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1 Notation

In this introduction we will approach the analysis of events in time through a
description of the durations between events. This approach does not directly
attack the problems of dynamic descriptions in the social sciences. However,
while the dynamics in any subject area will in general require a specialised
study, the study of durations is less demanding. Moreover, it can often be used
to build up more complicated models involving several simultaneous durations,
many types of events, or different time scales.

The building blocks will therefore be variables T designating durations. We will
assume that these variables take values in the positive real numbers R+. We
make unrestricted use of the properties of the real numbers, their additive and
multiplicative structure, their order and completeness. While this allows for a
convenient mathematical description, one should bear in mind that durations
in the social realm, let alone observations pertaining to them, rarely have all
the required properties. As long as the difference is born in mind and as long
as the use of real numbers leads to convenient approximations, this will do no
harm.

Since we are mainly interested in the statistical description of durations, the
variables T are treated as random variables. For the following, this basically
means that all possible information on the random variables are given by their
distribution function

F (t) = Pr(T ≤ t). (1)

The complement of this function,

G(t) = Pr(T > t) = 1− Pr(T ≤ t) = 1− F (t) (2)

is often called survivor function.1 If need arises to use several distribution
functions, these are denoted by capital letters F,H,M etc. We will write F ∗
for the distribution function of functions of T to emphasise the relation to
the original variable. The functions themselves, however, may have arbitrary
names.

The density function of T is defined as

f(t) = lim
Δt→0

Pr(t ≤ T < t+ Δt)
Δt ,

1 The name is most unfortunate in many applications. But we follow established custom.
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provided the limit exists everywhere. If it does, the distribution will be
called continuous. The density can be used more flexibly than the distribution
function to express arbitrary probabilities. For any set A for which a probability
is defined, we can write

Pr(T ∈ A) =
∫

A

f(u) du.

For the distribution and survivor function, this means that

F (t) = Pr(T ≤ t) =
∫ t

0
f(u) du

and

G(t) = Pr(T > t) =
∫ ∞

t

f(u) du,

as well as the reverse relation, giving the density in terms of the distribution
or survivor function as

f(t) = ∂

∂u
F (u)|u=t = − ∂

∂u
G(u)|u=t.

Densities are denoted by f, h, and m, corresponding to the capital letters used
for distributions.

To denote the distribution of a random variable T , we use the symbol

T 'd F.

In some cases it is necessary to deal with discrete random variables. Sup-
pose that τ0 = 0 < τ1 < τ2 . . . is a sequence of durations with Pr(T ∈
{τ0, τ1, τ2, . . .}) = 1. The sequence τ0, τ1, . . . therefore contains all values the
random variable T can take. This is called a discrete distribution. To em-
phasise the similarity with the continuous case, we denote the distribution
function by

F (t) = Pr(T ≤ t) =
∑

τi≤t
Pr(T = τi).

This is a right continuous step function. For the probabilities of single durations
we write

f(τi) = Pr(T = τi),
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so that

f(τi) = F (τi)− F (τi−),

where F (τi−) is the limit from the left of F , lims↑τi F (s). F (τi) − F (τi−) is
the height of the i th jump of the step function F , stressing the similarity with
the definition of a density. We can re-express F in terms of the f by

F (t) =
∑

τi<t

f(τi).

A sample of durations is denoted by t1, . . . , tn, in contrast to a sequence of
numbers known beforehand, like the τi above. The empirical distribution
function of a sample is

F̂n(t) = 1
n

n∑

i=1
I[ti ≤ t],

where I[A] is the indicator function taking the value 1 if A is the case, and 0
otherwise. This is a step function with jumps at the observations ti, of height
1/n. It is a discrete distribution function, giving probability 1/n to each of
the observed durations t1, . . . , tn (which in this case need not be ordered).

We try to use a unified notation for integrals with respect to continuous
distributions, discrete distributions, the mixed case, and empirical distributions.
Specifically, the expectation with respect to the empirical distribution function
is written as

EF̂n(h(T )) =
∫
h(t) dF̂n(t) = 1

n

∑

i

h(ti).

Generally, if Mn(t) is a step function with jumps of height m1, . . .mn at the
points t1, . . . , tn, we write

∫
h(t) dMn(t) =

n∑

i=1
mih(ti),

so that the integral simply denotes a weighted sum of the values h(ti). If a
distribution has both an absolutely continuous part and discrete atoms, an
integral with respect to that distribution is the sum of the integral with respect
to its continuous part and the integral with respect to a step function. Thus,

∫
h(t) dMn(t) =

∫
h(t)mc(t) dt+

n∑

i=1
mih(ti),
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where mc is the density of the continuous part and mi is the weight of the
discrete atoms at the points ti.

2 Basic descriptions of durations

We assume that durations are represented by random variables taking values
in the non-negative real numbers. This implies that two descriptions of social
situations are treated as equal if the descriptions result in the same distribution
function. Within such an approach, aspects of a situation requiring a more
detailed description than what a summary function can provide are excluded.
This allows for a unified presentation of some recurrent themes in event history
analysis.

We start with the discussion of a central concept within the theory of positive
random variables, the hazard rate. Another central feature pertaining to the
observation of event histories is that these need not have come to an end by
the time data are gathered. Such uncompleted sequences of events will be
referred to as censored. How censored information can be used in descriptions
of summary functions like the distribution function is the main topic of the
latter part of this section.

2.1 Distribution function, density, and hazard rate

Durations are most often conceived of as the time between specific events.
Taking a certain primary event as the starting point, the problem is to give
a description of the time to the next event of interest. If the clock is set
to zero at the time of the primary event, this is equivalent to asking for the
(positive) amount of waiting time for the next event’s occurrence. The standard
descriptions of this situation in terms of distribution functions etc. do not take
into account the time position of an observer. The hazard rate function turns
out to be useful in this context. In discrete time, it is defined as

r(τi) = Pr(T = τi |T ≥ τi) = f(τi)
G(τi−1) , (3)

so that the hazard rate is the conditional probability of an event at time τi,
given that there was no event before τi. The conditioning event {T ≥ τi} may
be interpreted as the information of an observer just before time τi. If the
event did not take place before time τi, the probabilistic description should
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be updated to the conditional probability, given this information. The hazard
rate does this for the event {T = τi}.

In continuous models one takes the appropriate limit and defines

r(t) = lim
Δt→0

1
Δt Pr(T ∈ [t, t+ Δt) |T ≥ t) = f(t)

1− F (t) = f(t)
G(t) , (4)

which is the limit of the probability of the occurrence of an event in [t, t+ Δt),
given that there was no event before time t. Note that we should have
written G(t−) to represent the conditioning event {T ≥ t}. But for continuous
distributions, G(t−) = G(t). The hazard rate is therefore a measure of the
current intensity of an event to occur. It is not a probability, however, since it
can take values larger than 1. As can be seen from the definition, the hazard
rate exists if and only if a density exists.

The distribution function, the survivor function, the density, and the rate
function are equivalent descriptions for the probability distribution of a positive
random variable. That is, given one of the functions, the others can be derived
analytically. It is therefore possible to choose that summary function that best
suits ones purpose.

First, in the discrete case, we can use the properties of conditional probabilities
directly to express the survivor function in terms of the hazard rate. From

G(τi |T ≥ τi) = Pr(T > τi |T ≥ τi) = 1− r(τi)

one gets, going backward in time,

G(τi) = Pr(T > τi) = Pr(T > τi |T ≥ τi) Pr(T ≥ τi)
= Pr(T > τi |T ≥ τi) Pr(T > τi−1)
= Pr(T > τi |T ≥ τi) Pr(T > τi−1 |T ≥ τi−1) Pr(T > τi−1)
= . . .

=
i∏

j=1
(1− r(τj)). (5)

The relation for the density therefore is

f(τi) = G(τi−1)−G(τi) = r(τi)
i−1∏

j=1
(1− r(τj)). (6)
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In the continuous case, the definition of the hazard rate leads to

r(t) = f(t)
G(t) = − ∂

∂t
lnG(t). (7)

On the other hand, solving the implied differential equation in G(t) above
gives an expression for the survivor function in terms of the hazard rate

G(t) = 1− F (t) = exp
(
−
∫ t

0
r(u) du

)
. (8)

Differentiating this relation gives the density function in terms of the hazard
rate:

f(t) = r(t)G(t) = r(t) exp
(
−
∫ t

0
r(u) du

)
. (9)

The differences between the formulae in the discrete and continuous case are in
fact more apparent than real. It is possible to express the survivor function in
the continuous case in an analogous way as in the discrete case (5), although
doing so would require the introduction of some concepts that aren’t needed
in the following. However, a useful function with a definition that covers both
the continuous and the discrete case is the integrated hazard rate. Using the
integral representation introduced above, this can also be expressed as

H(t) =
∫ t

0

1
1− F (u−) dF (u), (10)

where F (u−) denotes again the limit from the left, lims↑u F (s). Care with the
limits is needed here since we do not want to presuppose the existence of a
density in which case F may contain jumps. The denominator in the integrand
above just involves a careful formulation of the probability Pr(T ≥ u) which
need not be equal to G(u) = 1− F (u) = Pr(T > u).

From the definition we have

H(t) =
∫ t

0
r(u) du and H(t) = − lnG(t)

in the continuous case and

H(t) =
∑

τj<t

r(τj)
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in the discrete case.

In the general case, moreover, if there is a jump of the distribution function at
time t, so that F (t) − F (t−) > 0, the corresponding jump in the integrated
hazard is

H(t)−H(t−) = Pr(T = t |T ≥ t).
The integrated hazard function represents a positive measure in its own right.
The only difference from a probability measure is that it is generally not finite
since H(t)→∞ for t→∞. It figures below in the context of estimation, since
it equals the expected number of events in the time interval [0, t) if durations
between events are independent and follow the distribution F .

A last observation used variously below is that the expectation of the random
variable T can be expressed in terms of the survivor function as

E(T ) =
∫ ∞

0
uf(u) du =

∫ ∞

0
G(u) du, (11)

which follows from integration by parts if either side is finite. Recall the
formulae for integration by parts. If

∫ t
0 f(u) du = F (t) and

∫ t
0 g(u) du = G(t),

then
∫ t

0
f(u)G(u) du =

∫ t

0
G(u) dF (u)

= [F (t)G(t)− F (0)G(0)]−
∫ t

0
F (u) dG(u) (12)

= [F (t)G(t)− F (0)G(0)]−
∫ t

0
F (u)g(u) du

This is a slightly rewritten version of the differentiation rule for products of
functions. If F or G contain jumps but are right continuous, the result can be
rewritten as

∫ t

0
G(u) dF (u) = [F (t)G(t)− F (0)G(0)]−

∫ t

0
F (u−) dG(u) (13)

and
∫ t

0
G(u−) dF (u) = [F (t)G(t)− F (0)G(0)]−

∫ t

0
F (u−) dG(u)

−
∑

u≤t
(F (u)− F (u−))(G(u)−G(u−)). (14)
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2.2 Censoring mechanisms

Suppose that the duration of interest T starts at time t = 0. Suppose further
that the process is observed during the period [0, c]. This means that the event
in question is observed to occur only if T ≤ c, before the observation on the
process ceases. If T > c, information on the timing of the event is not available.
The observation is said to be censored. The data in this form of observations
can be represented in two parts. T ∗ = min(T, c) records either the time of the
event if it occurred before c, or the censoring time c if the event did not occur
before c. Additionally, an indicator D = I[T ≤ c], being 0 if the observation is
censored, 1 otherwise, is given.

Observations similar to the above situation arise regularly from event histories,
where observation time necessarily ceases at some point in time. In order
to achieve a description of T at least on the interval [0, c], it is necessary to
assume that the censoring time does not involve any information on the future
course of the process. This will generally be true if the censoring time is fixed
in advance.

A slightly more general censoring model allows the censoring time to be a
random variable C. In this case a valid description of T is achievable if
the random variables C and T are stochastically independent. The data are
once again represented by the pair (T ∗ = min(T,C), D). This is called the
independent random censoring model.

