output files from gbcf command

output file: df

i N(i) M

--------------

1 1 8

10 10 1

11 11 0

output file: da

i N(i) NA N(j) a(j,i) NY N(k) y(k,i)

-------------------------------------------------

2 2 1 1 50.0000 1 1 50.0000

3 3 1 1 50.0000 1 1 50.0000

4 4 4 2 30.0000 2 1 60.0000

4 4 4 3 10.0000 2 10 55.0000

4 4 4 8 20.0000 2 -1 0.0000

4 4 4 10 55.0000 2 -1 0.0000

5 5 1 3 50.0000 1 1 50.0000

6 6 3 3 30.0000 2 1 60.0000

6 6 3 7 30.0000 2 11 22.0000

6 6 3 11 22.0000 2 -1 0.0000

7 7 2 1 20.0000 1 1 60.0000

7 7 2 3 40.0000 1 -1 0.0000

8 8 2 5 30.0000 1 1 60.0000

8 8 2 7 30.0000 1 -1 0.0000

9 9 2 1 10.0000 1 1 50.0000

9 9 2 4 40.0000 1 -1 0.0000

output file: db

i N(i) L NA NY ------ A ----- ------ Y -----

------------------------------------------------------

2 2 4 1 1 50 0 0 0 50 0 0 0

3 3 4 1 1 50 0 0 0 50 0 0 0

4 4 4 4 2 55 30 20 10 60 55 0 0

5 5 4 1 1 50 0 0 0 50 0 0 0

6 6 4 3 2 30 30 22 0 60 22 0 0

7 7 4 2 1 40 20 0 0 60 0 0 0

8 8 4 2 1 30 30 0 0 60 0 0 0

9 9 4 2 1 40 10 0 0 50 0 0 0

aggregated edge values for the “ultimate” nodes that control node i. For
example, node 1 (possibly) controls node 4 with an aggregated value of
60 (whatever units). Note that the algorithm does not check whether the
edge values are proper fractions.
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3. Output file db, based on opt=2, provides part of the information in
a somewhat different form that can easier be used for calculating de-
scriptive statistics. There is only one record for each of the input nodes.
The column labeled L records the number of entries in the columns of
A and Y . It is, in fact, the maximum of the in-degrees for all nodes.
The columns labeled NA and NY show the number of non-zero entries in
the corresponding rows of A and Y . Then follow L columns with the
entries of A, that is, values of the edges directly ending in node i. Fi-
nally, there are L columns with the entries of Y , i.e., the edge values
after aggregation.
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7.6.1.2 Integrated Ownership

Consider graph A shown in Figure 1. It is a simple directed and valued
graph. Assume that we can associate with each node i some value, or
resource, Ri. Denoting the graph’s adjacency matrix by A = (aij), we
may then interpret aij as the fraction of Rj directly owned by node i.
For example, node 1 directly owns 0.5 of R2.

Given this situation, we might also assume that ownership is transi-
tive along all directed paths in the graph. It then follows, for example,
that node 1 owns (directly and indirectly) 0.5 · 0.3 of R4. Similarly, to
calculate what node 1 owns of R3, we need to add 0.5 ·0.3 ·0.2+0.5 ·0.1.

These calculations are straightforward as long as the graph has no
cycles. Otherwise one has to take into account how indirect ownership
evolves through the cycles. See, for example, graph B in Figure 1. Obvi-
ously, there is a cycle: node 2 owns some fraction of R3, but node 3 also
owns some fraction of R2.

Following a proposal by Baldone, Brioschi, and Paleari [1997], one
can use ideas from input-output analysis to find a suitable approach.
Let yij denote the fraction of Rj owned by node i directly or indirectly.
We may then write the accounting equation

yij = aij +
∑
k 6=i

yikakj

or, equivalently,

yij = (1− yii)aij +
∑

k

yikakj

Using In to denote the unit matrix of order n, and Y = (yij), this may
also be written in matrix notation as

Y = (In − diag(Y ))A + Y A (10)

As shown by Baldone et al. [1997], this equation can be solved in Y .
Sufficient conditions are that the graph, and consequently its adjacency
matrix, is connected and 0 ≤ aij ≤ 1. First, it directly follows from (10)
that

(In − diag(Y ))−1Y = A(In −A)−1 (11)
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Figure 1 Two simple directed valued graphs. Graph
A without, graph B with a cycle (gd9.cf).

We may then write

diag{A(In −A)−1} = diag{(In − diag(Y ))−1Y }
= diag{(In + diag(Y ) + diag(Y )2 + . . .)Y }
= diag(Y ) + diag(Y )2 + . . .)

= (In − diag(Y ))−1 − In

Consequently,

(In − diag(Y ))−1 = In + diag(A(In −A)−1)

Inserting into (11) gives

A(In −A)−1 = diag(In + A(In −A)−1)Y

= diag(In + A + A2 + . . .)Y

= diag((In −A)−1)Y

Finally, we get the result

Y = diag((In −A)−1)−1A(In −A)−1 (12)

For small and medium-sized graphs this equation can be solved by stan-
dard matrix procedures. Example 1 will provide an illustration. For large
graphs one needs a somewhat different approach that will be explained
below.