These two representations of the lack of information arising in event histories
are rarely very accurate descriptions. While the observation period might be
considered fixed in advance, the starting times of the processes of interest are
most often not fixed in calendar time. Observations can cease for other reasons
than the planned end of a study, especially because subjects drop out of a
study.

The requirement for valid descriptions of T will in such cases still be that
censoring at a particular time will not give information on the future time
course of the process of interest. Over the past decades, probabilistic models for
censoring have been considerably extended and do cover some of the situations
indicated above. However, these models cannot be empirically verified. They
all rely on speculations of what might happen or might have happened in
the past. However general they are, they still need considerable knowledge of
the subject matter to judge their merits. In effect, all that the probabilistic
censoring models provide is a framework in which the statistical models and
estimators described below are known to work. They scarcely affect the
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estimators form. To simplify the following discussion of statistical models and
estimators, we will therefore assume that either censoring takes places at a
fixed predetermined time (or a fixed sequence of times) or that censoring times
can be represented by random variables independent of T .

2.3 Observing events through time

One of the main objectives of statistical theory is to provide estimates of the
distribution function or of other summary functions describing durations. To
do so, one needs a representation of observations that connects data with the
probabilistic descriptions in terms of random variables. We will assume that
the observations consist of a sequence of pairs (ti, di), i = 1, . . . , n that are
realisations of n independent identically distributed random variables T with
distribution function F , transformed by an independent censoring mechanism.
That is, each (ti, di) is interpreted as a realisation from the pair of random
variables (T ∗, D), and any two observations (ti, di) and (tj , dj) arise from
independent but identical copies of (T ∗, D). The observations, or functions of
the observations, can then be considered as random variables derived from the
random variables of interest. Therefore, the relations between functions of the
data and distributional descriptions of durations can be treated by probabilistic
methods. Moreover, since we deal with repetitions of the same variables, it is
possible to think of the observations as being part of an indefinite sequence,
allowing thus the application of limit theorems from probability theory.

The above conceptions have no special relation with processes developing
in time. However, we do need some notation expressing the evolution of
observations of the variables through time, mimicking the way information is
revealed to an observer. This will basically mean to count events and censorings
up to some time point t. We will set

Ni(t) = I[ti ≤ t, di = 1] (15)
Ri(t) = I[ti > t] (16)
Ei(t) = I[ti = t, di = 1]. (17)

The corresponding sums over the n observations are denoted by the same
symbol without the subscript i. So, N(t) =

∑n
i=1 Ni(t) etc. Then, N(t) is the

number of uncensored events before time t, and E(t) is the number of events
exactly at time t, excluding censored observations. Also, R(t) is the number of
observations that had neither an event or a censoring recorded before t. This
is often referred to as the number at risk at time t, since Ri(t) = 1 implies
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that the event time is later than t. In the sequel, the same symbols N,R,E
will occasionally be used to refer to the respective quantities when data are
replaced by corresponding random variables. E.g., N(t) is also used to refer to∑n
i=1 I[Ti ≤ t,Di = 1]. The meaning should be clear from the context.

2.4 Nelson–Aalen and Kaplan–Meier estimators

In a discrete time setting, the estimation of a hazard rate is straight forward.
By analogy with the definition of the hazard rate, one might put

r̂(τj) = E(τj)
R(τj)

, (18)

the number of events at τj divided by the number still at risk, or under
observation just before τj , together with the convention r̂(τj) = 0 if R(τj) = 0.
Note that this estimator does not depend on censoring or event times before
τj .

From this estimator it is easy to derive respective estimators for the survivor
function, distribution function, density, and integrated hazard rate, simply by
plugging the estimator r̂ into the respective expressions in terms of the hazard
function. For example, one might use

Ĝ(τj) =
∏

k≤j
(1− r̂(τk)). (19)

A simple idea to generalise such estimators from discrete to continuous time
models is to group the observations of the continuous model in fixed time
intervals, and then to proceed as in the discrete case. In a second step it might
then be checked whether the procedure is still sensible when the length of the
intervals shrinks towards 0 and whether it approaches the correct quantity.
Suppose there is a partition of R+ into intervals [τj−1, τj). If the length of the
intervals is small, approximately

H(τj)−H(τj−1) ≈ r(τj−1)(τj − τj−1).

Summing over the intervals to time t and using r̂ from above as an estimator
of the jumps in the previous formula, one arrives at an estimator for the
integrated hazard,

Ĥ(t) =
∑

τj≤t
r̂(τj).
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If the length of the intervals approaches zero, most of the intervals will contain
no or at most one observations. Therefore, one is lead to consider

Ĥ(t) =
∑

tj≤t

dj
R(tj)

, (20)

where (tj , dj) now refers to the observations from the continuous model. This is
the Nelson–Aalen estimator of the integrated hazard function. If the estimator
is used in (8), the resulting estimator for the survivor function is

G̃(t) =
∏

tj≤t
e−dj/R(tj). (21)

Another possibility to extend the estimator from the discrete case is to use
once again the discrete time hazard estimator, but this time in conjunction
with the discrete time formula (5). If the length of the grouping intervals
[tj−1, τj) shrinks to zero, and the number of events in each interval tends to at
most one, the resultant estimator for the survivor function is

Ĝ(t) =
∏

tj≤t
(1− dj/R(tj)). (22)

This is the Kaplan–Meier estimator of the survivor function. Its relation to
the Nelson–Aalen estimator is somewhat illuminated by observing that

e−x ≈ 1− x

for small x, so that

e−dj/R(tj) ≈ (1− dj/R(tj)),

and the two estimators should give similar results.

The Kaplan–Meier estimator has another derivation that connects it with
general methods of estimation in censored data models. The starting point
is not the hazard rate but the empirical distribution that would generally be
used to estimate the survivor function in the absence of censoring. This is

Ĝn(t) = 1
n

∑

i

I[ti > t].

In the presence of censoring, the approach does not seem to be appealing. For
censored observations and t past the censoring time it is not known whether

13
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in fact the duration was longer than t or not, so that I[ti > t] is not known.
However, one can try to replace the unknown quantities by an estimate, say
by its conditional expectation given the censoring time. This is reasonable,
since

G(t) = E(I[T > t]) = E(E(I[T > t] |T ∗, D)). (23)

Then

Ĝn(t) = 1
n

∑

i

EĜ(I[T > t] |T ∗ = ti, Di = di) (24)

is an empirical analogue of (23), since the outer expectation can be replaced by
the empirical distribution of the observations. Note that the inner expectation
on the right hand side depends on the distribution function. An estimator that
solves the above equation is called self consistent. Since it is defined as a fixed
point, a self consistent estimator can be computed iteratively by computing
Ĝk+1 from the right hand side based on Ĝk.

Computations need an explicit formula for the right hand side expectation. It
is given by

EĜ(I[T > t] |T ∗ = ti, Di = di)
= P̂r(T > t |T ∗ = ti, Di = di)

=





0 t > ti, di = 1
1 ti > t

P̂r(T > t)
P̂r(T > ti)

= Ĝ(t)
Ĝ(ti)

else
. (25)

The algorithm based on the self consistency equation will converge to the
Kaplan–Meier estimator if it is initialised by a discrete distribution with equal
mass on all observations, whether censored or not. If, on the other hand, some
of the uncensored observations are initialised with zero mass, the algorithm
will never assign positive mass to them. Therefore, the set of self consistent
estimators contains more members than just the Kaplan–Meier estimator.

To end this section, three more remarks are in order. First, we note a point-wise
variance formula for the Kaplan–Meier estimator. It is normally derived from
likelihood considerations that are discussed later. The result is Greenwood’s
formula

V̂(Ĝ(t)) = Ĝ(t)2


∑

tj≤t

dj
R(tj)(R(tj)− dj)


 (26)
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Second, the above formulae assumed that there is at most one observation
in any small interval used in the approximation of the continuous case. The
assumption can be deduced from the assumption of a continuous model. As a
consequence, the numbers E(τj) in (18) could be replaced by the event indicator
dj , and approximations based on n→∞ justified from this assumption. But
in most data sets there are ties, that is, more than one event at at least some
time points. If the number of such ties is small in comparison to the number
at risk, replacing dj by E(tj) will not alter the estimators of this section
considerably.

Third, the Kaplan–Meier estimator of the survivor function does not approach
0 on t > tn when the largest observation tn is censored. In technical terms,
this will lead to a bias in the estimator. From a practical point of view, the
values of the survivor function beyond the largest observation can never be
ascertained. However, in some cases, e.g. when the evaluation of expectations
is required, some further assumptions are needed.

2.5 Functionals of distributions

In some applications estimators of summary functions are more than is needed.
Instead of the step functions produced by the Kaplan–Meier or Nelson–Aalen
estimators one would like to have a summary in terms of quantiles, means,
variances etc. All these quantities can be treated as functionals of the underlying
survivor or distribution function. For example, the expectation is given by

E(T ) =
∫ ∞

0
u dF (u)

and the median by

median(T ) = F−1(1/2).

In these cases it seems natural to use the estimator of the survivor function
and plug it into the formula for the respective functional. The case of the
median is instructive. Since the estimator of the survivor function is a step
function, there need not exist a value t with Ĝ(t) = 1/2, or it need not be
unique. Moreover, in contrast to the case of uncensored observations, the jump
heights of the estimator are not constant. Therefore, in practice neighbouring
values Ĝ(tj) > 1/2 > Ĝ(tj+1) are linearly interpolated.

15



Event History Analysis

A much more difficult problem is the estimation of moments. Plugging an
estimator of the distribution function into

E(T ) =
∫ ∞

0
G(u) du

will lead to finite values only if the largest observation is uncensored. Estimation
of moments does not seem to be feasible without rather strong assumptions.

3 Simple regression models

Many instances of social research involving durations require more than a
summary measure for their argument. Very often, the problem may be cast
in terms of regression models, a formulation familiar from cross–sectional
analyses. The basic idea is to summarise the differences between groups of
subjects parsimoniously by indicating the impact of group membership on a
measure of central tendency only, e.g. the mean. A common way to express
this idea mathematically is to consider the conditional distribution of duration
given group membership. If all the conditional distributions look alike except
for a different central tendency, the differences in central tendency might be
expressed by a single number, depending only on a linear combination of group
membership indicators.

More formally, let Y denote a random quantity of interest. Suppose that
conditional on some covariates x, indicating group membership, Y follows the
linear regression

Y = xβ + ε , (27)

where x is a 1× p vector of covariates including a constant, β is a p× 1 vector
of unknown regression coefficients, and ε is a random variable having mean
zero and finite variance. In the following, we will discuss an extension of
this familiar linear model and its estimation to the case of possibly censored
duration data.2

2 The formulation (27), given in terms of random variables, is meant here and in the
following to refer to the equality of conditional distributions only. All that is implied is
that the conditional distribution of Y , given x, is of the form

F ∗(y |x) = F ∗0 (y − xβ).

The random variable ε is only used to indicate a certain distribution. The ε in the above
equation need not be defined on the same probability space as Y . Nor is an interpretation
of ε as “unobserved cause” warranted.
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Durations are inherently positive quantities. Inserting durations directly as
dependent variables Y in the above equation may therefore create conceptual
difficulties. Changing the “central tendency” of a positive quantity by adding or
subtracting some quantity may lead to negative values, which are impossible.

In analogy to similar arguments used in connexion with discrete dependent
variable, one might choose a transformation of the original duration to fit the
positivity constraint in all cases. An easy transform of durations that will
always lead to interpretable results is the logarithm of the durations. That is,
we set Y = lnT . When using this transform, the effect of the covariates on the
original time scale corresponds to a scale change: values of xβ < 0 correspond
to shortened durations, values of xβ > 0 to prolonged ones.

It can be shown that the logarithmic transformation is the only one that can
express all combinations of effects or reverses of effects additively. Still, using
the logarithms of durations is no panacea. After all, if the effects of covariates
xβ as well as the durations can be ascertained only to within a certain interval,
many other transforms are consistent with a realistic description and should
be used if needed.

To distinguish between random variables referring to durations and those
referring to some transforms, in the following the former will be denoted
by T , the latter by Y . The same convention will be obeyed when dealing
with realisations of the random variables. Distribution, survivor, density and
rate functions of transformations Y of the durations of interest will, however,
uniformly be denoted by a superscript * on F,G, f, r etc. If the transform
Y = g(T ) is monotone, as the logarithmic transform is, we can also consider the
censored versions of Y , which are given by Z = min(Y, g(C)) with z denoting
the realised value.

In the absence of censoring, one can estimate β by minimising the least squares
criterion

n∑

i=1
(yi − xiβ)2 = n

∫
e2 dF̂ ∗n(e) =

n∑

i=1

∫
(y − xiβ)2 dF̃ ∗ni(y) , (28)

where F̂ ∗n(e) is the empirical distribution function of the residuals ei = yi−xiβ,
and F̃ ∗ni(y) = I[yi < y] is the empirical distribution of an observation yi.

Both the second and third representation in the above formula can be used to
generalise the least squares criterion by replacing the empirical distributions
involved by versions appropriate for censored data. It turned out, however, to
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be advantageous to start with the least squares estimating equations

n∑

i=1
x′i(yi − xiβ̂) = 0 or

n∑

i=1
x′iyi =

(
n∑

i=1
x′ixi

)
β̂ (29)

instead of the least squares criterion (28). In 1979, Buckley and James proposed
to replace the censored observations Z by the conditional expectation of Y
given the observed (censored) data and the covariates:

Y ∗ = Eβ(Y | z, d, x) = dz + (1− d)Eβ(Y |Y ≥ z, x) . (30)

This is an example of a general strategy dealing with incomplete data. It
consists of replacing the unknown values of observables by their expectations,
using all information available from the data (here, Y ≥ z) as well as the
information provided by the model structure. In this case, the dependence on
model structure is reflected by the dependence of the conditional expectation
on the unknown parameter β.

Replacing Y in expression (29) by its conditional expectation gives

1
n

∑

i

x′iEβ̂(Y | zi, di, xi) = 1
n

(
n∑

i=1
x′ixi

)
β̂ . (31)

The Buckley–James estimator β̂ is defined as the solution of the normal score
function for β when the expectation on the left hand side is computed using
β̂.

Using the model formula (27) and a fixed β, an empirical version of the
conditional expectation can be evaluated:

Êβ(Y | zi, di, xi) = ŷi(β) (32)
= dizi + (1− di)Êβ(Y |Yi ≥ zi, xi)

= dizi + (1− di)
(
xiβ +

∫∞
ei
e dF̂ ∗β (e)
Ĝ∗β(ei)

)

= dizi + (1− di)
(

n∑

k=i
vik(β)(zk − xkβ) + xiβ

)

where F̂ ∗β is the empirical distribution function (e.g. the Kaplan–Meier esti-
mator) of the residuals, Ĝ∗β is the empirical survivor function 1− F̂ ∗β , and we
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have put

vik(β) =





wk(β)
Ĝ∗β(ei)

if ei < ek

0 otherwise

and

wk(β) = P̂β(ε = ek) ,

so that wi(β) is the height of the jump of the empirical distribution at the i th
residual.3 A solution β̂ of the estimating equation (29) therefore satisfies:

β̂ =
(

n∑

i=1
x′ixi

)−1( n∑

i=1
dix
′
izi +

n∑

i=1
(1− di)x′iŷi(β̂)

)
. (33)

This leads to a straightforward iterative procedure for the computation of β̂:

1. Assign starting values β̂0.

2. Compute ŷi(β̂j) according to (32) using the Kaplan–Meier procedure as
estimator for the distribution of the residuals.

3. Compute β̂j+1 using the right hand side from (33). This is a simple least
squares regression of the pseudo data ŷi(β̂j) on the regressors x.

4. Go back to step 2 unless some convergence criterion is met.

To be numerically effective, this simple iterative strategy needs elaboration.
Following the steps of the algorithm, the basic choices are:

1. Starting values may be obtained using the least squares estimator treating
all observations as uncensored. Other choices (e.g. using only uncensored
observations) are of course possible but do not seem to have a decisive
influence on the procedure.

2. The Kaplan–Meier estimator is not uniquely defined on the whole real
line if the largest residual is censored. Buckley and James suggest to
always treat the largest residual as uncensored. This will lead to an
underestimation of the regression constant, but should scarcely affect the
other regression estimators. Further choices are discussed by e.g. Efron
(1988).

3 For ease of notation it is assumed here that the observations are ordered according to
the magnitude of the corresponding residuals.
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4. The iteration may not converge to a unique value. This is due to the
fact that the right hand side of (33) is a piecewise linear function in β:
Changing β does not change the weights vik(β) unless the ranks of the
residuals change. Therefore, the estimator may oscillate between several
values β̂. The discontinuity of (33) hampers the analytic treatment of
the estimator. Moreover, the number of limiting values in finite samples
is not predictable, but may potentially be rather large. Fortunately,
the phenomenon seems to be of practical interest only in rather small
samples, in situations where the effect of covariates is small, or when
the convergence criterion is very strict. In situations where a unique
estimator is required (e.g. simulations, using the procedure as building
block for more complicated models, etc.) one may use the arithmetic
mean of all limit values of the algorithm as an estimator. Otherwise, the
different values of the limiting cycle of estimators are very close and it
may suffice to report just one of them.

A very simple estimator of the variance of β̂ may be obtained by restricting
attention to the uncensored observations:

v̂ar(β̂) = (x′diag(di)x)−1
σ̂2
BJ

σ̂2
BJ = 1

nu − p
∑

i

(
diei −

1
nu

∑
diei

)2
, (34)

where nu is the number of uncensored observations. This is the same as the
classical variance estimator in the linear model with uncensored data. Since
the estimator is computed from the uncensored observations only, it will not
be very efficient. Moreover, it implicitly assumes that the variances of the non
censored residuals are homoscedastic. But this is true only if the censoring
variable follows the same regression as the uncensored dependent variable Y .
With respect to the last point, a better estimator of the residual variance is

σ̂2∗
BJ = nu

n(nu − p)
∑

i

(
diei + (1− di)

∑

k

vik(β̂)e2
k

)
. (35)

In this formulation, the censored squared residuals are replaced by their
conditional expectations. Combining σ̂2∗

BJ with the first equation in (34)
provides an estimator of the variance of β̂ that is (asymptotically) equivalent
to a bootstrap estimator when the resampling is done holding the censoring
information fixed. Experience with the two variance estimators suggests that
the second version is more stable and has often smaller mean squared error
than the first version. Both, however, are generally conservative.
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4 Durations: Parametrisation

Broadly speaking, a parametrisation expresses a possibly large set of dis-
tributions, regressions, or interdependencies through a few (real) numbers.
Parametrisation may serve several purposes: They summarise aspects of the
data, they focus attention on interesting specific features, they allow for easy
formal manipulations, they simplify comparisons between situations, and they
can be used for simulations. In the following, we will treat several choices of
parametrisation for the two main building blocks of duration models: how
covariates affect duration, and how the class of durations and their properties
can be described.

Together, these two building blocks, if fully specified, uniquely determine
the conditional distribution of the durations under consideration. From a
probabilistic point of view, this is all one needs to know. Introducing a family
of conditional distributions by using a parametrisation sets the frame for
inference procedures, discussions, and the critique of proposed models. But
with event history data, even when dealing only with durations, there are
two more aspects that need attention. First, taking the temporal reference of
duration models seriously allows for the introduction of covariates that change
over time. Whether the marginal distribution of conventional covariates are
specified as part of the model building process or not seems to be largely
a matter of convenience. With covariates changing over time, more care is
needed. Without specifying their path through time, one cannot even derive
such simple characterisations as the conditional moments of durations. Second,
most observations of durations suffer from a deficiency of sample information
due to censoring. Without a formal representation of this lack of information
one cannot hope to successfully confront models and observations. Both
aspects, time dependent covariates and models for the censoring process, will
be discussed at the end of this section.

4.1 Covariate effects

Covariates reflect the many aspects judged important in the comparative
description of durations. They may relate to properties of individuals or
groups, to group membership or changing environments and situations. While
a comprehensive classification of their possible roles does not seem to be
warranted, an understanding of the way covariate effects can be introduced
parametrically is necessary to make efficient use of the gain they provide over
the direct inspection of subgroups. The introduction of covariates reduces the
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burden of comparing many different subgroups to an examination of a vector
β of regression parameters. But the interpretation of this numerical summary
depends heavily on how covariates are supposed to affect a proposed model.

4.1.1 Scale models

In section 3 we introduced a regression model for durations derived from the
classical linear model techniques. The interpretation of covariate effects in
this model can be based on a distribution function F0 affected by a linear
combination of covariates, xβ:

Pr(lnT ≤ ln t |x;β) = F ∗lnT | x(ln t |x;β) = F ∗0 (ln t− xβ) (36)

The conditional distribution of the logarithm of duration given the covariates is
a shift by an amount of xβ of some basic distribution F ∗0 . The basic distribution
F ∗0 corresponds to a situation with covariate values x = 0.4 The conditional
densities, if they exist, satisfy a similar relation

f∗lnT | x(ln t |x;β) = f∗0 (ln t− xβ), (37)

exemplified in Figure 1:

It is clear that one can use either one of the graphs in Figure 1 as a starting
point and define the other as an appropriate shift. Therefore, interpreting
the action of covariates as a shift of densities does not depend on the choice
of x = 0 for the baseline distribution or density. Any other value x0 can be
chosen as reference point. Then the effect of covariates x on the density is a
shift of the location of the density corresponding to covariates x0 by an amount
of (x− x0)β .

The relation in terms of distributions (36) or densities (37) can also be re-
expressed in terms of random variables as

lnT = xβ + ε with ε 'd F ∗0 (.). (38)

Written in this way, some of the operation on distributions or densities can
be reduced to arithmetic operations on random variables. Often, this leads to
more transparent formulations.5

4 Possibly up to a further shift given by the intercept term β0
5 The equality in (38) can in most cases only be interpreted as equality in distribution.

This is what is needed for the interpretation above. But equality of random variables, if
it can be ascertained, is a much stronger property. To take a simple example, if T1 is
uniformly distributed on (0, 1), then T2 := 1− T1 is also uniformly distributed on (0, 1).
But Pr(T1 = T2) = 0. We will not discuss possible uses of equality of random variables
in (40) because it can be rarely justified in social science applications.
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Figure 1: Densities of lnT

While this interpretation is familiar from the classical linear model it only works
for the logarithms of durations. It is certainly easier to have an interpretation
in terms of durations, not just their logarithms. On the scale of durations, the
distribution functions for different values of the covariates are related by

Pr(T ≤ t |x;β) = Pr(lnT − xβ ≤ ln t− xβ) (39)
= Pr(Te−xβ ≤ te−xβ) = F0(e−xβt)

Here, the basic distribution function F0 once again corresponds to a situation
with covariates x = 0. The graphs of the distribution functions for given x are
squeezed or stretched along the t–axis, depending on whether xβ is negative
or positive, but the lower end of their support, namely t = 0, is preserved. In
terms of densities we get the relation

f(t |x;β) = f0(te−xβ)e−xβ .

The densities are not only scaled along the t–axis, but also their height changes.
The Figure 1 above, comparing densities for log durations, changes accordingly
(see Figure 2). A direct comparison of the graphs of the densities is not as
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Figure 2: Densities of T

easy as in the case of the logarithms of durations. But the relation (39) of the
distributions suggests an interpretation in terms of random variables. Suppose
there is a random variable T0 with distribution function F0, corresponding
to durations with covariates x = 0. Then, durations T with covariate x are
represented by

T = exβT0 with T0 'd F0(.). (40)

This may be interpreted as a scaling of the underlying time structure: Positive
values of xβ expand the time relative to the one on which T0 is defined. Events
develop slower on this time scale, so that durations are generally longer. On
the other hand, negative values of xβ contract time relative to T0 processes.
Developments are faster and durations generally shorter.

Sometimes, especially in technical applications, this model of covariate effects
can be linked directly to physical features of the environment: machines working
under higher load, at higher voltage, higher temperature etc. deteriorate faster.
And these features of environment can be captured by respective covariate
values. With such examples in mind, model (40), or its equivalent expressions
(39) in terms of distribution functions, is often called accelerated failure time
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model. In view of the scale change expressed in (39) the term scale model is
also used.