Example 1 To illustrate formula (12) we use data for the graphs shown
in Figure 1. Edge lists and adjacency matrices for both graphs are shown
in Box 1. For calculating the Y matrices from formula (12) we use TDA’s
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Box 1 Example data files

Graph A Graph A

edge list (gd2a.dat) edge list (gd2b.dat)

-------------------- --------------------

1 2 0.5 1 2 0.5

2 3 0.1 2 3 0.1

2 4 0.3 2 4 0.3

4 3 0.2 4 3 0.2

3 2 0.1

adj. matrix (gd2a.mat) adj. matrix (gd2b.mat)

---------------------- ----------------------

0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0

0.0 0.0 0.1 0.3 0.0 0.0 0.1 0.3

0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0

0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0

Box 2 Example command file gd10.cf

mfmt= 7.4;

mdef(A,4,4)=gd2a.mat;

mdefi(4,4,I);

mexpr(I - A,IA);

mginv(IA,IAI);

msqrti(IAI,IADI);

mmul(IADI,IADI,A,IAI,Y);

mpr(Y);

Box 3 Y matrices calculated with gd10.cf

Graph A Graph B

----------------------------- ------------------------------

0.0000 0.5000 0.0800 0.1500 0.0000 0.5081 0.0813 0.1524

0.0000 0.0000 0.1600 0.3000 0.0000 0.0160 0.1600 0.3000

0.0000 0.0000 0.0000 0.0000 0.0000 0.1000 0.0160 0.0300

0.0000 0.0000 0.2000 -0.0000 0.0000 0.0202 0.2020 0.0061

matrix commands. A command file is shown in Box 2. (This command
file uses the adjacency matrix for graph A. To calculate Y for graph B
simply change the name of the input file. For other matrices it might
be necessary to change also the matrix dimensions.) The resulting Y
matrices for both graphs are shown in Box 3.
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Box 4 Algorithm for gio command

(1) determine Ni

(2) set: ui ← ai, yi ← 0

(3) ∀j ∈ Ni ∀(k, j) ∈ Ej : if (k = i) then yij ← yij + v(k, j)

else yij ← yij + uikv(k, j)

(4) if (max
j
{|uij − yij |} ≤ ε) then end

otherwise set: ui ← yi, yi ← 0 and continue with (3)

A Procedure for Large Graphs

Standard matrix procedures are no longer feasible if the graph becomes
large. For example, we might be interested in investigating integrated
ownership based on share-holding data for a network of firms. The num-
ber of firms can easily exceed 30000.1 The adjacency matrix would then
become a 30000× 30000 matrix and assuming that we need 8 bytes for
each element storage requirements for this matrix would exceed 7 giga
bytes. So we need a different approach.

Our approach uses an iterative scheme that can be applied to each
node separately. Then, given some node number i, we only need to cal-
culate the ith row of Y , denoted by Yi. While this can be done for each
node in turn, one is often only interested in a subset of nodes, for exam-
ple, all nodes with zero in-degree (sometimes called “ultimate” nodes).
The procedure therefore allows to specify a subset of nodes to be used
for calculating the corresponding rows of Y .

Further computational savings are possible due to the fact that the
adjacency matrix, A, is most often very sparse. In fact, in order to cal-
culate Yi, we only need to consider the set of nodes that can be reached
from i by a directed path, denoted by Ni, taking into account, of course,
all cycles that may be present in the graph. We often find that the num-
ber of nodes in Ni is substantially smaller than in N .

To explain the algorithm let i be a node number, Ni as defined above,
let Ej denote the set of edges ending in node j (excluding loops) and

1We thank Marco Becht who brought our attention to this application.
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Box 5 Syntax of gio command

gio (

gn=..., graph number, def. 1
if=..., input file containing node numbers
mxit=..., maximum number of iterations, def. 20
eps=..., epsilon for convergence, def. 0.0001
opt=..., output option, def. 1

1 = print all yij values
2 = print only values where aij ≥ s or yij ≥ s

sc=..., s value for opt=2, def. 0.0
nfmt=..., integer print format, def. 4
fmt=..., print format for values, def. 10.4

) = fname;

v(k, j) the value of an edge (k, j) ∈ Ej . Also let ai denote the ith row of
A, and let ui and yi be two row vectors with the same dimension as ai.
How the algorithm works is shown in Box 4. If this algorithm terminates
successfully, that is, reaches the required accuracy specified by ε within
a certain limit of iterations, yi will contain the required elements of the
ith row of Y .

The gio command. The algorithm described above is performed by a
command called gio with syntax shown in Box 5. By default, the com-
mand performs the calculations for each node in the graph. Optionally,
one can provide an additional input file with the if parameter that con-
tains a list of node numbers. yi is then only calculated for nodes specified
in that input file.

There are two output options. If opt = 1 (default) the output file
will contain a separate record for each j ∈ Ni. If opt = 2, it will only
contain records where aij ≥ s or yij ≥ s where s is some non-negative
value that can be specified with the sc parameter. The contents of the
output file will be explained in Example 2.