The relations between distributions, survivor functions, and rates in scale
models can be summarised as follows:

Pr(T ≤ t |x;β) = F (t |x;β) = Pr(T0e
xβ ≤ t) = Pr(T0 ≤ te−xβ)

= F0(te−xβ)
G(t |x;β) = 1− F (t |x;β) = G0(te−xβ)
f(t |x;β) = f0(te−xβ)e−xβ

r(t |x;β) = f(t |x;β)
G(t |x;β) = r0(te−xβ)e−xβ (41)

A further summary function is the quantile function defined as the (generalised)
inverse of the distribution function:

Q(p) = F−1(p) := inf{t |F (t) ≥ p}
From (41) we get

Q(p |x;β) = Q0(p)exβ ,

where Q(p |x;β) is the quantile function corresponding to covariate value x
and Q0(p) is the one corresponding to x = 0. The logarithms of the quantile
functions are therefore related by

lnQ(p |x;β) = lnQ0(p) + xβ. (42)

As a simple check of the appropriateness of the scale model one can plot the
logarithms of empirical versions of the quantile function for different subgroups
defined by x. The resulting graphs should be separated by a constant value.

Further consequences of (40) are simple relations for the moments of T ,
namely

E(T |x;β) = exβE(T0)
E(T 2 |x;β) = e2xβE(T0) etc., (43)

so that the relation for the variances are

V(T |x;β) = e2xβV(T0)

Since the logarithms of durations form a location–shift family, the conditional
variances V(lnT |x;β) are constant. This homoscedasticity may also be used
for model checking.
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4.1.2 Proportional hazards models

Instead of looking at transforms of random variables as in (40) one can consider
how covariates transform some baseline distribution or other summary function.
The hazard rate is the most useful summary function from a dynamic point
of view. Therefore it seems natural to examine transforms of a hazard rate
r(t |x;β). Since a hazard rate is non-negative, its transforms by any covariate
values should also be non-negative. Moreover, a hazard rate corresponding
to a proper distribution function should transform to one corresponding to a
proper distribution function. In other words, if some baseline integrated hazard
diverges to infinity, the same should be true for its transformed counterpart.
The simplest way to achieve this is to multiply a baseline hazard rate by a
positive function of the covariates. An obvious choice for the positive function
is the exponential. With this choice we are let to the following model for
covariate effects:

r(t |x;β) = exβr0(t). (44)

The model posits that positive values of xβ correspond to larger intensities in
comparison to situations with xβ = 0. With larger intensities for all t, events
will tend to happen earlier and durations will be shorter. On the other hand,
negative values of xβ give rise to smaller intensities, so that events tend to
happen later, and durations will be longer.6 An example is plotted in Figure 3.
For obvious reasons, models in which a positive function of covariates multiplies
a baseline hazard rate are called proportional hazards models. The implied
relations for the survivor functions, distributions, and densities are:

Pr(T > t |x;β) = G(t |x, β) = e
−
∫ t

0
r(u |x, β) du

= e−e
xβH0(t) = G0(t)e

xβ

F (t |x;β) = 1−G(t |x;β) = 1−G0(t)e
xβ

(45)

f(t |x;β) = exβ
(
G0(t)e

xβ − 1
)
f0(t).

Of the above formulae, the first one, expressing the survivor functions given
a covariate value as an exponentiation of a baseline survivor function, is the
most useful. Even though the expectation of a positive random variable can

6 Note that the sign of xβ has opposite consequences in a scale model.
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Figure 3: Proportional Hazard Rates

be expressed through the integral of its survivor function as given in (11),
there is no explicit formula relating the moments for different values of the
covariates.7

Moreover, the quantile function, while easily computable, cannot be used
directly for model checking purposes. On the other hand, the proportional
hazards model can be written in regression form:

lnH0(T ) = −xβ + ε with ε 'd 1− e−e
u

, (46)

where H0 is the integrated hazard corresponding to the baseline distribution
F0 and ε follows an extreme value distribution with distribution function
1 − exp(− exp(u)). For strictly increasing integrated hazards this follows

7 In this connexion, the formalism of Laplace transforms briefly treated in section 4.2.5
proves helpful.
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from

G(t |x;β) = Pr(T > t |x;β) = Pr(lnH0(T ) > lnH0(t) |x;β)
= Pr(−xβ + ε > lnH0(t)) = Pr(ε > lnH0(t) + xβ)

= e−e
lnH0(t)+xβ

= e−e
xβH0(t)

= G0(t)e
xβ
.

The regression representation (46) is useful for model comparison purposes.
An increasing transformation of durations can be expressed as a homoscedastic
linear regression with known extreme value distribution. On this transformed
scale, the covariates shift the location of the standard extreme value distribution.
Specifically, one can compare the proportional hazards and scale models using
the regression representation. First, the scale model (47) can be expressed in
regression form as

lnT = xβ + σε. (47)

Here, σε specifies a random variable with distribution equal to the distribution
of the logarithm of the baseline random variable lnT0 in (40) and σ is used
as an arbitrary but fixed scale parameter. If the extreme value distribution is
chosen as the distribution of ε, it follows that

1
σ

lnT = ln
(
T 1/σ

)
= xβ/σ + ε. (48)

This is precisely of the regression form (46) for proportional hazards models
with the special integrated hazard H0(t) ≡ t1/σ. The corresponding survivor
function is

G(t |x;β) = Pr(T > t |x;β) = Pr
(

1
σ

lnT >
1
σ

ln t |x;β
)

= Pr
(
xβ

σ
+ ε >

1
σ

ln t
)

= e
− exp

(
1
σ

ln t− xβ

σ

)

= e
− exp

(
−xβ
σ

)
t1/σ

. (49)

and the relation of the hazards is

r(t |x;β) = e
−xβ
σ r0(t) with r0(t) = 1

σ
t1/σ−1 (50)
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Starting with a scale model and assuming the extreme value distribution as
baseline for the logarithm of durations one is lead to a proportional hazards
model with integrated baseline hazard H0(t) ≡ t1/σ. In the proportional
hazards parametrisation the covariate effect is the negative of the one in
the scale parametrisation, corresponding to the fact that positive covariate
effects in the scale model express longer durations while negative covariate
effects in the proportional hazards model express lower hazards and thus longer
durations. Moreover, the covariate effect in the proportional hazards expression
is scaled by the scalar σ. It may be asked whether all scale models can be
re-expressed as proportional hazards models or vice versa. This is not the case
and the example above is the only one that is expressible both as scale and as
proportional hazards model.

4.1.3 Other transformation models

The effect of covariates in proportional hazards models is to multiply some
baseline hazard rate. Instead of a multiplicative transform of hazard rates one
might be interested in other easily interpretable transforms, possibly based
on other summary functions than hazards. In parallel to the well understood
logit models for binary data one might e.g. look at the odds of an event before
time t versus an event after time t. Using the logarithms of the odds as an
appropriate scale for covariate effects, one is lead to the following relation
between log odds for an event before vs. after time t:

ln 1−G(t |x;β)
G(t |x;β) = xβ + ln 1−G0(t)

G0(t) (51)

for some baseline survivor function G0. In terms of odds,
1−G(t |x;β)
G(t |x;β) = exβ

1−G0(t)
G0(t) .

For positive xβ, the odds for earlier events are larger than for the baseline
survivor function. Since this is supposed to hold for all t, event probabilities
are larger and therefore durations are shorter. This model is generally referred
to as log–odds model. The implied relations between survivor functions and
hazard rates, respectively, are:

G(t |x;β) = 1

1 + exβ
1−G0(t)
G0(t)

r(t |x;β) = r0(t) · exβ
G0(t) + (1−G0(t)) · exβ .
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As can be seen from the relation of the rate functions, the hazard rates are
not proportional. In fact, the relative rates r(t |x1;β)/r(t |x2;β) for any two
covariate values x1 and x2 converge to 1 as t −→ ∞. Therefore, the class of
proportional hazards models and the class of log–odds models do not contain
common members.

As in the case of both proportional hazards and scale models the log–odds
models can be represented in regression form as

ln 1−G0(T )
G0(T ) = −xβ + ε with ε 'd

1
1 + exp(u) , (52)

where the error distribution is given by the survivor function of the logistic.
Comparing this with the regression form (47) of a scale model it is seen that
the only common member of the class of scale and log–odds models is the
log–logistic distribution.

A slight generalisation of the log–odds model, the γ–odds model, is given by

1−Gγ(t |x;β)
γGγ(t |x;β) = exβ

1−Gγ0(t)
γGγ0(t) for γ > 0 and (53)

ln{G(t |x, β)} = exβ ln{G0(t)} for γ = 0

The resulting survivor function is

G(t |x;β) = 1
(

1 + exβ
1−Gγ0(t)
Gγ0(t)

)1/γ .

For γ −→ 0, this approaches a proportional hazards model, while for γ = 1 it
reduces to the log–odds model. Since the γ–odds model interpolates between
the proportional hazards and the log–odds models it is well suited for model
assessment purposes. On the other hand, since the interpretation of covariate
effects depends on the value of γ, and since this value is sometimes estimated
from the data, it is less suited to express a well defined covariate effect.

4.1.4 Comparing regression coefficients across models

In the previous sections, several covariates are assumed to affect a model
through a linear combination xβ = β0 + β1x1 + . . . + βkxk only. Linear
combinations of covariates are the most popular choice for the description of
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joint effects. First, using a linear combination of covariates to represent joint
effects is only rarely a real limitation of functional form. This is especially
evident when the number of different covariate values is small, when interaction
terms are introduced, or when fixed transforms of covariates (e.g. polynomials)
are taken into account. Second, linear combinations are easily treated, both
mathematically and algorithmically. Last but not least, the interpretation of
βi as the effect of a unit increase in the covariate value xi on (a certain aspect
of) the given model is very simple. Moreover, if covariates, say xi and xj , are
defined on similar scales, a linear specification allows for a direct comparison
of their effects via βi and βj .

On the other hand, as the discussion of covariate effects in the previous
sections should have made clear, a direct comparison of regression coefficients
across models is possible only in very special circumstances. For the family
of distributions (49), which is both a scale and a proportional hazards model,
the relation of coefficients turned out to be

βPH = −βSC
σ

,

where βPH and βSC are the vectors of regression coefficients in the proportional
hazards and the scale model, respectively. A similar relation can be shown
to hold for the family of distributions that are both a log–odds and a scale
model. In both cases, the respective regression vectors are the same up to a
scalar multiple. They are proportional.

This suggests to look at the equivalent effects γij := βi/βj for βj 6= 0 instead
of the regression coefficients themselves. The equivalent effects γij express
the change in the covariate value xj required to achieve an equivalent effect
on the model as a unit change in xi. In the above example, the equivalent
effects γij do not change when the parametrisation is changed from a scale
model to a proportional hazards model. In a simple linear regression, the γij
do not change when the scale of the dependent variable is changed. Also, when
comparing several simple regressions with the same set of covariates but with
the dependent variable measured differently, the γij can be compared across
models, while the interpretation of the β vectors changes with the scale of
the dependent variable and the marginal distribution of the covariates in the
different samples.

This constancy of γij cannot be expected to hold across all contemplated models.
Astonishingly, however, it holds approximately in a variety of circumstances.
More specifically, it holds for small effects |β| ∼ 0 when using different classes of
covariate effects like proportional hazards or scale models. This approximation
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improves as the marginal distribution of the covariates becomes more symmetric.
In the case of jointly normal covariates, the γij are exactly constant across
models, at least asymptotically. Moreover, the approximation results also cover
the case of incomplete data, e.g. when grouped or discrete duration data are
represented by continuous models.

Further insight into the role of the equivalent effects may be gained from
considering a nonlinear scale model. Suppose the conditional expectation of
lnT is given by a nonlinear function φ of a linear combination of covariates,
that is

E(lnT |x;β, φ) = φ(xβ) (54)

Then, since

∂

∂xj
φ(xβ) = ∂φ(xβ)

∂xβ
βj ,

E
(

∂

∂xj
φ(xβ)

)
= E

(
∂φ(xβ)
∂xβ

)
βj = cβj ,

where the expectations in the last equation are taken with respect to the
marginal distribution of the covariates and c is a scalar constant depending
on φ, β, and the distribution of the covariates. In other words, the coefficient
vector β is proportional to the mean derivative of the regression function φ.
Therefore, the equivalent effects γij are also invariant with respect to different
regression functions or marginal distributions of the covariates in this nonlinear
scale model.

4.1.5 Semi–parametric models of covariate effects

While using linear combinations of covariates is sufficient in many situations,
there are cases where more general specifications are warranted. One typical
situation is when some covariates (e.g. age or income) take on many possible
values and interest centres on the comparison of effects for all values of that
covariates. It seems natural to replace the linear combination of covariates by
some nonlinear function φ. This leads to models of the form

φ(x1, . . . , xk) = β0 + β1x1 + . . .+ βk−1xk−1 + gk(xk), (55)
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where gk is some nonlinear function. These models are called partly additive
models. One can of course add further nonlinear terms, and when all terms,
linear or not, are denoted by gi, model (55) can be written as

φ(x1, . . . , xk) = β0 + g1(x1) + . . .+ gk(xk). (56)

Since the constant term β0 is only identified when the nonlinear functions gi
are constrained, one often uses the normalisation E(gi(Xi)) = 0 or its empirical
counterpart. Also, some assumptions on the smoothness of the gi are generally
added. For estimation purposes, one wants to consider observations close to a
given covariate value x as giving information on the value of the function φ(x).
And this is only possible if the function φ and therefore the gi do not change
too abruptly.

Note that the additive combination of covariate effects still allows for an
interpretation of one effect when all others are kept constant. The effect of
that covariate can usefully be expressed (plotted, etc.) without regard to the
values of all other covariates.

Also, the additive structure can be used in a stepwise fitting procedure where
each term gi is treated separately. Namely, one may consider the effect of the
covariates gj(xj), j 6= i in any step of the fitting procedure as fixed. Since
φ is additive, one can then fit the residual of the model given gj(xj), j 6= i
against the covariate xi conditioned in the same way. This leads to a sequence
of one dimensional estimating problems where each covariate is considered in
turn. Such one dimensional problems are typically solved much easier than
the general multidimensional regression problem where all covariates have to
be considered simultaneously.

On the other hand, the partly additive model does not approximate all func-
tional forms. Nor does it cover the important case of interactions. To deal with
nonlinear effects and interactions simultaneously, regression trees are often
employed. Instead of using sums of smooth functions the idea is to express the
regression function by step functions given by

φ(x1, . . . , xk) =
L∑

l=1
clI[(x1, . . . , xk) ∈ Rl]. (57)

Here, Rl is an element of a partition of the covariate space so that the regression
function takes on the value cl on the region Rl. The computational burden
in constructing such a regression function is much reduced if the partition
is made up from rectangles with sides parallel to the coordinate axes in the
covariate space. Moreover, an easy interpretation of the partition becomes
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available in that case. The region to which an observation belongs can be
determined by a sequence of simple binary decisions, each concerning only
one variable. The regions are build by splitting the covariate space along one
dimension according to whether the value of the jth covariate, say, is larger
or smaller than a certain value. These splits can equivalently be represented
by a tree: Suppose, e.g., (x1, x2) ∈ R2 and consider the partition of R2 into
the rectangles R1 = {x1 ≤ 0, x2 ≤ 0}, R2 = {x1 ≤ 0, x2 > 0}, R3 = {0 <
x1 ≤ 1, x2 ≤ 1}, R4 = {0 < x1 ≤ 1, x2 > 1} and R5 = {x1 > 1, x2 ∈ R}. The
regions are indicated in Figure 4.

R2

R3

R4

R5

R1

x2

x1

0

1

0 1

Figure 4: Partitions in a regression tree

The same information is given in the binary tree in Figure 5, where the terminal
nodes (or leaves) represent the respective regions. Note that the choice of a
root, the highest level in the tree representation, may not be unique. Moreover,
the interpretation of a split on a lower level of the tree will depend on all those
splits on higher levels that lead to that split (its “ancestors”). But the tree
representation can be enhanced by adding statistical information on the subsets
established at a node. This may be the degree of subgroup homogeneity with
respect to duration, or the relative accuracy of prediction of a split etc. With
such information added, regression trees are an effective regression summary.
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x1 < 0 x1 > 0

x2 < 0 x2 >0
x1 < 1 x1 > 1

x2 < 1 x2 > 1
R1 R2 R5

R3 R4

Figure 5: Regression tree

4.2 Classes of distributions

The conditional distribution of durations is fully specified if in addition to a
parametrisation of covariate effects the baseline distribution is defined. Tradi-
tionally, in the context of regression models, there are only rarely discussions
on the choice of a baseline distribution. In that situation, most aspects of
the statistical behaviour of estimators depend on the first few moments of
the distribution only. A peculiar feature of event history analysis is a much
stronger interest in families of distributions and their properties. One of the
reasons is that with censored observations, estimates of simple characteristics
(e.g. expectations) will depend strongly on the choice of baseline distributions.
Another reason is that models for durations are often only a first step in the
analysis of more complex systems of events. In this case, the properties of the
constituent distributions will constrain the properties of the whole system.

4.2.1 Exponential distribution

This last point is well demonstrated by the exponential distribution that
frequently serves as a reference or as a starting point for the construction of
more complicated models. The exponential distribution has density

fa(t) = ae−at a > 0. (58)
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Its distribution, survivor, and rate functions are

Fa(t) = 1− e−at
Ga(t) = e−at (59)
ra(t) = a,

respectively. The constancy of the rate function is sometimes referred to as
signifying no time dependence. Since the hazard function, if defined, uniquely
determines the distribution, the exponential is the only class of distributions
with this property.

The constancy of the hazard function is related to the basic characteristic of
the exponential distribution, its lack of memory property. It states that at any
given time t, the residual duration from t onward has the same distribution as
the distribution itself. In other words, the information that an event did not
occur before time t does not change the probability of its occurrence within
(t, t+ s] from the initial probability Pr(T ∈ (0, s]). Ageing has no effect, and
this is expressed by a constant intensity for the occurrence of an event, ra. In
the context of stochastic process models, this means that information on the
past of a process does not add any information on its future beyond what is
known about the state of the process at time t. This allows for the construction
of process models with an easily understood dependence on the past. More
formally, the lack of memory property of the exponential distribution follows
from

Pr(T > t+ s |T > t) = Pr(T > t+ s)
Pr(T > t)

= G(t+ s)
G(t) = e−a(t+s)

e−at
= G(s). (60)

Moreover, the exponential distribution is the only distribution with this prop-
erty.8

A further simple but useful property is that for any positive random variable
T with integrated hazard H(), its hazard transform H(T ) is exponentially

8 Excluding the degenerate case Pr(T > t) ≡ 0, this follows from Cauchy’s equation.
Writing V (t) := ln Pr(T > t) and multiplying (60) by Pr(T > t) leads to V (t + s) =
V (t) + V (s). The only continuous solutions to this equation are the linear functions,
V (t) = V (1)t = −at, say. The result follows upon exponentiation.
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distributed with parameter a = 1. Suppose, for simplicity, that the integrated
hazard H() is continuous and strictly increasing. Then,

Pr(H(T ) > t) = Pr(T > H−1(t)) = eH(H−1(t)) = e−t. (61)

This transformation was already used when deducing the regression form
of the proportional hazards model (46). In the present context, the hazard
transform is often used as a device for model checking and for the comparison
of distributions since it allows for the reduction of any distribution to the
exponential. This may then serve as standard against which departures can
be judged.

The expectation and variance of the exponential distribution are

E(T ) = 1
a

V(T ) = 1
a2 .

It follows that the coefficient of variation, the ratio of the standard deviation
to the mean, is unity. For this reason, the exponential may also serve as a
baseline for judging relative dispersion.

4.2.2 Weibull distribution

Because of the lack of memory property, the exponential distribution is often
not an appropriate representation of durations in the social sciences. Moreover,
since it depends on one parameter only, it is not very flexible when fitted to
data. A two parameter extension of the exponential distribution arises from
the introduction of a second parameter transforming the time scale. A simple
choice is the class of distributions having survivor, distribution, density, and
rate function

Ga,b(t) = e−(at)b

Fa,b(t) = 1− e−(at)b

fa,b(t) = babtb−1e−(at)b (62)
ra,b(t) = babtb−1,

where a, b > 0. This class of distributions is referred to as the Weibull class of
distributions. The parameter b is often called the Weibull parameter.
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The rate function is monotone increasing or decreasing depending on whether
b > 1 or b < 1. For b = 1, it reduces to the exponential distribution. The
Weibull family therefore often serves as a representation for deviations from a
constant hazard rate in the direction of monotone time dependence (compare
Figure 6). The Weibull class was already encountered, in thin disguise, when

b=1.0
b=1.5
b=0.5

Figure 6: Weibull hazard rates

discussing the intersection of the proportional hazards class and the scale
model for covariate effects. To recapture the representation used in (49) from
the one given above, one only has to put

b = 1
σ

a = e−xβ .

Consequently, a representation using a proportionality factor for the hazard
function instead of a scale factor is also possible. This can be achieved by
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setting

b∗ = b

a∗ = ab

resulting in the hazard function r0(t) = a∗tb
∗−1. These different parametri-

sations of the class of Weibull distributions are equivalent in that they give
rise to exactly the same class of distributions. Moreover, from an analytic
point of view, transforming one parametrisation into another in the foregoing
example is a smooth operation. Still, the different types of parametrisations
should be kept in mind. One reason is that existing software packages tend
to use different versions of parametrisations implying different interpretations
and the necessity to translate the interpretation for one parametrisation into
another. A second reason is that the statistical properties of some inference
procedures, notably Wald’s test for regression parameters, do change with the
parametrisation employed (see section 5 for some further comments).

A property of the Weibull class that makes it quite popular in several areas of
application is its appearance as the asymptotic distribution of the minima of
independent random variables. To start with, a simple consideration shows
that the minima of Weibull distributions are themselves distributed according
to the Weibull law. Suppose that there are n independent random variables
Ti, i = 1, . . . , n, each distributed according to the same Weibull law with
parameters a, b as in (62). Then

Pr(min
i

(T1, . . . , Tn) > t) = Pr(T1 > t ∩ . . . ∩ Tn > t)

=
n∏

i=1
Pr(Ti > t)

= (Pr(T1 > t))n ,

where the second equality follows from independence and the third from the
assumed identical distribution. Inserting the survivor function of the Weibull
distribution gives

Pr(min
i

(T1, . . . , Tn) > t) = e−n(at)b = e−(n1/bat)b .

That is, the minimum of n identically distributed, independent Weibull ran-
dom variables follows again the Weibull distribution with the same Weibull
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parameter b and a scale parameter equal to n1/ba. Therefore, the Weibull
family is said to be closed under the forming of minima.