Example 2 To illustrate the gio command we continue with Example
1. Since the command needs a gdd data structure we now use the edge
list file gd2a.dat and gd2b.dat, shown in Box 1. Having created a gdd
data structure, the command can be used without any parameters as

gio = d;
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Box 6 Output from gio command

i Ni Nj A(i,j) Y(i,j) C IT i Ni Nj A(i,j) Y(i,j) C IT

----------------------------- -----------------------------

1 1 1 0.0000 0.0000 4 1 1 1 1 0.0000 0.0000 4 4

1 1 2 0.5000 0.5000 4 1 1 1 2 0.5000 0.5081 4 4

1 1 3 0.0000 0.0800 4 1 1 1 3 0.0000 0.0813 4 4

1 1 4 0.0000 0.1500 4 1 1 1 4 0.0000 0.1524 4 4

2 2 2 0.0000 0.0000 3 1 2 2 2 0.0000 0.0160 3 2

2 2 3 0.1000 0.1600 3 1 2 2 3 0.1000 0.1600 3 2

2 2 4 0.3000 0.3000 3 1 2 2 4 0.3000 0.3000 3 2

3 3 3 0.0000 0.0000 1 1 3 3 2 0.1000 0.1000 3 1

4 4 3 0.2000 0.2000 2 1 3 3 3 0.0000 0.0160 3 1

4 4 4 0.0000 0.0000 2 1 3 3 4 0.0000 0.0300 3 1

4 4 2 0.0000 0.0202 3 2

4 4 3 0.2000 0.2020 3 2

4 4 4 0.0000 0.0061 3 2

where d is the name of an output file.2 Box 6 shows shows the resulting
output files. They are obviously identical with the output files in Box 3
that were created with standard matrix procedures.

Note that the output files contain two additional columns. The col-
umn labeled C shows the number of nodes in Ni. The column labeled
IT shows the number of iterations used to calculated the corresponding
value of yij . If this number equals the maximum number of iterations, the
algorithm has most probably not reached the required accuracy specified
with the eps parameter. Note that for graph A the number of iterations
is always 1. Since the graph does not contain cycles the algorithm didn’t
need to iterate.

2The command file is gd11.cf.
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7.6.1.3 Measures of Flow Control

Let G = (N , E , v) denote a directed and valued graph. As described in
Section 7.2.8.1, we can then consider, for each pair of nodes, i, j ∈ N ,
the maximal flow from i to j. This then allows to characterize nodes by
their ability to control the possible flows in the network; for a discussion
see Freeman et al. [1991]. The algorithm works as follows.

1. Consider all pairs of nodes, i, j ∈ N , where there is at least one
directed path from i to j, and calculate the maximal flow from i
to j, denoted by fij .

2. Then consider all nodes k ∈ N . If k = i, or k = j, or k is not part
of at least one directed path from i to j, set fij,k = −1. Otherwise
delete k and all of its adjacent edges from G and let fij,k be the
maximal flow from i to j in the reduced graph.

By comparing fij and fij,k one can finally assess the capability of node
k to control, or not to control, any flows in the network. And, of course,
one can think of a lot of measures to summarize these capabilities.

gfc (

gn=..., graph number, def. 1
nfmt=..., integer print format, def. 4
fmt=..., print format for flow values, def. 10.4

) = fname;

The gfc command performs the necessary calculations. All parameters,
except for the name of an output file on the right-hand side, are optional.
The current relational data structure must specify a directed valued
graph that must be defined with option 1 of the gdd command, i.e. as
an edge list. The algorithm for calculating maximal flows is the same as
used for the gflow command, see 7.2.8.1.

Example 1 To illustrate the gfc command we use an example dis-
cussed in Freeman et al. [1991]. The graph is shown in Figure 1. The
corresponding data file is gd14.dat, the command file for the examples
is gd41.cf. The resulting output file is shown in Box 1.
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Figure 1 Directed graph used for examples (gd40.cf).

Box 1 Output file from gfc command

i j N(i) N(j) f(ij) f(ij,1) ... f(ij,5)

--------------------------------------------------

1 2 1 2 3 -1 -1 -1 -1 -1

1 3 1 3 6 -1 3 -1 4 -1

1 4 1 4 2 -1 -1 -1 -1 -1

1 5 1 5 2 -1 2 0 2 -1

2 3 2 3 3 -1 -1 -1 -1 -1

2 5 2 5 2 -1 -1 0 -1 -1

3 5 3 5 2 -1 -1 -1 -1 -1

4 3 4 3 2 -1 -1 -1 -1 -1

4 5 4 5 2 -1 -1 0 -1 -1
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7.6.2 Structural Similarity

A broad variety of methods can be used to compare nodes in a social
network. One approach begins with a characterization of each node sep-
arately and then compares the individually assigned measures, e.g., by
investigating their frequency distribution or by some summary statistics.
A different approach tries to establish, and then represent, proximity
relations between the nodes in the network. This can be done in two
different ways; for a discussion see Burt [1978]. One approach relies on
directly interpreting the relationships given by the network as provid-
ing information about proximities between nodes. This then leads to a
search for “cohesive subgroups”, using whatever kind of clustering pro-
cedure one likes and is available. A different approach focuses on how the
nodes are embedded in the network. One is interested, then, in a com-
parison of nodes with respect to the question whether their embedding
in the network shows similarities. Of course, it might then be possible to
finally arrive at a second-level definition of proximities between nodes,
and apply standard methods to represent these proximities, or to apply
clustering procedures (sometimes called “block modeling“).

The current section is intended to deal with this approach to finding
“structural similarities” between nodes, based on an investigation of the
way nodes are embedded in a network. Subsections are as follows.
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8. Set-Valued Data

This part contains the following sections.

8.1 Introduction and Overview explains our notion of set-valued and,
in particular, interval-valued variables.

8.2 Interval Expressions explains how to define and evaluate interval
expressions.

8.3 Functions with Interval Arguments explains our notion of func-
tions that are defined by interval expressions and describes a com-
mand that can be used to calculate inclusion functions.