Of greater importance in social science applications is the more general fact
that a similar result holds asymptotically without specifying an underlying
class of distributions. Namely, for a large class of distributions it can be shown
that their appropriately scaled minima tend to the Weibull distribution. More
precisely, given a sequence of such random variables, Ti, i = 1, . . ., there are
sequences of numbers cn and dn such that the distribution of

dn(min
i

(T1, . . . , Tn)− cn)

tends to a Weibull distribution. This fact is sometimes exploited in modelling
situations where one is interested in the time to the first arrival of a job offer,
say, presupposing that there were many simultaneous applications for a job and
the applicant chooses the offer that arrives first. In the social sciences, variants
of the argument are invoked to justify the choice of the Weibull distribution
in applications ranging from the theory of choice and the theory of search
unemployment to theories of information processing in the human brain. In
a more formal context, it is used to generate models for competing risks.
Multivariate generalisations of the argument are employed in models involving
a discrete response with only a few categories. It should be noted, however,
that in contrast to the situation described by the central limit theorem, the
norming constants cn, dn, and the rate of convergence depend heavily on the
underlying distribution.9

The expectation and variance of the Weibull distribution can be derived from
a change of variables by setting u = (at)b. The Jacobian of the transformation
u→ t = u1/b/a is given by J(u) = u1/b−1/ab, so that

E(T ) =
∫ ∞

0
Ga,b(t) dt = 1

a

∫ ∞

0
u1/be−u du = Γ(1/b+ 1)

a
,

9 E.g., in the case of the minima of Weibull distributions, it is seen from the above result
for n random variables that the normalising sequence dn needs to be of the form n1/b.
The norming thus changes for any change in the underlying common Weibull parameter.
This situation should be compared with a simple version of the central limit theorem,
where the asymptotic normal distribution for sums of independent identically distributed
variables follows from a condition on the existence of moments, irrespective of other
features of the underlying distributions. Moreover, the standard norming 1

√
n always

applies. An argument based on extreme value theory, if only based on a rough asymptotic
approximation, cannot sustain the same force of argument as similar ones based on the
central limit theorem. A thorough but accessible discussion of the probabilistic aspects
of the theory can be found in: J. Galambos: The Asymptotic Theory of Extreme Order
Statistics; Wiley 1978.
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where Γ() is the gamma function satisfying the functional equation Γ(x+ 1) =
xΓ(x). Specifically, Γ(n) = (n− 1)! for all integers n > 0. Repeating the same
argument leads to

E(T 2) =
∫ ∞

0
t2fa,b dt = Γ(2/b+ 1)

a2 .

Thus the variance of the Weibull distribution is given by

V(T ) = 1
a2

(
Γ(2
b

+ 1)− Γ(1
b

+ 1)2
)

An argument to the same effect, but perhaps closer in spirit to the probabilistic
arguments used thus far, would be to refer to the moments of the exponential
distribution via the hazard transform. Since (aT )b is exponentially distributed
with unit parameter, the n–th moments of T is simply the n/b–th moment
of the exponential distribution divided by an. This connexion will also be
exploited in section 4.2.4.

4.2.3 Log–logistic distribution

A further two parameter class of distributions with some convenient properties
is given by the following survivor, distribution, density, and hazard functions:

Ga,b(t) = 1
1 + (at)b

Fa,b(t) = (at)b
1 + (at)b

fa,b(t) = babtb−1

[1 + (at)b]2 (63)

ra,b(t) = babtb−1

1 + (at)b ,

where a, b > 0. This is called the log–logistic class of distributions. If b > 1,
the hazard function has a single maximum at (b− 1)1/b/a. If b < 1, the hazard
function is decreasing. This is illustrated in Figure 7. From the relation

fa,b(t) = b

t
Ga,b(t)[1−Ga,b(t)]

one can reduce the problem of finding the moments of the log–logistic distribu-
tion to that of the moments of a beta distribution with density proportional
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b=1.0
b=2.0
b=0.7

Figure 7: Log–logistic hazard rates

to xα−1(1− x)β−1 on the interval [0,1]. This is achieved by the substitution
u = Ga,b(t). It follows that

E(Tn) = 1
an

Γ(1 + n

b
)Γ(1− n

b
) (64)

Note that the n–th moment of the log–logistic distribution only exists if
b > n. The log–logistic distribution therefore has heavier tails than the other
distributions treated in this section.

The log–odds transform of the log–logistic distribution is linear in ln t

ln 1−Ga,b(t)
Ga,b(t)

= b(ln a+ ln t),

and this may be used for model checking and in characterisations involving the
log–odds model as in (52). The log–logistic distribution and its parametrisation
will be further discussed in section 4.2.6.
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4.2.4 Gamma distribution

Another two parameter family of distributions that is often applied is the
gamma–distribution. It is given by:

Ga,b(t) = 1− 1
Γ(b)

∫ t

0
abub−1e−au du

Fa,b(t) = 1
Γ(b)

∫ t

0
abub−1e−au du

fa,b(t) = 1
Γ(b)a(at)b−1e−at (65)

ra,b(t) = fa,b(t)
Ga,b(t)

,

with a, b > 0. It reduces to the exponential distribution for b = 1. Its moments
are

E(T ) = b

a

V(T ) = b

a2 . (66)

The presence of the incomplete gamma function in the survivor function makes
it a rather cumbersome model to work with. But its usefulness in theoretical
arguments derives from the fact that the family is closed under summation. If
T1, T2 are independent gamma variates with the same scale parameter a but
possibly different gamma parameters b1 and b2, then their sum T1 + T2 is once
again a gamma variate with the same scale parameter a and gamma parameter
b1 + b2. Since the exponential distribution corresponds to b = 1, an immediate
consequence is that the sum of n independent exponential distributions with
the same scale a is gamma distributed with scale a and gamma parameter
b = n. This makes the gamma family an attractive candidate if an event is
assumed to happen after the cumulative effects of several intermediate events.
It is also used in the context of renewal processes and as a computationally
convenient component in mixture models.
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4.2.5 Mixtures

The weighted mean of two survivor functions G1 and G2,

G(t) = pG1(t) + (1− p)G2(t) , p ∈ [0, 1] (67)

is again a survivor function. This is a useful and fundamental device to
produce new distributions from given ones. It is often interpreted in terms of
heterogeneity: Suppose that there is an indicator V ∈ {1, 2} identifying two
groups with different survivor functions G1 and G2. If Pr(V = 1) = p, the
marginal survivor function of the duration T is given by (67). The mixture
therefore describes the survivor function if either the information on group
membership V cannot be obtained or if one is interested in describing the
situation without reference to group membership.

A special case of this model, the mover–stayer model, has a long tradition in
sociological research. It posits that there is a subgroup that never experiences
the type of event under consideration. In mobility research or demography,
there are persons never changing their position or never marrying. Since these
subgroups cannot be identified beforehand, the marginal survivor function is a
mixture of the form

G(t) = pG1(t) + (1− p), (68)

where the survivor function of the group not experiencing an event is unity.
The above survivor function is sometimes called defective, because its limit
for t→∞ is 1− p > 0. Equivalently, the corresponding distribution function
converges to p < 1. As a result, the expectation in this model is infinity.
Considering the above mentioned applications, the model is mildly unrealistic,
if only because no one can live up to its expectation. Still, it might produce a
useful approximation in some applications.

The idea of heterogeneity can be generalised by allowing not only discrete but
general random variables. The realisations of these random variables are then
often interpreted as characterising a certain property of individuals. In the
model building process, the heterogeneity variables are therefore treated on
the same footing as other covariates. Thus the introduction of covariates in the
general discussion of mixtures will make it possible to examine the effects of
heterogeneity with respect to the different forms of covariate effects discussed
earlier.

Suppose that in addition to the covariate vector x there is a random variable V ,
having the same distribution for all values of x, and influencing the conditional
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distribution of duration. If V is not included in the set of regressors, the
resultant survivor function of T conditional on x is the expectation of the
conditional distribution of T given x and V with respect to the distribution of
V , M(), say:

Pr(T > t |x;β) =: G(t |x;β) = EM (G0(t |x, V ;β)) (69)

=
∫
G0(t |x, v;β) dM(v)

The survivor function G is said to be a mixture derived from the mixing
distribution M and the mixed distribution G0. The mixed distribution G0 is
also called a kernel.

The effect of the mixing operation in the the present context is twofold. First,
it generally changes the mixed distribution. If the mixed distribution belongs
to some parametrised family, one gets a new family of distributions. If, in
addition, the mixing distribution is allowed to come from a parametrised family,
the mixing operation leads to a new parametrised family described by the
parameters of both, the mixed and the mixing distribution. Second, except in
special circumstances, the operation changes the way the included covariates
act on the underlying family of distributions. Mixture models are therefore
a useful tool to enlarge both the families of distributions and the classes of
covariate effects considered.

The case that the random variable V acts as in a proportional hazards model
on the kernel is of special importance. Suppose, therefore, that the hazard
conditional on x and V is of the form

r(t |x, V ;β) = V r0(t |x;β) with Pr(V ≥ 0) = 1. (70)

Mixtures of this special form are called proportional mixtures. In technical
or medical applications—where durations describe times to a failure or death
and where the variable V refers to environmental effects—the model is often
termed frailty model.

Computations and the derivation of characteristics of the mixed distribution
can be eased considerably by noting the close connexion of this model with
the Laplace transform. The Laplace transform of a positive random variable
V is defined to be

LM (t) = EM
(
e−tV

)
=
∫
e−tv dM(v). (71)
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The function LM (t) is thus seen to be the survival function of a propor-
tional mixture with a unit exponential distribution as kernel. But there are
extensive tables of Laplace transforms and many characterisations of their
properties.10This relationship can also be exploited for general proportional
hazards models, since

G(t |x;β) = EM
(
e−V exp(xβ)H0(t))

=
∫
e−ve

xβH0(t) dM(v) = LM
(
exβH0(t)

)
. (72)

That is, a proportional mixture of a proportional hazards model is the Laplace
transform of the mixing distribution, evaluated at the integrated hazard,
exβH0(t).

As an example, consider the gamma distribution as a mixing distribution with
scale a = κ and gamma parameter b = κ. Its density is

mκ(v) = 1
Γ(κ)κ

κvκ−1e−κv. (73)

Setting a = b = κ as above leads to the standardisation E(V ) = 1 and
V(V ) = 1/κ, compare (66). Its Laplace transform is of an especially simple
form:

LM (t) = 1(
1 + 1

κ t
)κ

Using the exponential distribution and proportional covariate effects as the
kernel, one gets

G(t |x;β, κ) = LM
(
exβt

)
= 1(

1 + 1
κe
xβt
)κ .

The density and hazard function of this distribution are

f(t |x;β, κ) = exβ

(1 + 1
κe
xβt)κ+1

r(t |x;β, κ) = exβ

1 + 1
κe
xβt

. (74)

10 see: F. Oberhettinger/L. Badii: Tables of Laplace Transforms; Springer 1973 and
W. Feller: An Introduction to Probability Theory and its Applications, vol. II; Wiley
1971, chap. XIII, for a general discussion.
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This family of distributions is called after Pareto. Note that the last formula
above implies that the covariates do not act proportionally in the mixed
distribution. Specifically, the ratio of any two hazard functions corresponding
to two different values of the covariates converges to unity for t→∞.

Using the above gamma distribution as the mixing distribution in conjunction
with a general proportional hazards model as the kernel leads to survivor
functions of the form

G(t |x;β, κ) = 1(
1 + 1

κe
xβH0(t)

)κ . (75)

Now, the integrated hazard function H0(t) is monotone increasing. The same
is true for the odds of survival (1−G(t))/G(t), as well as for the transform
(1 − G(t)γ)/G(t)γ that was used in the definition of the γ–odds model (53).
In the absence of further restrictions on the rate or survivor function, the
proportional mixture with gamma mixing distribution represents the same
family of distributions and the same covariate effect as the γ–odds model.
In other words, a proportional hazards model with gamma heterogeneity is
formally and observationally equivalent to the γ–odds model. While the former
posits a proportional effect of the covariates on the hazard function plus
heterogeneity, the latter posits non–proportional effects but no heterogeneity.
It follows that a good fit of the proportional mixture model cannot be regarded
as empirical evidence for some form of heterogeneity. It may equally well be
an indication of non–proportional covariate effects.

To end the discussion of proportional gamma mixture, we note its potential
usefulness in the context of dependent durations. If, say, two durations are
independent given covariate information and heterogeneity V , and if the
heterogeneity term acts proportional on the hazard rate,

Pr(T1 > t1, T2 > t2 |x, V = v;β)
= Pr(T1 > t1 |x;β1)v Pr(T2 > t2 |x;β2)v. (76)

If V follows the gamma distribution (73), the joint survivor function of T1, T2
is given by

Pr(T1 > t1, T2 > t2 |x;β)

=
∫

Pr(T1 > t1 |x;β1)v Pr(T2 > t2 |x;β2)v dM(v)

= 1(
1 + 1

κH1(t1 |x;β1) + 1
κH2(t2 |x;β2)

)κ ,
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where H1 and H2 are the integrated hazard functions of the distributions in
(76). The value of V may characterise a common property of individuals or
a common environment. Since T1 and T2 share the same value of V = v,
marginalising the distribution of the two distributions with respect to V leads
to dependent duration variables.

In the special case of a gamma heterogeneity term, κ can be seen as a measure
of dependence, with κ → ∞ corresponding to independence. At the same
time, κ→∞ implies a vanishing variance for the mixing distribution, so that
the values of V become concentrated around the value 1. In other words, the
influence of common factors or the environment tends to a common value for all
random variables considered. For an interpretation, however, it should be noted
that κ features also in the marginal distributions of T1 and T2, respectively,
via (75). Since the marginal distributions alone contain information on κ, the
parameter cannot be said to pertain solely to dependence.

As the above examples demonstrate, proportional mixtures of proportional
hazards models will in general lead to non–proportional covariate effects. It
may be asked whether this is true for all mixing distributions M . The answer
is in the negative. Using the relation given by the Laplace transform of a
mixing distribution and the mixture (72), one needs only to consider Laplace
transforms

LM (t) = e−t
σ

with σ < 1.

It can be shown that such Laplace transforms do correspond to the distributions
of positive random variables. But (72) then results in

G(t |x;β) = LM (exβH0(t)) = e−(exβH0(t))σ ,

which is again a proportional hazards model. A sufficient condition to insure
that proportional mixtures of proportional hazards models are not also in the
class of proportional hazards models is to postulate a finite expectation for the
heterogeneity term. This condition is sometimes stipulated when an empirical
distinction between heterogeneity and proportional kernel is required. While
this might be a reasonable assumption in special cases, there is obviously no
way to decide problem empirically.

It remains to examine scale models—the second broad class of covariate effects—
in conjunction with mixtures. Suppose, therefore, that the covariates as well
as the heterogeneity term act as in a scale model, multiplying an underlying
duration variable T0. In terms of logarithmic durations, the model can be
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written as

lnT = xβ + ε+ U, U 'd M(u) or (77)
lnT = xβ + ε∗, ε∗ = ε+ U

On the transformed scale, mixing changes only the residual distribution. On
this scale, introducing a mixing distribution does not lead to interesting
consequences with regard to covariate effects. It simply increases the variability
of the error term. Specifically, a scale mixture of a scale model of covariate
effects is a scale model. However, the baseline distribution designated by T0 is
changed. This once again illustrates the interplay between the specification of
covariate effects and mixtures.

4.2.6 Combining models for covariate effects and distributions

Given a class of distributions together with a parametrisation, a rather direct
way to introduce covariate effects is to make the parameters functions of the
covariates. This will in some cases reduce to one of the classes of covariate
effects discussed before. For example, in the parametrisations used here, the
parameter a in the exponential, Weibull, log–logistic, and gamma distributions
are scale parameters. Putting a = exp(−xβ) leads to a scale model of covariate
effects.

However, the second parameter in all the above two parameter classes does not
have such an easy interpretation. Still, under certain circumstances it might
be desirable to let these parameters be functions of some of the covariates, and
flexible software packages allow for this possibility. Since the parametrisation
of a class of distributions is highly arbitrary and mostly follows custom, the
interpretation of such models will require close scrutiny of the underlying
parametrisation.

Another possibility is to use one of the classes of covariate effects in conjunction
with a class of distributions. E.g., none of the two parameter classes has a
parameter representing proportional effects on the hazard rate. Introducing
a proportional hazards model for the log–logistic distribution results in the
hazard rate

ra,b(t |x;β) = exβ
babtb−1

1 + (at)b (78)
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with survivor function

Ga,b(t |x;β) = 1
(1 + (at)b)e

xβ/a
. (79)

Comparison with the general proportional gamma mixture (75) reveals that
this is the same as a gamma mixture of a Weibull model, where the variance of
the mixing distribution is given by V(V ) = 1/κ = a exp(−xβ) and the Weibull
scale parameter in this interpretation is exp(xβ/b)a(b−1)/b. Thus, in this model
the covariate effect might be seen as either arising from a proportional hazards
model or from the simultaneous determination of the variance of a mixing
distribution and the scale.

It has sometimes been proposed to use both a proportional hazards and a scale
model for covariate effects. While some covariates might multiply the hazard
rate, others might multiply the scale of a model. Whether such a distinction
is possible will depend on the class of distributions chosen. Both effects are
basically the same within the Weibull class, while the log–logistic might be
extended to allow both for a scale and a proportional hazards effect. However,
extreme care is needed when the two covariate sets contain common members.
First, the ability to distinguish the two effects hinges strongly on the family of
distributions considered. Second, as can be seen from the case of the extended
log–logistic distribution above, changes in proportional effects will also be
reflected in the scale of the model. Third, both, higher rates and accelerated
scales, while theoretically distinct concepts, lead to shorter durations. Since
observations of durations are the only empirical basis for claims about covariate
effects, estimators of the effects for the same covariates will tend to be highly
correlated.

4.3 Time dependent covariates

One of the distinguishing aspects in the analysis of durations is the possibility
to consider the impact of time varying covariates. Whether covariates rep-
resent the state of the environment, the stages of a decision process, or the
contingencies of an actor, these changing circumstances can be incorporated
in most duration models. The interpretation of their effects will depend not
only on the form of covariate effects considered, but also on assumptions on
the time path of these covariates.

Suppose first that the development of covariate values through time can be
assumed to be fixed, or known in advance, or, at least, not to depend on the
action of subjects figuring in the description of the durations of interest. This
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kind of covariates is called a defined time dependent covariate, if its time path
can be ascertained without recourse to the actual event history. Otherwise, it
is called ancillary.

Suppose next a proportional hazards model for the effect of such covariates.
The effect of time dependent covariates can then be reflected in an immediate
effect on the hazard at time t induced by the value of the covariate at the same
time. Formally, this is written as

r(t |x(t)) = r0(t)ex(t)β . (80)

An important special case arises when the process x(t), considered as a function
of time, is a step function. Let the process x(t) be piecewise constant in the
time intervals 0 < τ1 < . . . < τm <∞. Then the resultant conditional survivor
function has a rather simple form since the integrated hazards can be evaluated
piecewise also. For τm < t <∞, e.g.,

G(t |x(u)u∈[0,t)) = e
−
∫ t

0
ex(u)βr0(u) du

= e
−
(
ex1β

∫ τ1

0
r0(u) du+ . . .+ exmβ

∫ t

τm

r0(u) du
)

(81)

= e−α1(H0(τ1)−H0(0))− . . .− αm(H0(t)−H0(τm)).

An important application of this idea is used in a generalisation of the class
of exponential distributions. Fixing the values of the time intervals τ0 =
0 < τ1 < . . . < τm < ∞ and setting exp(x(u)β) = αk for u in the interval
[τk−1, τk) as above, while choosing the constant rate r0(u) ≡ 1 gives rise to the
piecewise exponential distribution. Its hazard rate is given by the function that
is constant on the intervals τ0 = 0 < τ1 < . . . < τm <∞, taking the value αk
on the k th interval. The hazard rate is therefore a step function. It follows
that the survivor function is given by

G(t |x(u)u∈[0,t)) = e− (α0τ1 + α1(τ2 − τ1) + . . .+ αm(t− τm)) (82)

Choosing appropriate intervals and steps, it might be used to approximate
other hazard rate functions. From (81), if τ0 = 0 < τ1 < . . . < τm < ∞ are
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the jump times of the covariate process x(t), we get

G(t |x(u)u∈[0,t))

= e−e
x(τ1)β(H0(τ0)−H0(0))− . . .− ex(τm)β(H0(t)−H0(τm))

=
m∏

k=1

(
G0(τk)
G0(τk−1)

)ex(τk−1)β (
G0(t)
G0(τm)

)ex(τm)β

(83)

=
m∏

k=1
(Pr(T0 > τk |T0 > τk−1))e

x(τk−1)β
×

(Pr(T0 > t |T0 > τm))e
x(τm)β

More generally, time dependent proportional covariates that are step functions
with respect to time can be treated as in (81), if the integrated hazards have
closed form expressions.

If the covariates act proportional on the hazard but are not step functions, one
needs to be able to compute the integral with respect to time of exp(x(u)β)r0(u)
to get an expression for the survivor function and other summary functions.
Models of this form with defined covariates are sometimes used to express
deviations from the assumed proportional effect of covariates. A case in point
is the use of the covariate x(u) = x/(1 + u) for some fixed covariate x. The
covariate effect in a proportional hazards model is then

φ(x(t);β) = exβ/(1+t). (84)

The ratio of the hazard rates for two values of x, say x1 and x2, will then
tend to one, in contrast to the proportional hazards model that was used
as a starting point. Obviously, other forms of covariate effects or of classes
of distributions can be obtained from deliberately choosing time dependent
functions as covariates. As an example, consider x(u) = ln u in an exponential
model. The rate then is r(t |x;β) = exp(β0 + β1x(t))t = exp(β0)tβ1+1. In
other words, the covariate transforms the exponential model into a Weibull
model.

One may also start with a scale model of covariate effects. If time dependent
variables are supposed to act immediately at each point in time, the physical
interpretation of scale models leads the interpretation of covariate effects as
changing the velocity of the underlying process as compared to a uniform
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motion represented by the duration T0. But change of velocity is acceleration.
Therefore, putting

Ψ(t) =
∫ t

0
e−x(u)β du,

one arrives at the expression

T = Ψ−1(T0),

which may be compared to the relation T = exp(xβ)T0 for the scale model
with fixed covariates. However, there is no special case similar to the piecewise
constant case considered above. The integrals have to be worked out on a case
by case bases. Moreover, if there are two or more time dependent covariates,
the order of applying the respective transformations will matter. For both
reasons, this type of transformation model is only rarely considered.

Defined or ancillary time dependent covariates can be used to extend the form
of covariate effects and/or the class of distributions, and may have a direct
interpretation as immediate effects of changing values of covariates. These
simple interpretations are no longer available for evolutionary covariates. These
covariates depend on the history of the whole process, and might not even be
defined independently of the process under consideration. Simple examples
are provided by measures that are outcomes of the process itself, like the
amount of unemployment benefits received, when the interest centres on the
duration of unemployment. Because of respective regulations, the amount of
unemployment benefits will often simple be a re-expression of the duration
of unemployment. In these cases, measures of effects can only be interpreted
when the joint process is taken into account.

4.4 Censoring processes

The process that leads to censored observations is in general not of interest in
itself. If censoring is judged to be non-informative, it neither enters into the
construction of estimators nor in the interpretation of results.

On the other hand, censoring will certainly play a decisive role for the evaluation
of estimators and for their precisions in any given sample. If in a sample of a
hundred observations, two are censored, this is will certainly signify a different
information than that based on a hundred observations of which 90 are censored.
Information on the censoring process is therefore needed for both the theoretical
and the practical comparison of estimation procedures and results.
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Of even greater practical importance is the fact that the probabilistic de-
scription of situations with censored observations is incomplete. If only the
conditional distribution of the durations and the covariate effects are given,
it is only possible to simulate complete observations, but never the impact of
censored observations. This hampers the analysis of implications of assumed
models as well as their criticism in a context where analytical results are
especially difficult to obtain.

Specification of any censoring time independent of the duration time is sufficient
to guarantee non-informative censoring. But a special case of that situation
is very useful, both conceptually and empirically. Suppose, therefore, that
censoring times and durations are independent. Moreover, assume that the
rates of the durations and the censoring times do exist, and that they are
proportional. Disregarding covariates for the moment, the assumption implies
the existence of a constant a with

rC(t) = ar0(t), (85)

where rC is the rate function of the censoring time and r0 is the rate function
of the duration of interest. This special relationship between independent
censoring times and durations is called the Koziol–Green model. The model
has some simple but extremely useful consequences for simulations. First, the
survivor function of the censored time T ∗ = min(C, T ) is

Pr(T ∗ > t) = Pr(C > t, T > t)
= e−aH0(t)e−H0(t) = e−(1+a)H0(t).

In other words, all the distributions of T , C, and T ∗ have proportional haz-
ards.