8.4 Range of Interval Functions describes a command for global func-
tion minimization, based on inclusion functions, and a similar
command that finds the range of an interval function.

8.5 Distribution Functions describes commands that can be used to
calculate distribution functions for set-valued and interval-valued
variables.

8.6 Descriptive Statistics describes commands that calculate elemen-
tary descriptive statistics for interval-valued variables.
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8.1 Introduction and Overview

A statistical variable can be defined as a mapping

X : Ω −→ X

Ω refers to a given set of individuals (objects), and X is a property
space. The variable, X, associates with each individual ω ∈ Ω a specific
property X(ω) ∈ X . In all applications we also assume that we are
given a numerical representation for the property space that can formally
be identified with X . Most often this will be subset of the natural or
real numbers. The essential point is that we normally also assume that
X(ω) can be assumed to be an exactly identified numerical value in X ,
i.e., the numerical representation of the property space. An interesting
alternative comes into view if we only assume that we are given, for each
individual ω ∈ Ω, only a subset of possible values. This leads to the idea
of a set-valued variable that can formally be defined as a mapping

X : Ω −→ P(X )

where P(X ) now refers to the power set of X . This notion also allows a
new view on missing values. There is no longer a fundamental distinction
between, on the one hand, exactly given values and, on the other hand,
completely missing values. Instead, depending on the size of X(ω), values
of set-valued variables are more or less precise. Missing values, in the
traditional sense of the word, are then those extreme cases where X(ω)
equals the given property set, X .

This part of the manual deals with set-valued variables. We distin-
guish two kinds of such variables. First, discrete variables which are
defined by a discrete property space, i.e., its numerical representation is
given by a subset of the natural numbers. Values of discrete set-valued
variables are then also given as subsets of discrete values. Second, we
shall deal with interval-valued variables. In this case the property space
has a numerical representation that is given by some interval of real
numbers and it is assumed that values of the variable are also given by
intervals. We furthermore assume that these intervals have a positive
width, that is, we exclude the possibility of exactly given real values.
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Command Section

evalfi calculates inclusion functions 8.3.2
gmin global minimum of a function 8.4.1
iddf distribution function 8.5.1
idf distribution function 8.5.2
imean mean value 8.6.1
ivar variance 8.6.2
mpr evaluation of interval expression 8.2.2
range range of a function 8.4.2
sddf distribution function 8.5.1
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8.2 Interval Expressions

This section deals with interval expressions, that is, expressions that may
contain interval-valued arguments. There are two subsections.

8.2.1 Definition of Interval Expressions explains the available opera-
tors that can be used to specify interval expressions.

8.2.2 Evaluation of Interval Expressions describes an enhancement of
the mpr command that can be used to evaluate interval expres-
sions.
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8.2.1 Definition of Interval Expressions

An elementary interval expression has the form

iv( e1, e2 )

iv is the name of an operator, called interval operator , an e1 and e2 are
standard expressions. Alternatively, one can use the syntax

[ e1, e2 ]

A (general) interval expression is an expression that contains at least
one elementary interval expression.

The general idea is that one can begin with elementary interval ex-
pressions and then, by applying operators, can create more complex in-
terval expressions. Only a subset of TDA’s operators can be used, how-
ever, to create interval expressions. They will be described in turn. The
basic principle is that the result of applying an operator to an interval
should result in another interval that contains all possible values that
result from applying the operator to any value of the interval that is
given as an argument. Thus, for an operator that has a single argument,
its application should result in

op( [ e1, e2 ] ) = { op(e) | e ∈ [ e1, e2 ] }

Correspondingly, for an operator with two arguments we have

op( [ e1, e2 ], [ e′1, e
′
2 ] ) = { op(e, e′) | e ∈ [ e1, e2 ], e′ ∈ [ e1, e2 ] }

The following operators can be used to create interval expressions. Notice
that these are always type 1 operators; type 2 operators cannot be used
to create interval expressions.

1. The basic numerical operators: +,−, ∗, /.

2. The operators: sin(), cos(), log(), exp().

3. The operators: min() and max().

Note 1. Contrary to our definition of interval-valued variables, inter-
val expression may contain degenerate intervals, that is, intervals [e1, e2]
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where e1 = e2. It is also possible to use an elementary interval expres-
sion where e2 < e1. In fact, when evaluating interval expressions, an
elementary interval expression given by [ e1, e2 ] is always taken as

[min(e1, e2),max(e1, e2) ]

Note 2. For a good introduction to interval calculations and some of
its applications see Hansen (1992). In the literature, one main reason
for using interval calculations is that, in principle, this approach allows
to cope with the problem of inaccuracies and rounding errors when per-
forming numerical calculations on a computer. This requires, however,
proper rounding procedures (outward rounding of interval bounds). We
stress that TDA’s interval procedures do not apply proper rounding. In
fact, TDA’s interval procedures are not intended to correctly deal with
problems of numerical inaccuracy and rounding errors. They definitely
serve another purpose: to deal with interval-valued variables where in-
tervals are most often very broad and one can neglect problems that may
occur in the calculation, and proper rounding, of interval bounds.
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8.2.2 Evaluation of Interval Expressions

In order to evaluate interval expressions one can use the mpr command.
The syntax is

mpr(expression [, string] ) [= filename];

expression can be an interval expression. The result is written as an
interval. The lower and upper bounds of the interval are not enclosed by
square brackets. In order to get surrounding square brackets one can use
mpr1, instead of mpr.
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8.3 Functions with Interval Arguments

This section deals with functions that may contain interval-valued argu-
ments. There are two subsections.