Second, the probability of censoring, Pr(D = 0), is equal to the ratio a/(1+a):

Pr(D = 0) = Pr(C < T )

=
∫

Pr(T > u)hC(u) du

=
∫
e−H0(u)ar0(u)e−aH0(u) du

=
∫
e−(1+a)H0(u)ar0(u) du

= a

1 + a

∫
e−(1+a)H0(u)(1 + a)r0(u) du
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= a

1 + a
,

where the equality in the last line follows upon observing that the integrand
in the next to last line is the density of the random variable T ∗.

Third, the censoring indicator D and the censored duration time T ∗ are
independent. This follows from the same reasoning as above, in reverse
order:

Pr(D = 0) Pr(T ∗ > t) = a

1 + a
e−(1+a)H0(t)

= a

1 + a

∫ ∞

t

(1 + a)r0(u)e−(1+a)H0(u) du

=
∫ ∞

t

e−H0(u)ar0(u)e−aH0(u) du

=
∫ ∞

t

Pr(T > u)hC(u) du

= Pr(T > C > t) = Pr(D = 0, T ∗ > t).

It can also be shown that the independence of the censoring indicator and the
censored durations is sufficient for the Koziol–Green model to hold.

If the Koziol–Green model holds, it is possible to simulate censored observations
by independently simulating the censoring indicator D and the censored times
T ∗. This allows for a simple control over censoring proportions in simulations.
Moreover, some awkward computations in the evaluation of the performance
of estimators are considerably reduced. The Koziol–Green model of censoring
has therefore become a convenient starting point for the evaluation of censored
data models, both practically—through simulations—and theoretically.

5 Estimation

In the presence of censored observations there is no unified method for the
construction of estimators with good properties. Of the many proposals, we
have already mentioned two non–parametric estimators of survivor functions
and the Buckley–James regression estimator. Three other construction methods
that are especially useful in the context of regression models are treated next.
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5.1 Maximum likelihood

Suppose first that a fully specified model for both the distribution and the
covariate effect are given. Denote the parameter(s) of the distribution by θ,
the parameters of the covariate effect model by β, and the resulting conditional
density by f(t |x; θ, β). In the case of uncensored observations from independent
replications of T |x, the joint density of n observations is given by

n∏

i=1
f(ti |xi; θ, β).

This may also be seen as a function of θ, β for given (ti, xi), i = 1, . . . , n, in
which case it is called the likelihood function

L(θ, β) =
n∏

i=1
f(ti |xi; θ, β). (86)

One may define estimators as those values of θ, β that maximise the function
L,

(θ̂, β̂) = arg maxθ,βL(θ, β), (87)

the maximum likelihood estimator. To be of use in the analysis of durations,
censoring must be included in the definition. Using the independent random
censoring model from section 2.2, the data are now (ti, di, xi). Their density
involves the survivor function K and the density k of of the censoring variable
C and is given by

n∏

i=1
(f(ti |xi; θ, β)K(ti))di (G(ti |xi; θ, β)k(ti))1−di . (88)

The contribution of n uncensored observation (di = 1) to the likelihood is
the density of the duration, f(ti |xi; θ, β), times the probability of a censoring
time C after the observed duration, K(ti). The contribution of a censored
observation (1 − di = 1) is the probability of a duration larger than ti time
the density of a censoring time at ti.

If the censoring distribution does not contain information on (θ, β), the likeli-
hood function is up to a multiplicative constant (terms not depending on θ or
β)

L(θ, β) =
n∏

i=1
(f(ti |xi; θ, β))di(G(ti |xi; θ, β))1−di . (89)
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That is, the likelihood is the product of the densities of the uncensored
observations times the survivor functions of the censored observations.

Because of the product structure of the likelihood function it is advantageous
to use the logarithm of the likelihood, the log–likelihood `(θ, β) = lnL(θ, β) as
the function to be maximised. It is the sum of the logarithms of the densities
or the survivor function respectively.

As an example, suppose T |x is exponential with hazard rate exβ . The density
is exβ exp(−exβt) and the survivor function is exp(−exβt), so that the log–
likelihood function is

`(β) =
n∑

i=1
di
(
xiβ − exiβti

)
+ (1− di)(−exiβti)

=
n∑

i=1
dixiβ −

n∑

i=1
exiβti.

If the covariate vector contains only a constant, the maximum likelihood
estimator can be given explicitly, since then

`(β) =
n∑

i=1
diβ −

n∑

i=1
eβti.

The derivative of the log–likelihood function, the score function U(β) is

U(β) = ∂

∂β
`(β) =

n∑

i=1
di −

n∑

i=1
eβti.

Setting this to 0 results in

β̂ = ln
∑n
i=1 di∑n
i=1 ti

.

In general, the score function of the i th observation has expectation 0 and its
covariance, the information matrix, can also be expressed as

Ii(β) = Eβ (Ui(β)U ′i(β)) = −Eβ
(
∂2`i(β)
∂β2

)
. (90)

In the exponential example, I = Eβ(eβT ∗). This equals 1 in the absence
of censoring. The large sample theory of regular models suggests that the
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inverse of the information matrix is the asymptotic variance of β̂, so that it
can be used for the computation of confidence intervals and test statistics.
However, the expectation in the definition of the information will normally
depend on the censoring distribution so that it cannot be evaluated without
strong assumptions. In our example, Eβ(eβT ∗) = eβ

∫
exp(−eβu)K(u) du.

In practice, the information is therefore replaced by the observed information,
the negative of the sum of the second derivatives of the log–likelihood function.
In the case of the exponential,

Iobs(β) = −
n∑

i=1

(
∂2`i(β)
∂β2

)
= eβ

n∑

i=1
ti (91)

In the context of tests, β̂ is substituted for β in Iobs(β). In the example,
Iobs(β) =

∑
i di. The Wald test then uses (β̂−β0)Iobs(β̂)−1(β̂−β0) as a test

statistic of the hypotheses β0. It should be born in mind that this procedure
is not invariant under re-parametrisation, such as when the exponential dis-
tribution in the example is re-expressed by a = eβ . Moreover, in regression
contexts the procedure may lead to unreliable results if the absolute value of
some regression coefficients β̂ gets large.

The method of maximum likelihood is applicable in most situations where
the censored likelihood (89) can be written down and where the factoring of
the likelihood (88) is judged appropriate. It provides a general method of
estimation in many situations and is algorithmically simple. It may fail to
produce reliable results, however, in situations with threshold parameters, for
models containing many parameters, and in the presence of forms of incomplete
data other than random censoring.

5.2 EM and the missing information principle

A much more flexible approach to incomplete data follows from the missing
information principle that was already encountered when discussing the self-
consistency property of the Kaplan–Meier estimator and the Buckley–James
estimator. In both cases, some standard estimators, the empirical distribution
function in the case of the Kaplan–Meier estimator and the least squares
estimator in the case of the Buckley–James estimator were generalised to allow
for censored data by replacing the unknown quantities by their expectation
given the available data. The same principle can be used within the context
of maximum likelihood estimation. The starting point in this case is the
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log–likelihood function. If there are incomplete observations, the full data
log–likelihood terms are replaced by

Eθ,β(`i(θ, β;T, x) |T ∗ = t), (92)

where the expectation depends on the current parameter values (θ, β) and T ∗

are the incomplete data (min(T,C), D in the case of censoring). The resulting
log–likelihood function is then maximised with respect to the parameters, and
the procedure is iterated.

In the case of the Buckley–James procedure the complete data score function
is U(β) = x′(Y − xβ) from the normal linear regression model (27). The
expectation satisfies

Eβ(U(β;Y, x)) = 0 . (93)

and the root β̂ of
∑

i

U(β̂; yi, xi) = 0

is the maximum likelihood estimator. Even if the distribution is not normal
— so that the root of the score function β̂ need no longer be a maximum
likelihood estimator — it is often consistent and efficient. When the variables
are censored with variables Z, d, x, then the censored normal score function
can be expressed as

U∗(β;Z, d, x) = E(U(β;Y, x) |Z, d, x) , (94)

the conditional expectation of the score function with complete observations
given the incomplete observations. This suggests using an empirical version

Eβ̂(U(β̂, Y, x |Z, d, x)) = 0

for estimation, and this is just (31). It remains to consider the computation
of the conditional expectation. From the perspective of the normal linear
regression model one might try to use the normal distribution. However, one
can only expect the good properties of the estimators even outside the normal
distribution to extend to censored data situations if the conditional expectation
is computed from a non–parametric estimator. In the case of right censored
observations, this amounts to using the Kaplan–Meier estimator (which is
the non–parametric maximum likelihood estimator) as in the Buckley–James
procedure.
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5.3 Partial likelihood

Another extension of maximum likelihood ideas is the partial likelihood
that allows estimation of proportional covariate effects without specifying
a parametrised baseline distribution. Consider the proportional model

f(t, x;β) = exβr(t)e
−
∫ t

0
exβr(u) du

. (95)

Let t(1) < t(2) . . . < t(n) be n ordered event times, all assumed to be uncensored.
Let Ij be the label of an observation with an event at t(j) and R(t(j)) be the
set of observations without an event before t(j). R(t(j)) is called the risk
set at the event time t(j). Note that R(t(j)) from (15) is the number of
elements in R(t(j)). As an example consider Figure 5.3. Here, R(t(1)) =
{1, 2, 3, 4},R(t(2)) = {1, 2, 4},R(t(3)) = {1, 2}, and R(t(4)) = {2}. The set

-

-

-

-

t→

i = 4

i = 3

i = 2

i = 1

t(1) t(2) t(3) t(4)

Figure 8: Risk Sets

of indices Ij , the ordered event times t(j), and the covariates x(i) are jointly
equivalent to the original data. If nothing is known about the hazard function
r, the t(j) will contain little information about β. On the other hand, the
distribution of Ij can be computed without knowledge of r. The conditional
probability of an event for observation i at the j th event time given the history
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up to the j th event is

Pr(Ij = i | (t(k), x(k))k=1···j , (Ik)k=1···j−1)

=
r(t(i))ex(i)β

∑

k∈R(t(i))

r(t(k))ex(k)β

= ex(i)β

∑

k∈R(t(i))

ex(k)β
(96)

Because of the proportional covariate effect, this conditional probability does
not depend on the hazard rate r. Neither does it depend on the event times
t(j). Therefore, the joint distribution of the indices {I1, . . . , In} is the product
of the above conditional probabilities

Pr(I1, I2, · · · , In) =
n∏

j=1

exIjβ∑

k∈R(t(j))

ex(k)β
(97)

If some observations are censored, a similar expression results in which all
possible event times of the censored observations are considered. If D is the set
of distinct uncensored observations and Ri the risk set corresponding to the
event time of the i th observation, the partial likelihood can be written as

PL(β) =
∏

i∈D

exiβ∑

k∈Ri

exkβ
, (98)

where the product is taken with respect to uncensored observations only. The
partial likelihood depends only on the order of events, not on their timing. It
is therefore invariant with respect to monotone transforms of the time scale.

The derivation of the partial likelihood included only the probabilities of the
indices and information from the covariates. But from (96) alone, one cannot
reconstruct the probability of the sample. Thus, no fully specified probability
distribution is used, in contrast to the derivation of maximum likelihood
estimators. Hence the name partial likelihood.

Though the maximiser of the partial likelihood, the partial likelihood estimator,
is not in general equivalent to a maximum likelihood estimator, it shares a lot
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of the properties of the maximum likelihood estimators. Specifically, the second
derivatives of the log partial likelihood behave like the observed information
and can be used for the construction of tests and confidence intervals.

The score function of the partial likelihood is

∂

∂β
ln PL(β) =

∑
U(β; ti, di, xi)

=
∑

i∈D


x
′
i −

∑

k∈Ri

x′ke
xkβ

∑

k∈Ri

exkβ




=
∑

i∈D

(x′i −Ai(β)′). (99)

The term Ai(β) may be interpreted as the expectation of the covariates x in
the i th risk set if the xi are sampled proportional to exiβ from the risk set.
Similarly, the negative of the second derivative of the partial likelihood is the
sum of covariance matrices of covariates from the risk sets. It follows that it is
non negative definite if the moment matrices in the risk sets are non singular.
The partial likelihood is therefore concave and function maximising algorithms
generally converge rapidly.
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