8.3.1 Definition of Interval Functions explains how to specify func-
tions that may contain interval-valued arguments.

8.3.2 Evaluation of Inclusion Functions describes the evalfi com-
mand that can be used to find inclusion functions for user-
defined interval functions and first derivatives.
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8.3.1 Definition of Interval Functions

We use the term interval function to denote an interval expression that
contains one or more free variables. For example,

f(x) := sin(x + [ 1, 2 ])

would be an interval function with a single variable (argument), x. The
expression that defines an interval function may, or may not, contain
elementary interval expressions. In any case, it is required that the ex-
pression can be evaluated as an interval expression, that is, the expression
must only contain operators that are allowed for interval expressions.

In most applications it is also required that domains for the function
arguments are specified by finite intervals. This gives rise to the notion
of inclusion function. To be explicit, let

f(x1, . . . , xn)

denote a function and the domains of its arguments be given by intervals
X1, . . . , Xn. We then define a lower bound function

f`(x1, . . . , xn) := min{f(x1, . . . , xn) |x1 ∈ X1, . . . , xn ∈ Xn}

an upper bound function

fa(x1, . . . , xn) := max{f(x1, . . . , xn) |x1 ∈ X1, . . . , xn ∈ Xn}

and a range function

f à(x1, . . . , xn) := [ f`(x1, . . . , xn), fa(x1, . . . , xn) ]

The word inclusion function is used to refer to any interval-valued func-
tion that includes the range function.

Notice that it is most often not possible to find the range function by
simply treating the function arguments as intervals and then evaluating
the resulting interval expression. This will result in an inclusion function
but most often not in the range function. In general, in order to find the
range function, one will need a global optimization procedure. This will
be discussed in 8.4.
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8.3.2 Evaluation of Inclusion Functions

Given an interval function one can use the evalfi command to calculate
an inclusion function (for terminology see 8.3.1). The syntax is shown
in the following box.

evalfi (

arg1=l1,u1, domain for argument arg1, def. [0,0]
fmt=..., print format, def. 12.4

) = interval function;

On the right-hand side must be given the definition of an interval func-
tion. Domains for its arguments can be specified as parameters of the
command. Of course, arg must be substituted by the name of the argu-
ment that is used in the function definition. If the function has more than
one argument, one can specify a separate domain for each argument.

Interval-valued Gradient. One can use the evalfi1 command, in-
stead of evalfi, in order to calculate an inclusion function also for the
gradient of the function specified on the right-hand side.

Example 1 To illustrate we use the function

f(x) := sin(x)

Box 1 shows the evalfi1 command and its result. Since the interval that
results for the gradient does not contain zero one can conclude that the
function is, in the given interval, monotone.
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Box 1 Illustration of evalfi command

Command: evalfi1(

x = 0,1,

) = sin(x);

Result:

[ 0.0000 , 0.8415 ] function value

[ 0.5403 , 1.0000 ] gradient x
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8.4 Range of Interval Functions

This section deals with the problem how to find the range, i.e., the
global maximum and minimum, of a function that contains interval-
valued arguments. Subsections are as follows.

8.4.1 The gmin Command describes a command that can be used to
find the global minimum of a user-defined function.

8.4.2 The range Command describes a command that can be used
to find the range of a user-defined function.

d0804.tex April 26, 1999



8.4.1 the gmin command 1

8.4.1 The gmin Command

This section describes the gmin command that can be used to find the
global minimum of a function. Assume we are given a real-valued func-
tion

f(x1, . . . , xn)

and intervals, X1, . . . , Xn, that specify domains for the function argu-
ments. The command tries to find

f∗ := min{f(x1, . . . , xn) |x1 ∈ X1, . . . , xn ∈ Xn}

In order to describe the algorithm we use the following abbreviations:

x := (x1, . . . , xn)
X := X1 × · · · ×Xn

f∗l (B) := min{f(x) |x ∈ B}
f∗u(B) := max{f(x) |x ∈ B}

where B ⊆ X. We also use fm(B) to denote the value of f evaluated at
the midpoint of B.

The algorithm keeps a list of boxes, indexed by k. The initial box
equals X, the domain of the function. The algorithm tries to find a
smallest set of boxes such that the arguments where the function has
its global minima are contained in those boxes. If Bk is a box from
the list, I(Bk) is used to denote its state. I(Bk) = 0 when the box is
created. I(Bk) = 1 if W (Bk) ≤ Tb, where W (Bk) is the box width (=
maximal width of its marginal intervals) and Tb is a given tolerance for
the minimal box width that can be specified with the tolbw parameter
of the gmin command.

(1) Set: k = 1, B1 = X. Add B1 to the (previously empty) list of boxes.
Calculate f with the given starting values and denote the result
by f∗. Find an inclusion function for f(B1) in order to get values
fl(B1) ≤ f∗l (B1) and fu(B1) ≥ f∗u(B1).

(2) In the current list of boxes, drop all boxes Bk if fl(Bk) > f∗. (These
boxes cannot contain global minima.)
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(3) In the current list of boxes, find a box Bk such that I(Bk) = 0 and
fl(Bk) is minimal. If such a box cannot be found continue with step
11.

(4) If W (Bk) ≤ Tb set I(Bk) = 1 and continue with step 3.

(5) Bisect Bk into two sub-boxes, Bk1 and Bk2 .

(6) If it is not requested to use first derivatives (ns=0), calculate, for
both boxes, an inclusion function for f and put the boxes, together
with the lower and upper bounds of the inclusion functions, on the
list. Continue with step 8.

(7) Otherwise, if (ns=1), calculate, for both boxes, an inclusion function
for f and for its gradient. Then, for both boxes, if the inclusion
function for the gradient does not contain zero, conclude that the
function is monotone in the box and shrink the box to that endpoint
where the function takes its minimal value and update the lower and
upper bounds for the inclusion function of the box. Then put the
boxes, together with the lower and upper bounds of the inclusion
functions, on the list.

(8) For i = 1, 2, if fu(Bki
)−fl(Bki

) < Tf , set I(Bki
) = 1. (The tolerance

Tf can be specified with the tolfd parameter of the gmin command.)

(9) Set f∗ to the minimum of its current value and the minimum of
fm(Bk1) and fm(Bk2).

(10) Increase the iteration counter. If the maximum number of iterations
is not yet reached, continue with step 2. (The maximum number
of iterations can be specified with the mxit parameter of the gmin
command.)

(11) In the current list of boxes, for each box Bk that has I(Bk) = 1, if
fl(Bk) ≥ f∗−Te, then set I(Bk) = 2. (The tolerance Te can be speci-
fied with the tolfe parameter in the gmin command.) Finally, report
information about all boxes where I(Bk) = 2 in the standard output.
If requested, report also information about boxes where I(Bk) = 1
in the protocol file.

The syntax of the gmin command is shown in Box 1. The right-hand
side must provide a function expression that can be evaluated as an
interval expression. Note, however, that the expression must not contain
elementary interval expressions.
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Box 1 Syntax of gmin command

gmin (

ns=..., ns=1 for using derivatives, def. 0
xp=..., directly defined starting values
dsv=..., starting values given by data file
mxit=..., maximum number of iterations, def. 100
nbox=..., number of boxes, def. 100
tolbw=..., tolerance for final box width, def. 1.e-6
tolfd=..., tolerance for function values, def. 1.e-10
tolfe=..., tolerance for convergence, def. 1.e-10
prot=..., protocol file
fmt=..., print format, def. 13.6

) = function;

Starting values, and domains, for the function arguments can be spec-
ified with the xp parameter in the following way:

xp = x1[l1, u1], x2[l1, u1], . . .

where xi is the starting value, and [li, ui] is the domain, for the ith
argument. Alternatively, one can use the dsv parameter to specify a data
file that contains starting values in its first column, and lower and upper
bounds for the domains in its second and third columns, respectively.

Example 1 To illustrate we try to find the global minima of sin(x)
in the interval [ 0, 12]. Box 2 shows the gmin command and part of its
standard output.



8.4.1 the gmin command 4

Box 2 Illustration of gmin command

Command: gmin(

xp = 1[0,10],

ns = 1,

) = sin(x);

Part of standard output:

Number of iterations performed: 39

Number of function evaluations: 41

Number of inclusion function evaluations: 77

Number of boxes used: 3

Number of temporarily accepted boxes: 2

Number of finally accepted boxes: 2

Best minimal function value: -1.000000 best lower bound: -1.000000

Box Acc Width Lower function bound Upper function bound

1 2 2.2888183594e-05 -1.00000000000000e+00 -9.99999999910710e-01

2 2 1.1444091797e-05 -1.00000000000000e+00 -9.99999999941891e-01

Box Idx Parameter

1 1 x 4.712379 4.712402

Box Idx Parameter

2 1 x 10.995564 10.995575
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8.4.2 The range Command

The range command is intended to calculate the range of a user-defined
function. The syntax is shown in Box 1. The command is basically iden-
tical with the gmin command described in 8.4.1. In fact, the range
command simply calls the gmin algorithm two times in order to find
both, a global minimum and a global maximum of the function.
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Box 1 Syntax of range command

range (

ns=..., ns=1 for using derivatives, def. 0
xp=..., directly defined starting values
dsv=..., starting values given by data file
mxit=..., maximum number of iterations, def. 100
nbox=..., number of boxes, def. 100
tolbw=..., tolerance for final box width, def. 1.e-6
tolfd=..., tolerance for function values, def. 1.e-10
tolfe=..., tolerance for convergence, def. 1.e-10
prot=..., protocol file
fmt=..., print format, def. 13.6

) = function;
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8.5 Distribution Functions

This section deals with the problem how to find distribution functions for
set-valued and, in particular, interval-valued variables. The subsections
are as follows.

8.5.1 Set-valued Discrete Variables describes the sddf and and iddf
commands that find distribution functions for set-valued vari-
ables.

8.5.2 Interval-valued Variables describes the idf commands that cal-
culates distribution functions for interval-valued variables.
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8.5.1 Set-valued Discrete Variables

Let X = {1, . . . ,M} denote the property space of a discrete variable that
has M possible categories. Let

X : Ω −→ P(X )

denote a set-valued variable. Assume we are given a set of n observations,
oi, i = 1, . . . , n. Each observation is a subset of X . Now let x̃ ⊂ X be
some property set. We then define in a first step:

pmin(oi, x̃) :=
{

1 if oi ⊆ x̃
0 otherwise

pmax(oi, x̃) :=
{

0 if oi ∩ x̃ = ∅
1 otherwise

These expressions are used in a second step to define lower and upper
bounds for the distribution function:

Pr`(x̃) :=
1
n

n∑
i=1

pmin(oi, x̃)

Pra(x̃) :=
1
n

n∑
i=1

pmax(oi, x̃)

We furthermore define two versions of an intermediate distribution func-
tion. One version is

P̄r(x̃) :=
1
n

n∑
i=1

| oi ∩ x̃ |
| oi |

and will be called mean distribution function. Another version is defined
by the following functional equation:

P̃r(x̃) :=
1
n

n∑
i=1

P̃r(oi ∩ x̃)
P̃r(oi)

In general, this equation has no closed solution, but one can try to find
a solution with an iterative procedure. If a solution can be found, it will
be called a self-consistent distribution.
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Box 1 Syntax of sddf command

sddf (

opt=..., option, def. 1
1 = min, max, and mean distr. function
2 = additionally self-cons. distr. function

mxit=..., maximum number of iterations, def. 50
tolf=..., tolerance for convergence, def. 1.e-3
prot=..., protocol file
df=..., optional output file

) = set valued variable;

The sddf Command. The sddf command calculates Pr`, Pra, P̄r, and,
optionally, P̃r. The syntax is shown in Box 1. All parameters, except
for the definition of a set-valued variable on the right-hand side, are
optional. The variable must be specified by a set of indicator variables.
In general, if there are M possible categories, one has to specify M
indicator variables, say,

X1, . . . , XM

Then, for each case i in the data matrix, if Xj = 1, it will be assumed
that oi contains the jth category, and if Xj = 0, it will be assumed that
oi does not contain the jth category.

By default (opt = 1), the command only calculates the minimal,
maximal, and mean distribution function. If opt = 2, the command fur-
thermore tries to find a self-consistent distribution function with an it-
erative procedure. In this case one can specify a maximum number of
iterations with the mxit parameter, and a convergence tolerance with
the tolf parameter. If requested with the prot parameter, information
about the iterations are written in a protocol file. By default, a table
that shows the values of the variable and corresponding values of the
distribution functions is written into the standard output. Alternatively,
the table is written into an output file that can be specified with the df
parameter.

Example 1 An illustration is given in Box 2. In this example, M = 3
and the data file, id1.dat, provides information about five cases:

o1 = {1}, o2 = {2}, o3 = {3}, o4 = {1, 2}, o5 = {2, 3}
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Box 2 Illustration of sddf and iddf commands

Data file id1.dat Data file id1a.dat

X1 X2 X3 XL XH

-------- ------

1 0 0 1 1

0 1 0 2 2

0 0 1 3 3

1 1 0 1 2

0 1 1 2 3

Command file: id1.cf Command file: id1a.cf

nvar( nvar(

dfile = id1.dat, dilfe = id1a.dat,

X1 = c1, XL = c1,

X2 = c2, XH = c2,

X3 = c3, );

);

sddf( iddf(

opt=2, opt = 2,

df = df, df = df,

) = X1,,X3; ) = XL,XH;

Output file: df

X min df max df mean df s-c. df

-----------------------------------------------------

1 0.200000 0.400000 0.300000 0.276596

2 0.200000 0.600000 0.400000 0.446809

3 0.200000 0.400000 0.300000 0.276596

The iddf Command. This command is basically identical with the
sddf command. The only difference is in the specification of the set-
valued variable. While the sddf command allows to specify arbitrary
subsets, the iddf command requires a definition of intervals. The syntax
is

iddf(...) = XL,XH;

where now XL and XH are names of variables that provide, respectively,
lower and upper bounds of the intervals. For an example see the data
file, id1a.dat, and the command file, id1a.cf, in Box 2.
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8.5.2 Interval-valued Variables

Let X denote an interval-valued variable. Assume there are n values, oi,
given by the intervals

oi = [ li, ui ] i = 1, . . . , n

The range of the variable will be defined by

[ l, u ] l = min{li | i = 1, . . . , n}, u = max{ui | i = 1, . . . , n}

The term induced partition is used to denote a partition of [ l, u ] into
sub-intervals given by

l = τ1, τ2, . . . , τm−1, τm = u

such that each τj coincides with at least one li or ui. Then, for any subset
S ⊆ [ l, u ], we define in a first step:

pmin(oi, S) :=
{

1 if oi ⊆ S
0 otherwise

pmax(oi, S) :=
{

0 if oi ∩ S = ∅
1 otherwise

These expressions are used in a second step to define lower and upper
bounds for the distribution function:

Pr`(S) :=
1
n

n∑
i=1

pmin(oi, S)

Pra(S) :=
1
n

n∑
i=1

pmax(oi, S)

We furthermore define two versions of an intermediate distribution func-
tion. One version is

P̄r(S) :=
1
n

n∑
i=1

| oi ∩ S |
| oi |
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Box 1 Syntax of idf command

idf (

fmt=..., print format, def. 13.6

) = XL,XH;

and will be called mean distribution function. Another version is defined
by the following functional equation:

P̃r(S) :=
1
n

n∑
i=1

P̃r(oi ∩ S)
P̃r(oi)

In general, this equation has no closed solution, but one can try to find
a solution with an iterative procedure. If a solution can be found, it will
be called a self-consistent distribution.

The idf Command. Given an interval-valued variable the idf com-
mand calculates the induced partition, τ1, . . . , τm, and for each interval
[ τ1, τj ], calculates Pr`( [τ1, τj ] ), Pra( [τ1, τj ] ), and P̄r( [τ1, τj ] ). The syn-
tax is shown in Box 1.

Example 1 To illustrate we use the following arbitrarily chosen income
data:

1900, 1950, 2000, 2010, 2030, 2050, 2100, 2110, 21402140, 2150

We assume that the precision is given by ±30 DM. The data file is
id2.dat. Box 2 shows the command file, id2.cf, and the standard out-
put from the idf command.

Note. Calculation of a self-consistent distribution function is not yet
available with the idf command.
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Box 2 Illustration of idf command

Command file: id2.cf

nvar(

dfile = id2.dat,

XL = c1 - 30,

XH = c1 + 30,

);

idf = XL,XH;

Standard output:

Idx Partition Lower Bound Upper Bound Mean DF

1 1870.000000 0.000000 0.090909 0.000000

2 1920.000000 0.000000 0.181818 0.075758

3 1930.000000 0.090909 0.181818 0.106061

4 1970.000000 0.090909 0.272727 0.166667

5 1980.000000 0.181818 0.363636 0.196970

6 2000.000000 0.181818 0.454545 0.257576

7 2020.000000 0.181818 0.545455 0.348485

8 2030.000000 0.272727 0.545455 0.409091

9 2040.000000 0.363636 0.545455 0.454545

10 2060.000000 0.454545 0.545455 0.515152

11 2070.000000 0.454545 0.636364 0.530303

12 2080.000000 0.545455 0.727273 0.560606

13 2110.000000 0.545455 0.909091 0.651515

14 2120.000000 0.545455 1.000000 0.712121

15 2130.000000 0.636364 1.000000 0.787879

16 2140.000000 0.727273 1.000000 0.848485

17 2170.000000 0.909091 1.000000 0.984848

18 2180.000000 1.000000 1.000000 1.000000



8.6 descriptive statistics 1

8.6 Descriptive Statistics

This section describes commands that can be used to calculate simple
descriptive statistics for interval-valued variables. The subsections are as
follows.

8.6.1 Mean Values describes the imean command that calculates lower
and upper bounds for the mean of an interval-valued variable.

8.6.2 Variances describes the ivar command that calculates lower
and upper bounds for the variance of an interval-valued vari-
able.

d0806.tex May 17, 1999



8.6.1 mean values 1

8.6.1 Mean Values

Given an interval-valued variable, the imean command calculates lower
and upper bounds for its mean value. The syntax is shown in the follow-
ing box.

imean (

fmt=..., print format, def. 10.4

) = XL,XH;

The right-hand side must specify two variables to be interpreted, respec-
tively, as lower and upper bounds for the values of the variable. Since
the mean is a simple linear function, calculation of bounds for the mean
value is quite easy. The lower bound can be calculated from the values
of XL, the upper bound can be calculated from the values of XH.

Example 1 To illustrate we use the data file id1a.dat shown in Box
8.5.1-2. The command is simply

imean = XL,XH;

The lower and upper bounds for the mean value are 1.8 and 2.2, respec-
tively.
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8.6.2 Variances

Given an interval-valued variable with values

oi = [ li, ui ] (i = 1, . . . , n)

the ivar command calculates

V ` = min
{ 1

n

(
Σi (xi − (Σjxj/n)

)2 |xi ∈ [ li, ui ]
}

V a = max
{ 1

n

(
Σi (xi − (Σjxj/n)

)2 |xi ∈ [ li, ui ]
}

The syntax is shown in the following box.

ivar (

mxit=..., maximum number of iterations, def. 100
nbox=..., number of boxes, def. 100
tolbw=..., tolerance for final box width, def. 1.e-4
tolfd=..., tolerance for function values, def. 1.e-6
tolfe=..., tolerance for convergence, def. 1.e-6
prot=..., protocol file
fmt=..., print format, def. 10.6

) = XL,XH;

The right-hand side must specify two variables to be interpreted, respec-
tively, as lower and upper bounds for the values of the variable. Bounds
for the variance are calculated by calling the gmin command with a
pre-defined expression for the variance; see 8.4.1 for an explanation of
parameters.

Example 1 To illustrate we use the data file id1a.dat shown in Box
8.5.1-2. The command is simply

ivar = XL,XH;

The lower and upper bounds for the variance are 0.4 and 0.8, respectively.
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für historische Sozialforschung.

Anton, H., Rorres, C. [1991]. Elementary Linear Algebra. Applications Version.
New York: Wiley.

Arabie, P., Hubert, L. J., Schleutermann, S. [1990]. Blockmodels from the Bond
Energy Approach. Social Networks 12, 99 – 126.

Baker, L. [1992]. C Mathematical Function Handbook. New York: McGraw-
Hill.

dref.tex April 26, 1999



references 2

Baldone, S., Brioschi, F., Paleari, S. [1997]. Ownership Measures Among Firms
Connected by Cross-Shareholdings and a Further Analogy with Input-
Output Theory. Mimeo.

Barrodale, I., Roberts, F.D.K. [1973]. Algorithm 478: Solution of an Over-
determined System of Equations in the L1 Norm. Communications of the
ACM 17, 319 – 320.
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